
Guest
Rectangle

1

Guest
Rectangle

2

Guest
Rectangle

COMP201

1. Introduction: Unix, the Command Line, and Basic C Programming

2. Bits and Bytes, Representing and Operating on Integers

3. Bits and Bitwise Operators

4. Floating Points

5. Chars and Strings in C

6. More Strings, Pointers

7. Arrays and Pointers

8. The Stack and The Heap

9. Realloc, Freed Memory, and Memory Leaks in C

10. C Generics and Void Pointers

11. Function Pointers and Generics in C

12. Structs, const, and Generic Stack

9/30/25, 7:58 PM COMP201

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/test/COMP201%2019d34575a838800da399d6bdc582e3bf.html 1/2

3

Guest
Rectangle

13. Compiling C Programs

14. Introduction to x86-64 Assembly

15. Arithmetic and Logic Operations

16. x86-64 Condition Codes & Control Flow

17. More Control Flow

18. x86-64 Procedures

19. Data and Stack Frames

20. Security Vulnerabilities

21. Cache Memories

22. More Cache Memories

23. Optimization

24. Linking

25. Wrap-Up

9/30/25, 7:58 PM COMP201

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/test/COMP201%2019d34575a838800da399d6bdc582e3bf.html 2/2

4

Guest
Rectangle

1. Introduction: Unix, the
Command Line, and Basic C
Programming

Objective: These notes cover Lecture 1 (from Slide 22 through the end), focusing on

Unix and the Command Line, as well as an Introduction to the C Language.

Unix and the Command Line

Unix is a family of multitasking, multiuser operating systems that share a common set of

standards and tools. Many modern systems (e.g., Linux, macOS) trace their origins to

Unix.

What is Unix?

Unix defines a standard environment and command set used widely for:

Server administration (running websites, databases)

Software development (compiling, debugging, version control)

Embedded systems (Raspberry Pi, IoT devices)

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 1/7

5

Guest
Rectangle

What is the Command Line?

COMMAND-LINE INTERFACE: A text-based interface to interact with a computer

system by typing commands, rather than using graphical icons and menus.

A command-line interface (CLI) allows you to navigate directories, create/remove/edit

files, and execute programs or scripts directly.

Command Line vs. GUI

Graphical User Interface (GUI): Uses icons, windows, and menus.

CLI: Text-based, often requiring memorized commands or references.

Even though the CLI appears more “retro,” it remains powerful and flexible for

development tasks, scripting, and large-scale automation.

Why Use Unix / the Command Line?

Consistency: One set of commands/tools (ls , cp , rm , etc.) works across many

systems.

Versatility: Easily handles repetitive tasks, advanced scripting, remote

administration.

Efficiency: Powerful command chaining (piping), quick file navigation, and

automation.

Unix Commands Recap

Command Description

ls Lists files in the current folder

cd Changes the current directory

mkdir Creates a new directory/folder

rm Removes a file or folder

man Displays the manual for a command

vi/emacs Opens a text editor in the terminal

Example:

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 2/7

6

Guest
Rectangle

cd assignments // change to the "assignments" folder
ls // list files in the current folder

The C Language

C was developed in the early 1970s to facilitate writing operating systems like Unix. It

provides low-level access to memory, compiles to efficient machine code, and forms the

basis for many modern languages (C++, Objective-C, Java).

C vs. C++ and Java

All three share basic syntax and structures (loops, conditionals). However:

C: Procedural, minimal abstraction, direct memory manipulation.

C++: Adds object-oriented features, large libraries, operator overloading, and

templates.

Java: Runs on a virtual machine with garbage collection, fully object-oriented, large

standard library.

Programming Language Philosophies

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 3/7

7

Guest
Rectangle

PROCEDURAL PARADIGM: Organizes code into procedures/functions operating on

data, rather than bundling data and methods together.

C’s design emphasizes performance and direct hardware control over high-level safety

features.

Why C?

Efficiency: Speed and minimal overhead (often used in OS kernels, embedded

systems).

Portability: Runs on nearly every platform.

Foundation: Influenced many subsequent languages and is still widely used for

systems programming.

Programming Language Popularity

C remains top-ranked in surveys (e.g., TIOBE index) due to its broad usage in high-

performance and low-level applications.

Our First C Program

A simple “Hello, world!” in C:

/*
 * hello.c
 * Prints a welcome message.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0; // 0 signals success
}

#include <stdio.h> provides printf .

main returns an integer (0 = success).

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 4/7

8

Guest
Rectangle

argc and argv allow for command-line arguments.

Familiar Syntax

C shares operators and control structures with C++/Java:

int x = 10;
for (int i = 0; i < x; i++) {
 if (i % 2 == 0) {
 printf("Index %d is even.\n", i);
 }
}

Boolean Variables

C uses stdbool.h for the bool type, with values true or false . Without <stdbool.h> , any

nonzero integer is considered true, and 0 is false.

#include <stdbool.h>

bool condition = false;
if (condition) {
 // ...
}

Console Output (printf)

PRINTF: Prints text to standard output, defined in <stdio.h>. Format placeholders

match the argument types: %d for int, %s for string, %f for double, etc.

Example:

int num = 201;
printf("Welcome to COMP%d\n", num); // "Welcome to COMP201"

Writing, Debugging, and Compiling

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 5/7

9

Guest
Rectangle

The typical C workflow involves:

1. Editing code (e.g., vi , emacs , or another editor).

2. Compiling (e.g., gcc , clang).

3. Running the executable.

4. Debugging (e.g., using gdb , logging statements).

Example:

gcc hello.c -o hello // compile
./hello // run

Explanation of Each Part:

Keyword Meaning

gcc
The GNU Compiler Collection command-line tool used to compile C

programs.

hello.c The source code file containing the C program that needs to be compiled.

-o Specifies the output file name for the compiled executable.

hello
The name of the generated executable file. If omitted, the default output is

a.out .

Demo: Compiling and Running a C Program

Steps:

1. Edit a source file (e.g., hello.c).

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 6/7

10

Guest
Rectangle

2. Compile with gcc hello.c -o hello .

3. Run via ./hello .

4. If issues arise, use gdb or print statements to debug.

Recap

Unix & Command Line: Essential for file management, building, and running

programs.

C Language: Procedural, low-level, efficient—ideal for learning how software

interacts closely with hardware.

Next time, we’ll delve deeper into how computers represent data in memory, manage

processes, and handle more advanced system-level details.

Self Test

Self-Test: Lecture 1

9/30/25, 7:52 PM 1. Introduction: Unix, the Command Line, and Basic C Programming

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/1%20Introduction%20Unix,%20the%20… 7/7

11

Guest
Rectangle

2. Bits and Bytes, Representing
and Operating on Integers

Bits and Bytes

In a digital computer, the bit (binary digit) is the smallest unit of information. Each bit can

be either 0 (off) or 1 (on). A byte is a group of 8 bits. Modern computer architectures

typically organize memory in byte-addressable form, meaning each byte has a unique

address in memory.

Storing data (like text, images, audio) ultimately comes down to representing

patterns of 0s and 1s.

A single byte can hold values from 0 to 255 when using unsigned representation (2⁸

possible patterns).

BYTE-ADDRESSABLE MEMORY: Each byte in memory is assigned a unique numeric

address, allowing the CPU to access or modify it.

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 1/14

12

Guest
Rectangle

Why Bits?

At the hardware level, electronic circuits use transistors that switch between two states

(voltage high or low). Software uses these two states to form the conceptual “0 or 1”

representation.

Base Conversions

Bits are naturally expressed as binary (base 2). However, we often convert between

binary, decimal (base 10), and hexadecimal (base 16) for readability.

Binary (Base 2)

Uses digits 0 and 1.

For example, 1011₂ means:

Decimal (Base 10)

Our everyday number system uses digits 0–9.

Converting from binary to decimal adds up powers of 2. Converting decimal to

binary often uses repeated division by 2, keeping track of remainders.

1 × 2 +3 0 × 2 +2 1 × 2 +1 1 × 2 =0 8 + 0 + 2 + 1 = 11 ​. 10

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 2/14

13

Guest
Rectangle

Hexadecimal (Base 16)

Uses digits 0–9 plus A–F for 10–15.

Each hex digit matches exactly 4 bits (binary):

For instance, 0xF corresponds to 1111₂ .

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 3/14

14

Guest
Rectangle

Notation: 0x3A or 0X1F2B typically indicates a hexadecimal number.

Convenient for compressing large binary numbers: 32 bits can be expressed with just

8 hex digits.

HEX DIGIT: A single symbol from , each

representing four bits.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 4/14

15

Guest
Rectangle

Integer Representations

Computers store integers in bit patterns. The common integer categories are:

1. Unsigned integers: Nonnegative (0 and above).

2. Signed integers: Include negative values, zero, and positive values.

In C, different integer types occupy different numbers of bytes, affecting the range of

values they can hold. For instance:

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 5/14

16

Guest
Rectangle

int on many systems is 4 bytes (32 bits), typically ranging from −2³¹ to 2³¹−1 if

signed, or 0 to 2³²−1 if unsigned.

long (on 64-bit systems) is often 8 bytes (64 bits).

C DECLARATIONS:

int x; // typically 4 bytes (32-bit)
unsigned int y; // 4 bytes (32-bit), but stores only nonnegative
numbers

Different operating systems and compiler settings may alter these sizes (especially for

long). The fundamental concept remains the same: a certain number of bits store the

integer.

Unsigned Integers

An unsigned integer uses all bits to represent nonnegative numbers.

For an 8-bit unsigned integer:

Minimum = 0 (binary 00000000)

Maximum = 255 (binary 11111111)

For a 32-bit unsigned integer:

Minimum = 0

Maximum = 2³²−1 = 4,294,967,295

Arithmetic on unsigned values is straightforward binary addition and subtraction. When a

calculation exceeds the maximum representable value, the result “wraps around” from

the top back to zero (an effect called overflow).

Example:

unsigned char a = 255; // 8-bit max
a = a + 1; // Overflow! Wraps around to 0

Signed Integers

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 6/14

17

Guest
Rectangle

Signed integers include negative values, zero, and positive values. The question is how

to store “sign information” in bits. Several historical methods exist:

Sign-Magnitude Representation

SIGN-MAGNITUDE: The most significant bit (MSB) indicates sign (0 = positive, 1 =

negative). The remaining bits represent magnitude.

Advantage: Conceptually simple for sign determination.

Disadvantages:

Two ways to represent zero (+0 and −0).

Arithmetic operations are more complex because you must handle the sign bit

separately.

Two’s Complement (Modern Standard)

TWO’S COMPLEMENT: A negative number is formed by inverting (flipping) all bits of

its positive version (one’s complement) and then adding 1.

1. If you have +6 (binary 00000110 in 8 bits), you invert bits → 11111001 , then add 1 →

11111010 . This results in the binary representation for −6.

2. To go back from −6 , perform the same two’s complement steps.

Two’s complement provides:

One unique zero (no separate +0 and −0).

Simple addition: No special sign logic. Normal binary addition works for negative

and positive.

Efficient hardware for arithmetic.

In a 32-bit two’s complement:

The MSB still indicates negativity if it’s 1.

The range is typically −2³¹ through +2³¹−1.

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 7/14

18

Guest
Rectangle

Overflow

Overflow occurs if an arithmetic result doesn’t fit within the available bits. The final result

“wraps around” in a seemingly unpredictable way.

Unsigned overflow: If you add 1 to 255 in an 8-bit unsigned, you get 0.

Signed overflow: If you exceed +2³¹−1 (for 32-bit), it wraps to a negative number.

Real-World Examples

The Gandhi bug in the game Civilization: When Gandhi’s aggression rating (1) was

reduced by 2, it underflowed from 1 to 255, making him extremely aggressive.

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 8/14

19

Guest
Rectangle

Windows 95 uptime limit: The system timer was stored in a 32-bit integer counting

milliseconds. After ~49.7 days, it overflowed and crashed.

CAUSE: Finite bits can’t store infinitely large or small numbers.

RESULT: Wrap-around or weird negative/positive flips.

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Repr… 9/14

20

Guest
Rectangle

Casting and Combining Types

In C, operations involving different integer types can lead to implicit conversions:

A signed value combined with an unsigned of the same size typically converts the

signed operand to unsigned (if 32 bits each, for example). Negative signed values

become large positive values when reinterpreted in unsigned form.

Printing with the wrong format specifier (%d vs. %u vs. %x) interprets the same bits

differently in output.

Example:

int n = -5;
unsigned int m = n; // same bits, but interpreted as a large unsi
gned value
printf("n = %d, m = %u\n", n, m);

Output:
n = -5, m = 4294967291

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Re… 10/14

21

Guest
Rectangle

...Program finished with exit code 0

If n ’s 32-bit pattern is 11111111 11111111 11111111 11111011 , then m sees that as 4,294,967,291

in decimal.

When comparing signed and unsigned in expressions, the signed operand is promoted to

unsigned , which can lead to unexpected results (e.g., −1 might become a large positive

unsigned).

The binary pattern for −1 in 32-bit two’s complement is 0xFFFFFFFF , which is 4,294,967,295

when interpreted as unsigned 32-bit.

Code Examples

Unsigned Overflow

#include <stdio.h>
int main(void) {
 unsigned int x = 4294967295U; // max 32-bit unsigned
 x = x + 1; // wraps around to 0

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Re… 11/14

22

Guest
Rectangle

 printf("Wrapped: %u\n", x); // prints 0
 return 0;
}

Two’s Complement Negative

#include <stdio.h>

int main(void) {
 int positive = 6; // 0000 0110 in 8-bit, conceptual
 int negative = ~6 + 1; // two’s complement: invert bits (~) an
d add 1
 printf("%d\n", negative);
 return 0;
}

Output:
-6

...Program finished with exit code 0

Depending on the system (usually 32-bit or 64-bit int), the logic remains the same, just

with more bits involved.

Comparison Between Different Types

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Re… 12/14

23

Guest
Rectangle

Summary

Bits and Bytes: The fundamental representation of data in digital systems.

Base Conversions: Binary → decimal → hex are useful to read and write integer

values.

Unsigned Integers: Store only nonnegative values; wrap around on overflow.

Signed Integers: Typically use two’s complement for negative representation.

Overflow: Occurs when results exceed the representable range, causing wrap-

around.

Casting and Combining Types: Bit patterns stay the same, but the interpretation

changes if you switch from signed to unsigned or use mismatched printf format

specifiers.

Understanding these fundamentals is crucial for debugging low-level behaviors, ensuring

correct arithmetic operations, and writing robust C programs that handle all edge cases.

Self Test

Self-Test: Lecture 2

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Re… 13/14

24

Guest
Rectangle

9/30/25, 7:52 PM 2. Bits and Bytes, Representing and Operating on Integers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/2%20Bits%20and%20Bytes,%20Re… 14/14

25

Guest
Rectangle

4. Floating Points

Representing Real Numbers

Real numbers include fractions and decimals and have infinitely many possible values

between any two integers. Unlike integers, a fixed-width representation must

approximate real numbers.

Challenge: There are infinitely many real numbers between any two integers.

Solution: Use a fixed-width representation that sacrifices some accuracy for a finite,

manageable format.

Approaches: Two primary methods are used:

Fixed Point Representation

Floating Point Representation

REAL NUMBER REPRESENTATION: A method to encode numbers with fractional

parts in a fixed number of bits.

Fixed Point Representation

Fixed point representation is similar to the standard decimal representation but in binary.

It extends the integer representation by adding a fixed number of bits for the fractional

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 1/13

26

Guest
Rectangle

part.

Concept: The binary point is fixed in one position.

Pros:

Arithmetic is straightforward.

Precision is predictable.

Cons:

The location of the binary point is fixed, limiting the range.

To cover both very large and very small numbers, the bit-width must be

increased significantly.

Example:

A fixed point number might be represented as:

where the bits to the left represent the integer part and those to the right represent the

fractional part.

1011.011

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 2/13

27

Guest
Rectangle

Floating Point Representation

Floating point representation allows the decimal (or binary) point to “float,” enabling a

much wider range of values to be represented.

Format: Numbers are expressed in the form:

where is the significand (or mantissa) and is the exponent.

Advantages:

Wide dynamic range: can represent very small and very large numbers.

Flexible: accommodates scientific notation.

Disadvantages:

Not every real number can be represented exactly.

Rounding and precision issues occur due to the finite number of bits.

FLOATING POINT REPRESENTATION: A method to represent real numbers that uses

a significand and an exponent, allowing the decimal point to move, thereby enabling a

wide range of values.

±x× 2 E

x E

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 3/13

28

Guest
Rectangle

IEEE Floating Point Format

The IEEE 754 standard is widely used for floating point arithmetic in digital systems.

Structure of Single Precision (32-bit)

Sign Bit (1 bit): 0 for positive, 1 for negative.

Exponent (8 bits): Stored with a bias (127 for single precision).

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 4/13

29

Guest
Rectangle

Fraction (23 bits): Represents the fractional part of the significand.

The number is represented as:

where:

 is the sign bit.

 is the stored exponent.

 is the fractional part (the bits to the right of the binary point).

IEEE SINGLE PRECISION FLOAT: A 32-bit format that provides a balance between

range and precision.

(−1) ×s 1.f × 2 (e−127)

s

e

f

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 5/13

30

Guest
Rectangle

Exponent Field and Bias

Bias: The exponent field in IEEE single precision has a bias of 127.

Actual Exponent: Calculated by subtracting the bias from the stored exponent

value.

This method allows both positive and negative exponents to be stored in an

unsigned format.

NOTE: The exponent is stored as an unsigned integer with a fixed bias, which simplifies

comparison and arithmetic at the bit level.

Actual Exponent = e− 127

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 6/13

31

Guest
Rectangle

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 7/13

32

Guest
Rectangle

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 8/13

33

Guest
Rectangle

Fraction Field and Normalization

Normalization: In normalized numbers, the significand is adjusted so that there is an

implicit leading 1 before the binary point. This “hidden bit” provides an extra bit of

precision.

Fraction Field: Only the bits to the right of the binary point are stored.

Denormalized Numbers: When the exponent is all zeros, the number is

denormalized; the implicit leading 1 is assumed to be 0, allowing representation of

numbers very close to zero.

KEY POINT: Normalization maximizes precision by ensuring that the significand is in a

standard form.

Stored Value = 1.f

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a83457… 9/13

34

Guest
Rectangle

Floating Point Arithmetic and Pitfalls

Floating point arithmetic is not as straightforward as integer arithmetic due to several

issues:

Alignment: To add two floating point numbers, their exponents must be aligned,

which may require shifting the significand and can lead to loss of precision.

Rounding: The result of an operation may be rounded to fit into the available bits.

Non-Associativity: Floating point addition is not necessarily associative. For

example:

Over/Underflow: Results that exceed the representable range become infinity or

zero (or denormalized numbers), leading to unexpected behavior.

(3.14 + 1e20) − 1e20 = 3.14 + (1e20 − 1e20)

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a8345… 10/13

35

Guest
Rectangle

PRACTICAL TIP: Avoid using floating point numbers for high-precision financial

calculations and be cautious when comparing floating point values for equality.

Floating Point in C

C provides two main floating point types:

float: Single precision (32-bit)

double: Double precision (64-bit)

Conversions and Casting:

Converting from float or double to int truncates the fractional part (rounding toward

zero).

Conversions may result in rounding errors or undefined behavior when the value

exceeds the target type’s range.

NOTE: Choose the appropriate floating point type (float or double) based on the

required precision and range for your application.

The Ariane 5 Example: Real-World Implications

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a8345… 11/13

36

Guest
Rectangle

On June 4, 1996, the Ariane 5 rocket self-destructed shortly after liftoff due to an overflow

error:

Cause: Conversion from a 64-bit floating point number to a 16-bit signed integer led

to an overflow.

Context: Software reused from Ariane 4 assumed that the horizontal velocity would

always be within the range of a 16-bit integer. However, Ariane 5's higher speed

invalidated this assumption.

Lesson: Even well-established standards can fail if underlying assumptions are not

revalidated in new contexts.

Summary and Conclusion

This lecture has covered:

Representing Real Numbers: The challenges of representing an infinite set of real

numbers in a fixed-width format.

Fixed Point Representation: Its simplicity and inherent limitations.

Floating Point Representation: The IEEE standard, including the structure of single

precision (sign, exponent with bias, fraction), and normalization.

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a8345… 12/13

37

Guest
Rectangle

Floating Point Arithmetic: Issues such as alignment, precision loss, non-

associativity, and overflow/underflow.

Floating Point in C: How C implements floating point types (float and double) and

the implications of conversions.

Real-World Impact: The Ariane 5 incident illustrates the critical importance of

proper floating point handling in safety-critical systems.

Understanding these concepts is crucial for designing reliable digital systems and writing

robust software that involves numerical computations.

Self Test

Self-Test: Lecture 4

9/30/25, 7:52 PM 4. Floating Points

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/4%20Floating%20Points%201a8345… 13/13

38

Guest
Rectangle

5. Chars and Strings in C

Objective & Scope

This note covers the essential concepts from the lecture on Chars and Strings in C. It

explains how characters and strings are represented and manipulated in C, details the

standard library functions for string operations.

Characters in C

CHAR: A basic data type in C that represents a single character (or glyph).

Typically 1 byte (8 bits) in size.

Characters are stored as integer values using ASCII encoding:

For example, 'A' is 65, 'a' is 97, and '0' is 48.

Arithmetic on characters is supported:

char uppercaseA = 'A'; // 65
int diff = 'c' - 'a'; // 2

UNICODE & UTF-8: Modern systems often use Unicode to represent a vast range of

characters.

9/30/25, 7:52 PM 5. Chars and Strings in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/5%20Chars%20and%20Strings%20in… 1/5

39

Guest
Rectangle

UTF-8 is a variable-width encoding that efficiently stores common English characters

while supporting many others.

Common ctype.h Functions

isalpha(ch) : Checks if ch is a letter.

islower(ch) , isupper(ch) : Determine the case of ch .

isspace(ch) : Checks for whitespace (e.g., space, tab, newline).

isdigit(ch) : Checks if ch is a digit.

toupper(ch) and tolower(ch) : Convert characters between upper and lower case.

C Strings

C STRING: A sequence of characters stored in an array that ends with a null character

('\0').

There is no dedicated string type in C; strings are simply arrays of char .

The null terminator indicates where the string ends and must be accounted for in

memory allocation.

9/30/25, 7:52 PM 5. Chars and Strings in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/5%20Chars%20and%20Strings%20in… 2/5

40

Guest
Rectangle

String Length

strlen(str) computes the number of characters before the null terminator.

int length = strlen("Hello"); // returns 5

Note: strlen is O(n) because it scans the string until '\0' .

Passing Strings to Functions

When a string (a char[]) is passed to a function, it decays into a pointer (char *) to its

first element.

void processString(char *str) {
 // Modifications here affect the original string.
}

Common String Operations

Comparing Strings

Use strcmp(str1, str2) or strncmp(str1, str2, n) to compare string contents.

if (strcmp("Hello", "World") == 0) {
 // Strings are identical.
}

Copying Strings

strcpy(dst, src) copies the entire string (including the null terminator).

Buffer Overflows: Ensure that the destination array has enough space.

char destination[6];
strcpy(destination, "Hello"); // Valid if destination is large e
nough.

9/30/25, 7:52 PM 5. Chars and Strings in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/5%20Chars%20and%20Strings%20in… 3/5

41

Guest
Rectangle

strncpy(dst, src, n) copies at most n characters. It may not append '\0' if the

source is longer than n , so manual termination is often required:

char buf[6];
strncpy(buf, "Hello, world!", 5);
buf[5] = '\0'; // Ensure proper termination.

Concatenating Strings

strcat(dst, src) appends src to the end of dst .

dst must have sufficient space for the concatenated result.

char greeting[13];
strcpy(greeting, "Hello ");
strcat(greeting, "World!");
// greeting now contains "Hello World!"

Working with Substrings

Because C strings are pointers, you can create substrings by pointer arithmetic:

char word[] = "racecar";
char *sub = word + 4; // Points to "car"

To make an independent substring, use strncpy and manually add the null terminator:

char subword[5];
strncpy(subword, word, 4);
subword[4] = '\0'; // subword now contains "race"

Key Takeaways

Characters in C are stored as small integers (typically using ASCII) and can be

manipulated using standard arithmetic and ctype functions.

9/30/25, 7:52 PM 5. Chars and Strings in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/5%20Chars%20and%20Strings%20in… 4/5

42

Guest
Rectangle

C Strings are arrays of characters terminated by '\0' . They require careful handling

to avoid buffer overflows.

Standard Library Functions (from string.h) enable common operations like

comparison, copying, and concatenation, but always ensure that the destination

buffers are large enough and properly null-terminated.

Pointer Arithmetic facilitates efficient substring operations, though modifications

affect the original string memory.

Understanding these fundamentals is crucial for safe and effective text manipulation in C.

9/30/25, 7:52 PM 5. Chars and Strings in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/5%20Chars%20and%20Strings%20in… 5/5

43

Guest
Rectangle

6. More Strings, Pointers

Recap: C Strings and Common String Functions

C STRING: A C string is an array of characters terminated by a null character ('\\0').

Functions such as strlen depend on this terminator to determine the string's length.

Common Functions in string.h

strlen(str)

Returns the number of characters in a string before the null terminator.

int len = strlen("Hello"); // len is 5

strcmp(str1, str2) and strncmp(str1, str2, n)

Compare two strings lexicographically.

strcmp compares until a difference is found or a '\0' is reached.

strncmp compares at most n characters.

if (strcmp("apple", "banana") < 0) {
 // "apple" comes before "banana"

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 1/8

44

Guest
Rectangle

}

strchr(str, ch) and strrchr(str, ch)

strchr returns a pointer to the first occurrence of ch in str .

strrchr returns a pointer to the last occurrence.

char *p = strchr("Daisy", 'a'); // p points to "aisy"

strstr(haystack, needle)

Searches for the substring needle in haystack and returns a pointer to its first

occurrence, or NULL if not found.

char *sub = strstr("Daisy Dog", "Dog"); // sub points to "Dog"

strcpy(dst, src) and strncpy(dst, src, n)

strcpy copies the source string (including the null terminator) to the destination

array.

strncpy copies at most n characters; if src is longer, no '\0' is appended

automatically.

char dest[6];
strcpy(dest, "Hello"); // Correct if dest is large enough.
// If dest is too small, this will cause a buffer overflow.

strcat(dst, src) and strncat(dst, src, n)

Concatenate src onto the end of dst , ensuring the result is null-terminated. The

destination must be large enough to hold the combined string.

char greeting[13];
strcpy(greeting, "Hello ");
strcat(greeting, "World!"); // greeting becomes "Hello World!"

strspn(str, accept) and strcspn(str, reject)

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 2/8

45

Guest
Rectangle

strspn returns the length of the initial segment of str containing only characters

in accept .

strcspn returns the length of the initial segment that contains none of the

characters in reject .

int span = strspn("Daisy Dog", "aDeoi"); // span might be 3

Searching in Strings

Searching functions help locate characters or substrings:

Character Search:

Use strchr to find the first occurrence and strrchr for the last occurrence of a

character.

Substring Search:

Use strstr to locate a substring within another string.

Span Functions:

strspn and strcspn measure how many characters at the beginning of a string meet a

certain condition (either belonging or not belonging to a set).

Strings as Parameters and Arrays of Strings

When a C string (a char[]) is passed as a parameter, it automatically decays to a

pointer (char *) to its first element.

void processString(char *str) {
 // Operations here affect the original string.
}

An array of strings can be defined using pointers:

char *stringArray[] = { "Hello", "Hi", "Hey there" };
printf("%s\n", stringArray[0]); // Prints "Hello"

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 3/8

46

Guest
Rectangle

Pointers in C

POINTER: A variable that stores a memory address. Pointers are essential for dynamic

memory management and for passing large data efficiently.

Basics of Pointers

Declaration and Initialization:

int x = 2;
int *xPtr = &x; // xPtr stores the address of x
printf("%d", *xPtr); // Dereferencing xPtr prints 2

Pass-by-Reference via Pointers:

Since C passes all parameters by value, pointers are used to allow functions to

modify the original variable.

void modify(int *p) {
 *p = 3;
}

int main() {
 int x = 2;
 modify(&x);
 printf("%d", x); // x is now 3
 return 0;
}

Pointer Arithmetic

Pointers can be incremented or decremented to traverse arrays:

char *str = "apple"; // Assume it points to a string literal
printf("%s\n", str); // prints "apple"

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 4/8

47

Guest
Rectangle

printf("%s\n", str + 1); // prints "pple"
printf("%s\n", str + 3); // prints "le"

Using the subscript notation (e.g., str[3]) is equivalent to using pointer arithmetic

and dereferencing ((str + 3)).

Strings in Memory

Understanding how strings are stored is crucial:

Char Arrays (char[]):

Declared as an array, they reside in stack memory.

Their contents can be modified.

char str[6];
strcpy(str, "apple"); // Modifiable copy stored on the stack.

String Literals (char *):

Declared as a pointer initialized to a literal, they reside in the read-only data

segment.

Attempting to modify them (e.g., myString[0] = 'h';) leads to undefined behavior

(often a segmentation fault).

char *myString = "Hello, world!";
// myString[0] = 'h'; // Not allowed.

Reassignment:

Arrays cannot be reassigned to point to new memory (e.g., str = anotherStr; is

illegal when str is declared as an array).

Pointers can be reassigned:

char *pStr = "apple";
pStr = "banana"; // Valid: pStr now points to a different liter

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 5/8

48

Guest
Rectangle

al.

Pointer to an Array:

When you declare a pointer and assign it to an array, it points to the first element of

the array.

char arr[6];
strcpy(arr, "apple");
char *p = arr; // p points to 'a'

Exercises: char* vs. char[] Behavior

Consider these scenarios:

1. Reassigning an Array:

char str[7];
strcpy(str, "Hello1");
// str = str + 1; // Compile error: you cannot reassign an arra
y.

2. Modifying a String Literal:

char *str = "Hello2";
// str[1] = 'u'; // May cause a segmentation fault because strin
g literals are read-only.

3. Using a Pointer to a Modifiable Array:

char arr[7];
strcpy(arr, "Hello3");
char *p = arr;
p = p + 1; // Allowed: p now points to the second characte
r.
p[1] = 'u'; // Modifies the underlying array.

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 6/8

49

Guest
Rectangle

printf("%s", p); // May print "ellu3" (depending on the modific
ation).

These examples illustrate the differences in behavior between arrays and pointers,

especially regarding reassignment and modification.

Key Takeaways

C Strings are null-terminated arrays of characters. Their functions depend on the

presence of the null terminator.

String Functions:

Use functions like strlen , strcmp , strchr , etc., to operate on strings.

Be mindful that these functions assume proper null termination.

Pointers:

Pointers store memory addresses and are used to efficiently pass data to

functions.

Pointer arithmetic allows traversal and creation of substrings.

Memory Segments:

Strings declared as arrays are stored on the stack and are modifiable.

String literals (assigned to char *) reside in read-only memory and should not be

modified.

Parameter Passing:

When passing a string to a function, the array decays to a pointer, meaning

modifications within the function affect the original data.

Arrays vs. Pointers:

Arrays cannot be reassigned, while pointers can be redirected to point

elsewhere.

Understanding these differences is crucial for avoiding common pitfalls such as

segmentation faults and buffer overflows.

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 7/8

50

Guest
Rectangle

This comprehensive overview should serve as a solid foundation for understanding more

about strings, pointers, and memory management in C.

9/30/25, 7:52 PM 6. More Strings, Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/6%20More%20Strings,%20Pointers%2… 8/8

51

Guest
Rectangle

7. Arrays and Pointers

Arrays and Pointers – Comprehensive Note
This note covers the key concepts from the lecture on arrays and pointers. It reviews

common string library functions, the fundamentals of pointers, how character arrays

work in memory, the differences between arrays and pointers for strings, pointer

arithmetic, and parameter passing. Detailed examples and exercises illustrate the

behavior of strings in memory, modifications via pointers, and the use of double pointers

to modify pointer variables.

Recap: Common string.h Functions

strlen(str)

Returns the number of characters in a C string (up to, but not including, the null

terminator).

strcmp(str1, str2) and strncmp(str1, str2, n)

Compare two strings lexicographically.

Returns 0 if the strings are identical.

Returns a negative value if str1 comes before str2 in alphabetical order.

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 1/12

52

Guest
Rectangle

Returns a positive value if str1 comes after str2 .

strncmp stops comparing after at most n characters.

strchr(str, ch) and strrchr(str, ch)

Search for a character in a string.

strchr returns a pointer to the first occurrence of ch .

strrchr returns a pointer to the last occurrence.

Returns NULL if the character is not found.

strstr(haystack, needle)

Searches for the first occurrence of the substring needle in haystack and returns a

pointer to its start, or NULL if not found.

strcpy(dst, src) and strncpy(dst, src, n)

Copy the source string to the destination (including the null terminator).

strncpy copies at most n characters and does not necessarily add a null

terminator.

strcat(dst, src) and strncat(dst, src, n)

Concatenate src onto the end of dst .

strncat appends at most n characters and always adds a null terminator.

strspn(str, accept) and strcspn(str, reject)

strspn returns the length of the initial segment of str containing only characters

from accept .

strcspn returns the length of the initial segment of str containing no characters

from reject .

Recap: Pointers

Definition: A pointer is a variable that stores a memory address. In C, pointers allow

you to pass around the address of a memory instance rather than copying its

contents.

Key Points:

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 2/12

53

Guest
Rectangle

One pointer (typically 8 bytes on a 64-bit system) can represent any memory

location.

Pointers are essential for dynamic memory allocation on the heap.

They allow functions to modify data in its original memory location because C

does not have true pass-by-reference (only pass-by-value of pointers).

Example:

int x = 2;
int *xPtr = &x; // xPtr holds the address of x
printf("%d", *xPtr); // Dereferences xPtr to print 2

Recap: Character Arrays

Storage: When you declare a character array (e.g., char str[6];), contiguous memory

is allocated on the stack for all its characters.

Modification: The contents of a character array created this way can be modified

because they reside in writable memory.

Example:

char str[6];
strcpy(str, "apple"); // Copies "apple" into the array allocated o
n the stack

Recap: String Parameters

Conversion: When passing a char[] to a function, it is implicitly converted to a char

* .

Usage: All string functions (like those in string.h) accept char * parameters, so you

can pass a character array directly.

Representation: Although char [] and char * both represent strings in usage

(accessing characters via index, printing, using library functions), under the hood

they differ. Arrays refer to a fixed block of memory while pointers can be reassigned.

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 3/12

54

Guest
Rectangle

Recap: Strings in Memory

Important points about string memory:

If a string is created as a char[] , its characters reside in stack memory and can be

modified.

You cannot assign a new value to a char[] variable because it refers to a fixed block

of memory.

Passing a char[] as a parameter automatically converts it to a char * .

A string created as a char * that points to a literal (e.g., char *p = "Hello";) resides in a

read-only data segment, so its characters should not be modified.

A char * is reassignable; you can change what it points to.

Adding an offset to a C string pointer gives you a substring that starts that many

characters past the beginning.

Modifications made to a string through a pointer parameter persist outside the

function since both the caller and callee refer to the same memory.

Difference Between char[] and char *

char[] (Array):

Declared with a fixed size (e.g., char str[7];).

Memory is allocated on the stack.

Cannot be reassigned to point to another location.

char * (Pointer):

Can be assigned to point to a string literal (e.g., char *pStr = "Hello";).

The pointer is reassignable.

When pointing to a literal, the string is in a read-only segment and should not be

modified.

Example Comparison:

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 4/12

55

Guest
Rectangle

char aString[] = "Hello, world!"; // Array, modifiable characters
in stack memory.
char *pString = "Hello, world!"; // Pointer, points to a constant s
tring in data segment.

Arrays and Pointers

You can set a pointer equal to an array; it will point to the first element.

Example:

char str[6];
strcpy(str, "apple");
char *ptr = str; // ptr now points to str[0]

Equivalently, you can write:

char *ptr = &str[0];

Avoid writing confusing expressions like:

char *ptr = &str; // Although equivalent in some contexts, this ca
n be misleading.

Pointer Arithmetic

Concept: Pointer arithmetic allows you to adjust the pointer by a number of

elements.

Example:

char *str = "apple"; // Suppose str points to address 0xff0.
char *str2 = str + 1; // Points to the second character ('p').
char *str3 = str + 3; // Points to the fourth character ('l').
printf("%s", str); // Prints "apple"

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 5/12

56

Guest
Rectangle

printf("%s", str2); // Prints "pple"
printf("%s", str3); // Prints "le"

Bracket Notation:

Using str[index] is equivalent to *(str + index) and accesses the character at that

offset.

String Behavior and Modifications

When a function receives a string parameter (as a char *), it gets a copy of the

pointer. Both the caller and callee refer to the same memory.

Changes made to the characters of the string in the function will persist outside the

function.

Example:

void myFunc(char *myStr) {
 myStr[4] = 'y';
}

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 myFunc(str);
 printf("%s", str); // Prints "apply"
}

Exercises: char* vs. char[] and Modifiability

Several exercises illustrate the differences between string pointers and arrays, including:

Attempting to reassign an array (which leads to compile errors).

Reassigning a pointer to a string literal (which can lead to segmentation faults if

modifications are attempted).

Using a character array to allow modifications and then observing the results when

using pointer arithmetic and reassignment.

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 6/12

57

Guest
Rectangle

Common Observations:

Arrays cannot be reassigned; for example, str = str + 1; is illegal if str is declared as

an array.

A char * pointing to a string literal should not be modified, or it may cause a

segmentation fault.

When a character array is used and then its address is passed to a pointer variable,

modifications made via the pointer affect the array.

Difference Between C Arrays and Pointers for Strings

In C, strings are represented as character arrays (char arr[]) or pointers (char *ptr).

Below is a detailed comparison:

Feature
Character Array (char

arr[])
Pointer to String (char *ptr)

Definition char str[] = "Hello"; char *str = "Hello";

Memory

Allocation

Allocated on the stack

(modifiable).

String literal stored in read-only

memory (modification may cause a crash).

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 7/12

58

Guest
Rectangle

Feature
Character Array (char

arr[])
Pointer to String (char *ptr)

Modifiable?
✅ Yes, can modify individual

characters (str[0] = 'h').

⚠️ No (if pointing to a string literal).

Modifying *str leads to undefined

behavior.

Storage Location
Stored in stack or global

memory.

Stored in read-only memory (if a string

literal) or heap (if malloc is used).

Size

Determination

Can use sizeof(str) to get

the total allocated size.

sizeof(str) gives only pointer size (4 or

8 bytes), not string length.

Reassignment?
❌ No, arr = "New" is invalid

(array name is fixed).

✅ Yes, ptr = "New" is valid (pointer can

be reassigned).

Example of

Modification
str[0] = 'h'; // Works

ptr[0] = 'h'; // ❌ Undefined behavior
(if pointing to a literal)

Dynamic

Allocation?

❌ No, arrays have a fixed

size.

✅ Yes, can allocate dynamically using

malloc() .

Use in Functions

Passes the entire array

reference (modifications

persist).

Passes only the pointer address (efficient).

Example Function

Call
void print(char str[]) void print(char *str)

Example Code

1️⃣ Character Array (Modifiable)

char str[] = "Hello";
str[0] = 'h'; // ✅ Works
printf("%s", str); // Output: "hello"

2️⃣ Pointer to String (Immutable if pointing to a literal)

char *str = "Hello";
str[0] = 'h'; // ❌ Undefined behavior (segfault risk)

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 8/12

59

Guest
Rectangle

3️⃣ Pointer with Dynamic Allocation (Safe & Modifiable)

char *str = malloc(10);
strcpy(str, "Hello");
str[0] = 'h'; // ✅ Works
printf("%s", str); // Output: "hello"
free(str);

🚀 Use arrays when the size is fixed, and pointers when flexibility is needed! 🔥

C Parameters and Passing Values vs. Pointers

Passing by Value:

When you pass a simple data type (like an int or char) to a function, C passes a copy

of that value.

Example:

void printSquare(int x) {
 int square = x * x;
 printf("%d", square);
}

int main(int argc, char *argv[]) {
 int num = 3;
 printSquare(num); // Prints 9
}

Passing by Pointer:

When you want a function to modify the actual instance of a variable, you pass its

address.

Example for modifying a variable:

void doubleNum(int *x) {
 *x = (*x) * (*x);
}

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%20… 9/12

60

Guest
Rectangle

int main(int argc, char *argv[]) {
 int num = 2;
 doubleNum(&num); // Now num becomes 4
 printf("%d", num);
}

Strings as Parameters:

Passing a string (as a char []) to a function converts it to a char * , meaning that any

modifications made to the string inside the function will persist outside.

Exercises: Print Square and Flip Case

Print Square Exercise:

The function should take an integer and print its square.

void printSquare(int x) {
 int square = x * x;
 printf("%d", square);
}

int main(int argc, char *argv[]) {
 int num = 3;
 printSquare(num); // Expected output: 9
}

Since the function only performs a calculation without modifying the original value,

passing by value is appropriate.

Flip Case Exercise:

To flip the case of a character, use a pointer so that the modification affects the original

variable.

void flipCase(char *letter) {
 if (isupper(*letter)) {
 *letter = tolower(*letter);

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%2… 10/12

61

Guest
Rectangle

 } else if (islower(*letter)) {
 *letter = toupper(*letter);
 }
}

int main(int argc, char *argv[]) {
 char ch = 'g';
 flipCase(&ch);
 printf("%c", ch); // Expected output: 'G'
}

Here, passing the address of the character allows the function to change its value.

Pointers Summary

If an operation does not require modifying the input, pass the data type directly.

To modify a specific instance, pass the pointer (address) to that instance.

A function that takes an address can access and modify the actual memory content.

Avoid setting a function parameter to a new value if you intend to modify the caller’s

instance; such assignments only change the function's local copy of the pointer.

Example Pitfall:

void advanceStr(char *str) {
 str += 2; // This only modifies the local copy of the pointer.
}

The above does not change the pointer in the caller’s context.

Double Pointers and Modifying Pointer Variables

Sometimes you want to modify the pointer itself (not just the data it points to). This is

done using a double pointer.

Skip Spaces Example:

The function skipSpaces modifies the string pointer to skip any leading spaces.

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%2… 11/12

62

Guest
Rectangle

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skipSpaces(&str);
 printf("%s", str); // Expected output: "hello"
 return 0;
}

Here, a double pointer is used so that the function can update the caller’s pointer

directly.

Summary of Key Concepts

String Library Functions: Familiarity with functions like strlen, strcpy, strcmp, etc., is

crucial for string manipulation.

Pointers: Pointers store memory addresses, enabling efficient data manipulation,

memory allocation, and parameter passing.

Character Arrays vs. Pointers: Arrays allocate fixed, modifiable memory on the

stack, while pointers can be reassigned and may point to immutable data.

Pointer Arithmetic: Allows you to navigate through memory by adjusting the

pointer based on the size of the data type.

Parameter Passing: Passing by value copies data; passing by pointer (or address)

allows functions to modify the original data.

Double Pointers: Essential for modifying pointer variables within functions.

This comprehensive note incorporates all the detailed information from the slides on

arrays, pointers, string behavior, and parameter passing. It is designed to be a complete

resource on these topics, ensuring that all key concepts and examples are included for

effective understanding.

9/30/25, 7:52 PM 7. Arrays and Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/7%20Arrays%20and%20Pointers%2… 12/12

63

Guest
Rectangle

8. The Stack and The Heap

The Stack and The Heap – Comprehensive
Note 📚
This note covers the fundamental concepts of memory management in C, focusing on

the use of pointers, arrays, the stack, and the heap. It includes detailed explanations,

examples, and exercises to illustrate pointer practice, pointer arithmetic, how arrays are

stored in memory, and the differences between stack and heap allocation. The note also

explains how to properly allocate and free memory on the heap to avoid memory leaks.

Pointers Practice and “* Wars” Stories

Pointers are variables that store memory addresses. They are essential for passing data

by reference and for dynamic memory allocation.

In variable declaration, the asterisk () creates a pointer.

Example:

Here, ch stores a character, cptr stores the address of a character, and strptr

stores the address of a pointer to a char.

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 1/15

64

Guest
Rectangle

char ch = 'r';
char *cptr = &ch;
char **strptr = &cptr;

When reading from or writing to memory, the dereference operator () accesses the

value at the address.

Example:

char ch = 'r';
ch = ch + 1; // Increment ch: now 's'
char *cptr = &ch;
*cptr = *cptr + 1; // Increment value pointed to by cptr:
now 't'

A more advanced example shows modifying the pointer itself using a double pointer:

Example:

char ch = 'r';
char *cptr = &ch;
char **strptr = &cptr;
*strptr = *strptr + 1; // This modifies the pointer cptr it
self (its value, i.e., the address)

Diagrams and pen-and-paper exercises (labeled as "* Wars: Episode I/II") help in

visualizing how values and addresses change through pointer operations.

Pen and Paper Exercise ("A * Wars Story"):

Consider the function:

void binky() {
 int a = 10;
 int b = 20;
 int *p = &a;
 int *q = &b;

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 2/15

65

Guest
Rectangle

 *p = *q;
 p = q;
}

Initially, p points to a and q points to b . The statement *p = *q; makes the value of a

become 20, and then p = q; makes p point to b . Diagrams are recommended to keep

track of addresses (e.g., 0xffe800, 0xffe804) and values.

Arrays in Memory

Arrays in C are blocks of contiguous memory allocated on the stack. Key points include:

Declaring an array (e.g., char str[6];) allocates space for the entire array.

When using functions like strcpy , the contents of the array are copied into this

contiguous block.

The array variable (e.g., str) refers to the entire block and is not a pointer itself. For

example, sizeof(str) returns the total size of the array in bytes.

You cannot reassign an entire array (e.g., nums = nums2; is illegal).

Arrays as Parameters

When an array is passed to a function, C automatically converts it to a pointer to its first

element. This means:

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 3/15

66

Guest
Rectangle

In the function, you lose information about the original array size; sizeof on the

parameter returns the size of a pointer.

Both the caller and callee refer to the same memory, so modifications within the

function persist outside.

Example:

void myFunc(char *myStr) {
 // Operates on the same memory as passed from main
}

int main(int argc, char *argv[]) {
 char str[3];
 strcpy(str, "hi");
 myFunc(str);
 // str still holds the modified value, if any changes were made
}

Arrays of Pointers

Arrays can also be arrays of pointers. For instance:

char *stringArray[5];

This declaration reserves space for 5 pointers to char. Each element can point to a string

literal or a dynamically allocated string. This is useful for grouping multiple strings (e.g.,

command-line arguments).

void printArgs(char *argv[]) {
 while (*argv) {
 printf("%s\\n", *argv);
 argv++;
 }
}

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 4/15

67

Guest
Rectangle

Here, argv is effectively char **argv — a pointer to (pointers to char). It still decays to a

pointer to the first element (argv[0]), which itself is a pointer to char .

Pointer Arithmetic

Pointer arithmetic is based on the size of the type to which the pointer points. Key ideas:

Adding an integer to a pointer moves the pointer by that number of elements, not

bytes.

Example with characters:

char *str = "apple"; // Suppose str is at address 0xff0, point
s to 'a'
char *str1 = str + 1; // Now points to 0xff1, which
holds 'p'
char *str3 = str + 3; // Now points to 0xff3, which
holds 'l'

printf("%s", str); // Prints "apple" starting at address 0xff0
printf("%s", str1); // Prints "pple" starting at address 0xff1
printf("%s", str3); // Prints "le" starting at address 0xff3

For an integer array, pointer arithmetic scales by sizeof(int) .

int nums[] = {52, 23, 34, 12};
// Suppose the array starts at address 0x1000:
// nums[0] (52) is at address 0x1000,
// nums[1] (23) is at address 0x1004,
// nums[2] (34) is at address 0x1008, and so on.
int *numsPtr = nums; // Points to nums[0] (52) at address 0
x1000
int *numsPtr1 = nums + 1; // Points to nums[1] (23) at address 0
x1004 (i.e., 0x1000 + sizeof(int))
int diff = numsPtr1 - nums; // diff equals 1, meaning they are
one element apart

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 5/15

68

Guest
Rectangle

Bracket notation (e.g., str[i]) is just syntactic sugar for pointer arithmetic: *(str + i) .

String Behavior and Modifications

Several important points about strings and pointers:

Creating a String as a char Array:

When you declare a string as a char[] , its memory is allocated on the stack and is

modifiable.

Creating a String as a char Pointer:

When you declare a string as a char * pointing to a literal, the string resides in a

read-only data segment. Modifying it leads to undefined behavior (often a

segmentation fault).

Passing Strings to Functions:

Whether you pass a char[] or a char * , a copy of the pointer is passed. Therefore, if

you modify the string via the pointer, changes persist outside the function.

Adding an Offset:

Adding an offset to a pointer gives you a substring. For example, str + 1 returns a

pointer starting from the second character.

Exercises in the lecture illustrate common pitfalls, such as attempting to reassign an array

(which causes compile errors) and the difference between modifying a string literal

versus a character array.

C Parameters: Pass by Value vs. Pass by Pointer

Pass by Value:

A function that receives an int or char gets a copy of the value. Changes inside the

function do not affect the original variable.

Example:

void printSquare(int x) {
 int square = x * x;
 printf("%d", square);

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 6/15

69

Guest
Rectangle

}

int main(int argc, char *argv[]) {
 int num = 3;
 printSquare(num); // Prints 9
}

Pass by Pointer:

To modify the original variable, you pass its address. The function can then

dereference the pointer and modify the data at that address.

Example:

void doubleNum(int *x) {
 *x = (*x) * (*x);
}

int main(int argc, char *argv[]) {
 int num = 2;
 doubleNum(&num); // num becomes 4
 printf("%d", num);
}

Passing Strings:

When passing strings (arrays), the function receives a pointer to the first element.

Any modifications made are reflected in the caller’s memory.

Exercises: char* vs. char[] and Parameter Passing

Several exercises demonstrate the differences:

Reassigning a char[] (an array) is not allowed.

A char * pointing to a literal should not be modified.

When using pointer arithmetic on strings, remember that a pointer points to the

memory address of the first character, and arithmetic operations advance the

pointer by the size of the element type.

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 7/15

70

Guest
Rectangle

Flip Case Example:

void flipCase(char *letter) {
 if (isupper(*letter)) {
 *letter = tolower(*letter);
 } else if (islower(*letter)) {
 *letter = toupper(*letter);
 }
}

int main(int argc, char *argv[]) {
 char ch = 'g';
 flipCase(&ch);
 printf("%c", ch); // Prints 'G'
}

This exercise demonstrates modifying a specific instance by passing its address.

Double Pointers and Modifying Pointer Variables

Sometimes, you want to modify the pointer itself rather than the data it points to. This is

achieved using a double pointer.

Skip Spaces Example:

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skipSpaces(&str);
 printf("%s", str); // Prints "hello"
 return 0;
}

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 8/15

71

Guest
Rectangle

Here, a double pointer (char **) is used so that the function can update the caller’s

pointer, effectively skipping the initial spaces.

The Stack and the Heap

The Stack

Definition:

The stack is where local variables and function parameters are stored. Each function

call pushes a new frame onto the stack, and when the function returns, its frame is

removed.

Properties:

The stack grows downward as functions are called and shrinks upward when they

return.

Local variables in the stack are automatically cleaned up when a function finishes.

Recursive function calls consume stack space, and too deep recursion can cause

a stack overflow.

Interesting fact: C does not clear out memory when a function’s frame is

removed. Instead, it just marks that memory as usable for the next function call.

This is more efficient!

Example – Function Calls and Recursion:

Consider a recursive function for computing factorial:

int factorial(int n) {
 if (n == 1) return 1;
 else return n * factorial(n - 1);
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4)); // Computes 24
 return 0;
}

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 9/15

72

Guest
Rectangle

Each recursive call has its own stack frame.

Memory Diagram:

Diagrams in the lecture show the stack layout for functions like main , func1 , and

func2 , with variables a , b , c , and d stored in their respective frames.

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 10/15

73

Guest
Rectangle

The Heap and Dynamic Memory

Definition:

The heap is a memory region that you manage manually. Memory allocated on the

heap remains allocated until you explicitly free it.

Dynamic Memory Allocation:

malloc: Allocates a specified number of bytes and returns a pointer to the

beginning of the block. It does not initialize the memory.

char *new_str = malloc(sizeof(char) * (num + 1));

Always check if the allocation was successful (e.g., using assert(new_str != NULL);).

calloc: Similar to malloc but initializes the allocated memory to zero.

int *scores = calloc(20, sizeof(int));

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 11/15

74

Guest
Rectangle

strdup: Allocates memory on the heap and duplicates a given string.

char *str = strdup("Hello, world!");

This function makes it easier to obtain a modifiable copy of a string literal.

Freeing Memory:

Memory allocated on the heap must be freed using the free() function to avoid

memory leaks. Each allocated block should be freed only once.

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 12/15

75

Guest
Rectangle

char *bytes = malloc(4);
// Use the memory...
free(bytes);

Freeing memory multiple times or freeing a pointer that was not allocated with

malloc/calloc can lead to undefined behavior.

Memory Leaks:

A memory leak occurs when allocated heap memory is not freed. Tools like Valgrind

help detect memory leaks.

Exercise – Array of Multiples Using malloc:

Write a function that returns an array of the first len multiples of a given number.

int *array_of_multiples(int mult, int len) {
 int *arr = malloc(sizeof(int) * len);
 assert(arr != NULL);
 for (int i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 13/15

76

Guest
Rectangle

 return arr;
}

Cleaning Up and Memory Management

Freeing Heap Memory:

After you are done using memory allocated on the heap, always free it.

char *str = strdup("Hello!");
// Use the string...
free(str);

Common Pitfalls:

Freeing the same block of memory twice.

Freeing only part of an allocated block.

Not freeing memory, which leads to memory leaks.

Exercise on Freeing Memory:

The lecture includes examples where memory allocated inside a loop must be freed

within the loop, and then later the overall allocated memory (like a duplicated string)

must also be freed.

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 14/15

77

Guest
Rectangle

Summary and Key Takeaways

Pointers and Arrays: Understand the differences between arrays (fixed, stack-

allocated) and pointers (reassignable, can point to heap or read-only data).

Pointer Arithmetic: This allows you to navigate through an array by moving the

pointer by increments of the data type size.

Parameter Passing: Passing by value versus passing by pointer is crucial for

determining whether modifications persist outside a function.

Double Pointers: Use them when you need to modify a pointer variable itself (e.g.,

skipping spaces in a string).

The Stack vs. The Heap: The stack is for local, temporary storage with automatic

cleanup, while the heap is for dynamic memory that you must manage manually.

Dynamic Memory Functions: Use malloc, calloc, and strdup to allocate memory on

the heap and always use free to release it.

Memory Leaks and Debugging: Memory leaks can cause long-term issues; tools

like Valgrind help ensure your program cleans up after itself.

This note integrates all the key details from the lecture on the stack and the heap,

covering pointers, arrays, pointer arithmetic, and dynamic memory management in C.

Enjoy studying and happy coding!

9/30/25, 7:52 PM 8. The Stack and The Heap

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/8%20The%20Stack%20and%20The… 15/15

78

Guest
Rectangle

9. Realloc, Freed Memory, and
Memory Leaks in C

Objective & Scope

This lecture explores dynamic memory management in C. The focus is on using functions

such as malloc, calloc, realloc, strdup, and free, while understanding common memory

bugs and the differences between stack and heap memory.

Recap: Arrays Of Pointers

Arrays of pointers allow you to group multiple strings or data items without storing all

the data contiguously.

ARRAY OF POINTERS: An array that stores pointers, each pointing to separate

memory locations (e.g., strings).

char *stringArray[5]; // Space for 5 pointers to char

Usage: Manage collections of strings or dynamically allocated objects.

Memory Layout: Each pointer may reference data in different memory areas, such

as the heap or static storage.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 1/10

79

Guest
Rectangle

Recap: Pointer Arithmetic

Pointer arithmetic in C adjusts addresses based on the size of the data type pointed to—

not in raw bytes.

POINTER ARITHMETIC: The process of moving a pointer by an offset multiplied by

the size of its data type.

char *str = "apple";
char *str1 = str + 1; // Points to 'p'

Example with int:

int *nums = ...;
int *nums1 = nums + 1; // Moves by sizeof(int)

Array Indexing: The syntax ptr[i] is equivalent to (ptr + i) .

Safety Considerations: Ensure pointer arithmetic stays within the bounds of

allocated memory to avoid undefined behavior.

Recap: The Stack

The stack is the memory area where local variables and function parameters are stored.

Memory on the stack is automatically managed.

STACK: A region of memory used for local variables and function calls. It grows

downward and is deallocated when a function returns.

Lifetime: Local variables exist only during the execution of the function.

Common Pitfall: Returning the address of a local (stack) variable results in

undefined behavior.

Recap: The Heap

The heap is used for dynamic memory allocation, allowing data to persist beyond the

scope of a single function call until explicitly freed.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 2/10

80

Guest
Rectangle

HEAP: Memory that is allocated during runtime and remains allocated until it is

manually deallocated using functions like free.

Usage: Ideal for large or variable-sized data that must persist after the function exits.

Management: The programmer is responsible for both allocation and deallocation,

making proper error checking crucial.

Recap: malloc

The malloc function allocates a block of memory on the heap and returns a pointer to it.

MALLOC:

void *malloc(size_t size);

Allocates size bytes on the heap and returns a pointer to the allocated memory, or

NULL if allocation fails.

Initialization: Memory allocated by malloc is not automatically zeroed.

Error Handling: Always check that the pointer returned by malloc is not NULL before

using it.

Recap: Always Assert with the Heap

Using assertions after allocation ensures that the program terminates early if memory

allocation fails.

ASSERT: A debugging aid that checks a condition (e.g., non-NULL pointer) and aborts

the program if the condition is false.

Robust Programming: Helps catch allocation failures immediately.

Example:

int *arr = malloc(sizeof(int) * len);
assert(arr != NULL);

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 3/10

81

Guest
Rectangle

Other Heap Allocations: calloc

CALLOC: The calloc function allocates memory for an array and initializes all bits to

zero.

void *calloc(size_t nmemb, size_t size);

Allocates memory for nmemb elements, each of size size , and sets all bytes to zero.

Performance: Generally slower than malloc due to initialization.

When to Use: Ideal when you need a clean, zero-initialized memory block.

Other Heap Allocations: strdup

STRDUP: The strdup function duplicates a string by allocating enough memory on

the heap and copying the content.

char *strdup(const char *s);

Returns a pointer to a new, null-terminated string that is a duplicate of s .

Convenience: Eliminates manual memory allocation and copying.

Memory Management: Remember to free the duplicated string when it is no longer

needed.

Implementing strdup

A custom implementation of strdup demonstrates how dynamic memory and string

copying work together.

Custom strdup Implementation:

char *myStrdup(const char *str) {
 char *heapStr = malloc(strlen(str) + 1);
 assert(heapStr != NULL);
 strcpy(heapStr, str);

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 4/10

82

Guest
Rectangle

 return heapStr;
}

Safety: Check allocation success with assert.

Null-Termination: Ensure that the copied string is properly terminated.

Cleaning Up with free

FREE: The free function is used to release memory that was previously allocated on

the heap.

void free(void *ptr);

Frees the memory block pointed to by ptr . Only pointers returned by allocation

functions should be freed.

Double-Free Error: Freeing the same memory twice can lead to undefined behavior.

Ownership: Only free the memory you are responsible for and that was allocated

dynamically.

Memory Leaks

Memory leaks occur when allocated memory is not properly freed, potentially leading to

resource exhaustion.

MEMORY LEAK: A situation in which memory is allocated but not deallocated,

eventually exhausting available heap memory.

Detection: Tools like Valgrind can help identify memory leaks.

Prevention: Ensure every allocated block has a corresponding free call.

realloc

The realloc function resizes an existing memory block. It may extend the current block or

allocate a new block and free the old one.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 5/10

83

Guest
Rectangle

REALLOC:

void *realloc(void *ptr, size_t size);

Resizes the memory block pointed to by ptr to size bytes and returns a pointer to

the new memory block.

Further Understanding

In-Place vs. Relocation: If there is enough space, realloc expands the block in place;

otherwise, it moves the data to a new location.

Usage Example:

char *str = strdup("Hello");
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);

Heap Allocator Analogy: A Hotel

This analogy helps conceptualize how dynamic memory management functions operate:

malloc: Checking into a hotel room (allocating memory).

realloc: Expanding your room by connecting adjacent rooms or moving to a larger

suite.

free: Checking out of the hotel (deallocating memory).

Responsibility: Just as you must check out to avoid charges, you must free allocated

memory to avoid leaks.

Consequences: Failure to manage your “room” (memory) properly can lead to errors

and wasted resources.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 6/10

84

Guest
Rectangle

Heap Allocation Interface: A Summary

The key functions for dynamic memory management in C are:

malloc(size)

calloc(nmemb, size)

realloc(ptr, size)

strdup(s)

free(ptr)

Engineering Principles: Stack vs Heap

Understanding the trade-offs between stack and heap memory is essential:

Stack:

Pros: Fast allocation/deallocation, automatic management.

Cons: Limited size (typically around 8MB) and less flexible.

Heap:

Pros: Larger, more flexible, and suitable for dynamic data.

Cons: Requires manual management, prone to leaks and errors.

Further Understanding

When to Use:

Use the stack for local variables and fixed-size data.

Use the heap for large, dynamic, or persistent data.

Design Considerations: Choose based on performance, safety, and memory

requirements.

Pointers and Working with Dynamic Memory

Dynamic memory management is error-prone if not handled carefully. Common issues

include:

Use-After-Free: Accessing memory after it has been deallocated.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 7/10

85

Guest
Rectangle

Double-Free: Freeing the same memory block twice.

Insufficient Allocation: Allocating too little memory.

Incorrect Pointer Arithmetic: Leading to out-of-bounds access.

Returning Local Addresses: Returning pointers to stack variables.

MEMORY BUGS: Errors in dynamic memory handling that can result in undefined

behavior, program crashes, or security vulnerabilities.

Debugging: Use tools like Valgrind to detect memory errors.

Best Practices: Initialize pointers, check allocation results, and clearly document

memory ownership.

Exercises and Common Errors

Exercise 1: Improper Pointer Assignment

Issue: A function allocates memory and assigns it to a local pointer, but the caller’s

pointer remains unchanged.

Example:

void myfunc(int *arr) {
 int *p_arr = malloc(2 * sizeof(int));
 p_arr[0] = 42;
 p_arr[1] = 24;
 arr = p_arr; // Does not modify the caller's pointer
}

int main(void) {
 int *arr = NULL;
 myfunc(arr);
 // arr remains NULL, leading to undefined behavior when accesse
d.
 free(arr);

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 8/10

86

Guest
Rectangle

 return 0;
}

Lesson: Use pointers-to-pointers if you need to modify the caller’s pointer.

Exercise 2: Incorrect Allocation Size

Issue: Allocating insufficient memory by using the wrong sizeof expression.

Example:

int myfunc(int **array, int n) {
 int **int_array = malloc(n * sizeof(int)); // Incorrect: should
use sizeof(int*)
 *array = int_array;
 return 0;
}

Lesson: Always use the correct type size when allocating memory.

Final Summary & Takeaways

Dynamic Memory Management:

Use malloc, calloc, realloc, and strdup to allocate memory dynamically.

Always free allocated memory to avoid memory leaks.

Pointer Arithmetic:

Understand that pointer arithmetic is based on the size of the data type.

Memory Bugs:

Common pitfalls include use-after-free, double-free, insufficient allocation, and

returning pointers to local variables.

Best Practices:

Always check allocation results.

Use assertions to catch errors early.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory,… 9/10

87

Guest
Rectangle

Choose between stack and heap based on the specific needs of your program.

9/30/25, 7:52 PM 9. Realloc, Freed Memory, and Memory Leaks in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/9%20Realloc,%20Freed%20Memory… 10/10

88

Guest
Rectangle

10. C Generics and Void Pointers

Overview: Generics in C

GENERICS: The practice of writing functions that operate on any data type, thereby

reducing code duplication and simplifying maintenance. In C, generics are achieved

using void pointers (void *) along with functions like memcpy and memmove.

Benefits:

Code reuse: Write one function that works for multiple data types.

Easier maintenance: Fix bugs or make improvements in one place.

Common Applications:

Sorting and searching arrays of any type.

Generic swap functions for data elements.

Manipulating user-defined structures.

Generic Swap Function

Traditional Swap Functions

For specific types, swap functions are defined separately:

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 1/9

89

Guest
Rectangle

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

For strings:

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

The Challenge for Generics

To write a single swap function for any type, we must:

Use void * pointers since the data type is not known.

Determine the size (in bytes) of the data to swap.

Use a temporary storage buffer and copy the raw bytes.

Implementation Using memcpy

*GENERIC SWAP (Using void): A generic swap function takes two pointers and the

number of bytes to swap.

Function Prototype:

void swap(void *data1ptr, void *data2ptr, size_t nbytes);

Step-by-Step Implementation:

1. Allocate temporary storage as an array of char of size nbytes (since char is 1 byte).

2. Copy nbytes from the first pointer into the temporary storage using memcpy .

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 2/9

90

Guest
Rectangle

3. Copy nbytes from the second pointer to the first pointer.

4. Copy nbytes from the temporary storage to the second pointer.

Code Example:

#include <stdio.h>
#include <string.h>

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
}

int main(void) {
 int x = 2, y = 5;
 swap(&x, &y, sizeof(x));
 printf("After swap: x = %d, y = %d\n", x, y);

 short s1 = 10, s2 = 20;
 swap(&s1, &s2, sizeof(s1));
 printf("After swap: s1 = %d, s2 = %d\n", s1, s2);

 char *str1 = "Hello";
 char *str2 = "World";
 swap(&str1, &str2, sizeof(str1));
 printf("After swap: str1 = %s, str2 = %s\n", str1, str2);

 return 0;
}

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 3/9

91

Guest
Rectangle

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 4/9

92

Guest
Rectangle

Generic Array Swap (Swap Ends)

Problem Statement

Write a function that swaps the first and last elements of an array of any data type.

Challenges

Pointer Arithmetic with void * :

Arithmetic cannot be directly performed on void * pointers because C does not

know the size of the elements.

Solution:

Cast the void * pointer to a char * pointer so that arithmetic is done in bytes.

Implementation Strategy

1. Add an additional parameter for the element size.

2. Compute the address of the last element as:

3. Use the generic swap function to swap the first and last elements.

last element address = (char∗)arr + (nelems− 1) × elem_bytes

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 5/9

93

Guest
Rectangle

Code Example:

#include <stdio.h>
#include <string.h>

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
}

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
 // Cast arr to char* for byte-wise pointer arithmetic
 swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}

int main(void) {
 int nums[] = {5, 2, 3, 4, 1};
 size_t nelems = sizeof(nums) / sizeof(nums[0]);
 swap_ends(nums, nelems, sizeof(nums[0]));
 printf("After swap_ends: nums[0] = %d, nums[%zu] = %d\n", nums
[0], nelems - 1, nums[nelems - 1]);

 // Example with strings
 char *strs[] = {"Hi", "Hello", "Howdy"};
 nelems = sizeof(strs) / sizeof(strs[0]);
 swap_ends(strs, nelems, sizeof(strs[0]));
 printf("After swap_ends: strs[0] = %s, strs[%zu] = %s\n", strs
[0], nelems - 1, strs[nelems - 1]);

 return 0;
}

Generics Pitfalls

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 6/9

94

Guest
Rectangle

VOID POINTER PITFALLS: Although void * allows generic programming, it lacks type

safety. C cannot check the type of data pointed to by a void * , making errors such as

incorrect element size or misinterpreting memory content possible.

Common Pitfalls:

Dereferencing Issues:

You cannot directly dereference a void * because the compiler does not know the

size of the data.

Pointer Arithmetic:

Arithmetic on void * is not allowed; casting to a char * is necessary.

Incorrect Size Parameter:

Failing to pass the correct number of bytes can lead to data corruption or memory

errors.

Memory Overlap:

memcpy does not support overlapping regions; use memmove if overlap is possible.

ADVICE: Always verify that the element size passed to generic functions is accurate,

and use explicit casts to ensure correct pointer arithmetic.

// /*
// * COMP201
// * Lecture R13
// *§
// * This program implements a generic swap function that
// * works for any variable type. It also shows how you
// * can call the function incorrectly and what happens in
// * memory if you do so.
// */

 #include <stdio.h>
 #include <string.h>

 /* This is a generic swap function that can swap the data pointed

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 7/9

95

Guest
Rectangle

 * to by the two pointers, of the given size in bytes.
 */
 void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
 }

 int main(int argc, char *argv[]) {
 // Example 1
 int x = 0xffffffff;
 int y = 0xeeeeeeee;
 printf("BEFORE: x = 0x%x, y = 0x%x\n", x, y);
 //swap(&x, &y, sizeof(x));
 swap(&x, &y, sizeof(short)); // what happens if we do this?
 printf("AFTER: x = 0x%x, y = 0x%x\n", x, y);

 // Example 2
 char string1[10] = "Hello";
 char string2[10] = "Goodbye";
 printf("BEFORE: string1: %s\n", string1);
 printf("BEFORE: string2: %s\n", string2);
 //swap(string1, string2, sizeof(string1));
 swap(string1, string2, sizeof(int)); // what happens if we do
this?
 printf("AFTER: string1: %s\n", string1);
 printf("AFTER: string2: %s\n", string2);
 return 0;
 }

Output:
BEFORE: x = 0xffffffff, y = 0xeeeeeeee
AFTER: x = 0xffffeeee, y = 0xeeeeffff
BEFORE: string1: Hello

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 8/9

96

Guest
Rectangle

BEFORE: string2: Goodbye
AFTER: string1: Goodo
AFTER: string2: Hellbye

Final Summary & Takeaways

Generics in C allow the creation of functions that work with any data type using void

* pointers.

A generic swap function can be implemented using memcpy to handle arbitrary data

types, provided the element size is known.

Generic array operations (such as swapping the first and last elements) require

careful pointer arithmetic using casts to char * to work with raw bytes.

Pitfalls:

Lack of type safety with void *

The necessity of accurate element size specification

Use of memcpy vs. memmove in overlapping regions

9/30/25, 7:52 PM 10. C Generics and Void Pointers

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/10%20C%20Generics%20and%20Void… 9/9

97

Guest
Rectangle

11. Function Pointers and Generics
in C

Recap: Generics in C

*VOID POINTER (void): A generic pointer that can point to any data type. However,

since C does not perform type checking on void *, pointer arithmetic and

dereferencing require explicit casts.

Key points:

Use memcpy or memmove to copy arbitrary data.

To perform arithmetic, cast a void * to a char * because sizeof(char) is 1 byte.

Generic functions (like a generic swap) reduce code duplication by handling different

data types.

Example: Generic Swap Function

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 1/8

98

Guest
Rectangle

 memcpy(data2ptr, temp, nbytes);
}

This function swaps the bytes at two memory locations regardless of the data type,

provided the number of bytes is specified.

Introduction to Function Pointers

FUNCTION POINTER: A variable that holds the address of a function and allows

functions to be passed as parameters or assigned to variables.

General Syntax:

Function pointers enable writing generic algorithms that can delegate type-specific

operations (such as comparisons or printing) to user-provided functions.

Declaring a Function Pointer

For a comparison function that compares two generic elements:

[return type] (*[name])([parameter types])

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 2/8

99

Guest
Rectangle

bool (*compare_fn)(void *a, void *b);

Or, using the more common integer-returning comparison (similar to strcmp):

int (*compare_fn)(void *a, void *b);

Generic Bubble Sort Using Function Pointers

Motivation

Bubble sort is a simple sorting algorithm that repeatedly swaps adjacent elements if they

are out of order. To make bubble sort generic, the algorithm must:

Work on an array of any type.

Rely on a user-supplied comparison function to decide if two elements are in the

correct order.

Generic Bubble Sort Prototype

void bubble_sort(void *arr, int n, int elem_size_bytes, int (*compa
re_fn)(void *a, void *b));

Implementation Outline

1. Accessing Elements:

Calculate the address of the i-th element using:

void *p_elem = (char *)arr + i * elem_size_bytes;

2. Comparison:

Use the passed comparison function to compare adjacent elements.

3. Swapping:

Call the generic swap function to exchange elements when needed.

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 3/8

100

Guest
Rectangle

Example Implementation

void bubble_sort(void *arr, int n, int elem_size_bytes, int (*compa
re_fn)(void *, void *)) {
 bool swapped;
 do {
 swapped = false;
 for (int i = 1; i < n; i++) {
 void *p_prev_elem = (char *)arr + (i - 1) * elem_size_b
ytes;
 void *p_curr_elem = (char *)arr + i * elem_size_bytes;
 if (compare_fn(p_prev_elem, p_curr_elem) > 0) { // Com
pare returns >0 if out-of-order
 swap(p_prev_elem, p_curr_elem, elem_size_bytes);
 swapped = true;
 }
 }
 } while (swapped);
}

Example: Integer Comparison Function

int integer_compare(void *a, void *b) {
 int int_a = *(int *)a;
 int int_b = *(int *)b;
 return int_a - int_b;
}

Usage:

int nums[] = {4, 2, -5, 1, 12, 56};
int count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, count, sizeof(nums[0]), integer_compare);

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 4/8

101

Guest
Rectangle

Additional Generic Operations

Generic Array Rotation (Swap Ends)

Swapping the first and last elements of an array generically requires pointer arithmetic

with a specified element size.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
 // Cast to char* for byte arithmetic
 swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem_bytes);
}

Usage Example:

int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

Generic Printing and Counting Matches

Generic functions can also accept function pointers for printing elements or counting

matches in an array. For example:

Count Matches Prototype

int count_matches(void *base, int nelems, int elem_size_bytes, bool
(*match_fn)(void *));

#include <stdbool.h>

// Callback functions to be used in count_matches
bool match_less_than_three(void *ptr) {
 return *(int *)ptr < 3;
}

bool match_nonnegative(void *ptr) {

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 5/8

102

Guest
Rectangle

 return *(int *)ptr >= 0;
}

Example Implementation

int count_matches(void *base, int nelems, int elem_size_bytes, bool
(*match_fn)(void *)) {
 int count = 0;
 for (int i = 0; i < nelems; i++) {
 void *elem_ptr = (char *)base + i * elem_size_bytes;
 if (match_fn(elem_ptr)) {
 count++;
 }
 }
 return count;
}

This function iterates over a generic array and uses a match function to determine if each

element satisfies a condition.

Standard Library Usage and Function Pointers

STANDARD LIBRARY FUNCTIONS: Functions such as qsort , bsearch , lfind , and

lsearch in the C standard library use function pointers for comparing elements. These

functions require the caller to supply a comparison function that follows a specific

signature, allowing the functions to work with any data type.

Example:

qsort(base, nelems, elem_size_bytes, compare_fn);

This demonstrates how function pointers are integral to writing flexible, generic code in

C.

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 6/8

103

Guest
Rectangle

Final Summary & Takeaways

Generics:

void * pointers enable writing code that works with any data type.

Operations such as swapping and array manipulation are implemented by

treating memory as a sequence of bytes.

Function Pointers:

Allow passing functions as parameters to perform type-specific operations (e.g.,

comparisons).

Have a standard syntax and are used in many standard library functions.

Generic Bubble Sort:

Illustrates how to combine generic data handling with function pointers to

create a reusable sorting algorithm.

Generic Utility Functions:

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 7/8

104

Guest
Rectangle

Beyond sorting, generic functions can be written for printing, counting matches,

and array rotations.

Key Pitfalls:

void * lacks type safety; correct element sizes must be provided.

Pointer arithmetic with void * requires casting to char * .

Always verify that function pointers match the expected signatures.

9/30/25, 7:52 PM 11. Function Pointers and Generics in C

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/11%20Function%20Pointers%20and%… 8/8

105

Guest
Rectangle

12. Structs, const, and Generic
Stack

Objective & Scope

This note introduces two fundamental topics in C programming:

The use of const and structs to create robust, maintainable code.

The design and implementation of a generic stack data structure that works with

any data type.

These topics build on previous lectures covering generics, void pointers, and generic

swap functions. Prerequisites include familiarity with basic memory operations (e.g.,

memcpy) and previous exposure to generic programming techniques in C.

Recap of Generics So Far

GENERICS: The use of void * pointers and functions like memcpy / memmove enables us to

write code that operates on data of any type.

KEY IDEA: By combining void pointers with function pointers, we can create reusable

algorithms (e.g., generic swap and bubble sort) that delegate type-specific operations

to user-provided functions.

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 1/9

106

Guest
Rectangle

The const Keyword

Global and Local Constants

CONST VARIABLE: A variable declared with const cannot be modified after

initialization.

Example:

const double PI = 3.1415;
const int DAYS_IN_WEEK = 7;

const with Pointers

CONST POINTER TO DATA: A declaration like const char *s means that the characters

pointed to by s cannot be modified through s .

Example:

char buf[6];
strcpy(buf, "Hello");
const char *s = buf;
// s[0] = 'h'; // Error: cannot modify data via s

However, the pointer itself can be changed:

s = "World"; // Valid: changing where s points is allowed

const in Function Parameters

Using const in function parameters signals that the function will not modify the data

pointed to by the parameter.

Example:

int countUppercase(const char *str) {
 int count = 0;
 for (int i = 0; i < strlen(str); i++) {

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 2/9

107

Guest
Rectangle

 if (isupper(str[i])) {
 count++;
 }
 }
 return count;
}

Here, str is declared as a const char * to prevent modification of its content.

Structs in C

Defining and Using Structs

STRUCT: A user-defined data type that groups related variables (members) under one

name.

Example:

struct date {
 int month;
 int day;
};

struct date today;
today.month = 1;
today.day = 28;

Typedef and Struct Initialization

Wrapping a struct definition in a typedef allows you to create variables without

repeatedly writing the keyword struct .

Example:

typedef struct date {
 int month;
 int day;

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 3/9

108

Guest
Rectangle

} date;

date new_years_eve = {12, 31};

Passing Structs to Functions

When a struct is passed by value, a copy is made. To modify the original struct, pass a

pointer.

By Value:

void advance_day(date d) {
 d.day++;
}

By Reference:

void advance_day(date *d) {
 d->day++; // equivalent to (*d).day++;
}

int main(void) {
 date my_date = {1, 28};
 advance_day(&my_date);
 printf("%d\\n", my_date.day); // Output: 29
 return 0;
}

Arrays of Structs

Arrays of structs are declared like any other arrays. They can be initialized either in full or

field-by-field.

Example:

typedef struct my_struct {
 int x;

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 4/9

109

Guest
Rectangle

 char c;
} my_struct;

my_struct array_of_structs[5];
array_of_structs[0] = (my_struct){0, 'A'};

Generic Stack Implementation

Motivation and Overview

STACK: A data structure that supports last-in, first-out (LIFO) operations: push, pop,

and peek.

GOAL: Create a generic stack that can store elements of any type.

From Type-Specific to Generic Stack

Traditional implementations for specific types (e.g., an int stack) are straightforward:

Example:

typedef struct int_node {
 struct int_node *next;
 int data;
} int_node;

typedef struct int_stack {
 int nelems;
 int_node *top;
} int_stack;

For a generic stack, we must:

Use a void * pointer in each node to store data of any type.

Store the element size in the stack structure for correct memory operations.

Generic Stack Data Structures

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 5/9

110

Guest
Rectangle

GENERIC STACK STRUCTS:

Definition:

typedef struct node {
 struct node *next;
 void *data;
} node;

typedef struct stack {
 int nelems;
 size_t elem_size_bytes;
 node *top;
} stack;

Generic Stack Operations

Creating a Stack

stack_create: Allocates a new stack with the specified element size.

Code Example:

stack *stack_create(size_t elem_size_bytes) {
 stack *s = malloc(sizeof(stack));
 s->nelems = 0;
 s->top = NULL;
 s->elem_size_bytes = elem_size_bytes;
 return s;
}

Pushing onto the Stack

When pushing, the stack must allocate memory for a copy of the element to ensure the

data persists.

stack_push:

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 6/9

111

Guest
Rectangle

void stack_push(stack *s, const void *data) {
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->elem_size_bytes);
 memcpy(new_node->data, data, s->elem_size_bytes);
 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;
}

Popping from the Stack

Instead of returning the popped element (which may cause memory management

issues), the caller provides a memory location to copy the data.

stack_pop:

void stack_pop(stack *s, void *addr) {
 if (s->nelems == 0) {
 // Handle error (e.g., exit or return error code)
 fprintf(stderr, "Cannot pop from empty stack\\n");
 exit(1);
 }
 node *n = s->top;
 memcpy(addr, n->data, s->elem_size_bytes);
 s->top = n->next;
 free(n->data);
 free(n);
 s->nelems--;
}

Example Usage of the Generic Stack

Example: Pushing and popping integers.

#include <stdio.h>
#include <stdlib.h>

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 7/9

112

Guest
Rectangle

#include <string.h>

// (Assume stack and node struct definitions and functions are defi
ned as above)

int main(void) {
 stack *int_stack = stack_create(sizeof(int));
 int value;

 int x = 7;
 stack_push(int_stack, &x);

 x = 42;
 stack_push(int_stack, &x);

 // Pop the top element into 'value'
 stack_pop(int_stack, &value);
 printf("Popped: %d\\n", value);

 // Clean up remaining elements...
 while (int_stack->nelems > 0) {
 stack_pop(int_stack, &value);
 printf("Popped: %d\\n", value);
 }

 free(int_stack);
 return 0;
}

Final Summary & Takeaways

const Keyword:

Used to declare variables and pointers that should not be modified.

Essential for defining immutable data and ensuring safe function contracts.

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 8/9

113

Guest
Rectangle

Structs in C:

Allow creation of custom data types grouping related variables.

typedef can simplify struct usage.

Passing structs by pointer enables modification of the original data.

Generic Stack Implementation:

Generic stacks leverage void * to store any data type and require element size to

manage memory.

Key operations (push, pop, create) must carefully manage dynamic memory to

avoid leaks.

A generic stack improves code reusability and forms the basis for other generic

data structures.

Generics and Function Pointers:

Function pointers and generic programming techniques are foundational for

writing flexible and reusable C code.

9/30/25, 7:52 PM 12. Structs, const, and Generic Stack

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/12%20Structs,%20const,%20and%20… 9/9

114

Guest
Rectangle

13. Compiling C Programs

Objective & Scope

This note details the processes involved in compiling C programs using GCC, along with

an introduction to Make and Makefiles. The lecture covers material on GCC’s internal

pipeline—preprocessor, compiler, assembler, and linker—as well as how Make

automates building projects.

GNU

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 1/12

115

Guest
Rectangle

The GCC (Gnu Compiler Collection) Compilation Process

Below is the 4 stages of compilation:

Preprocessing:

Handles directives such as file inclusion, macro expansion, and conditional

compilation. It produces a modified source file ready for actual compilation.

Compiling:

Converts the preprocessed code into assembly language by parsing and optimizing

the code.

Assembling:

Translates the assembly code into object (machine) code, producing intermediate

binary files, which are the binary formats that the computer can directly execute.

Linking:

The linker takes the intermediate binary file (or multiple object files, if your program

is split over several source files) along with any libraries your code depends on. Then

it combines object files and libraries to produce the final executable program

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 2/12

116

Guest
Rectangle

The Preprocessor

PREPROCESSOR: Handles directives such as #define and #include . It performs macro

substitution and file inclusion, effectively “pasting” the contents of header files into

the source.

Object Macros:

#define BUFFER_SIZE 1024
foo = (char *) malloc(BUFFER_SIZE);

Function Macros:

#define min(X,Y) ((X) < (Y) ? (X) : (Y))
#define twice(X) (2*(X))

Importing Files:

The #include directive includes the content of header files.

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 3/12

117

Guest
Rectangle

When you run the command:

gcc -E -o hello.i hello.c

1. E Option

Tells GCC to run only the C preprocessor phase.

This expands macros and includes, but stops before compilation.

2. o Option

Specifies the output file name.

Here, hello.i will contain the preprocessed C code.

As a result, you’ll find that hello.i holds all the code after preprocessing—making it

useful for debugging or inspecting macro expansions and #include directives.

The Compiler (output: assembly code)

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 4/12

118

Guest
Rectangle

COMPILER: Transforms the preprocessed code into assembly code. Its primary

function is parsing the C source code and generating corresponding assembly

instructions.

Demo Command:

gcc -S hello.i

Purpose:

The -S option tells GCC to compile the input file down to assembly

language.

What It Does:

It converts the preprocessed source (in this case, hello.i) into an assembly

file (commonly named hello.s) and stops before generating object code

(before sending to assembler).

The Assembler (output: object code) and ELF

ASSEMBLER: Converts assembly code into machine code, resulting in an object file

(e.g., hello.o).

ELF (Executable and Linkable Format):

A cross-platform standard that represents object code and executable files. It

includes several sections:

.text: Executable code.

.data: Global or static variables with predefined values.

.rodata: Read-only data.

.bss: Uninitialized global or static variables.

.comment: Meta information about the object file.

Demo Commands:

as -o hello.o hello.s
readelf -e hello.o

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 5/12

119

Guest
Rectangle

1. Assembling:

Command: as -o hello.o hello.s

Purpose: Converts the assembly file (hello.s) into an object file (hello.o).

Details:

as is the GNU assembler, which translates assembly language into

machine code.

o hello.o sets the output file name to hello.o .

The produced object file is in ELF format and is ready for linking.

2. Inspecting the Object File:

Command: readelf -e hello.o

Purpose: Displays all (and only) the header information in the ELF object

file (hello.o).

Details:

readelf is a tool used to examine the contents of ELF files.

The e option (or -all) outputs all header information, including the

ELF header, section headers, and program headers.

This command is useful for verifying and debugging the structure of

your object file.

Table below outlines several common sections in an ELF (Executable and Linkable

Format) file produced by assemblers and compilers on Unix-like systems. Each section

has a specific purpose in the final binary

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 6/12

120

Guest
Rectangle

nm hello.o

Purpose:

The command nm hello.o is used to display the symbol table of the object file hello.o .

It shows the symbols defined in and referenced by the file.

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 7/12

121

Guest
Rectangle

What It Does:

Lists symbols (such as functions and global variables) with their addresses.

Identifies the type of each symbol (e.g., text for code, data for initialized variables,

bss for uninitialized variables).

Flags undefined symbols that need to be resolved during the linking phase.

Conclusion:

These two tools offer complementary views of an ELF file:

readelf: Displays detailed header information, including the ELF header, section

headers, program headers, and other metadata about the file's structure. It helps you

understand how the file is organized and how the sections are laid out.

nm: Lists the symbol table, showing you the names and types of symbols (functions,

variables, etc.) defined in or referenced by the ELF file. It helps you see how symbols

are used within the file.

Together, these tools let you inspect almost all the important metadata and symbol

information in an ELF file, though they don't display the raw binary content of each

section.

The Linker (output: executable)

When the assembler generates object files (typically in ELF format on Unix-like systems),

the linker then takes these ELF object files, along with any libraries, and combines them

into a final executable (or shared library), which is also usually in ELF format. The linker

resolves symbols and rearranges sections so that the resulting ELF file is properly

structured for execution by the operating system's loader.

LINKER: Combines object files into a single executable and resolves references to

external functions and libraries.

Static Linking:

The machine code of external functions used in your program is copied into the

executable (files usually have a ".a" extension).

Dynamic Linking:

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 8/12

122

Guest
Rectangle

Only an offset table is created in the executable. The operating system loads the

machine code needed for external functions during execution (files usually have a

".so" extension).

Demo Command:

ld --dynamic-linker /lib64/ld-linux-x86-64.so.2 hello.o -o he
llo -lc --entry main

ld : Invokes the GNU linker.

--dynamic-linker /lib64/ld-linux-x86-64.so.2 :

Specifies the dynamic linker (loader) to use at runtime. In this case, it points to

the 64-bit Linux dynamic linker.

hello.o : The input object file generated by the assembler (or compiler).

-o hello : Sets the output file name to hello , which will be the final executable.

-lc : Links against the standard C library (libc), ensuring that standard

functions (like those from printf or malloc) are available in the executable.

--entry main : Specifies the entry point of the executable. Here, the linker will

set the starting function to main .

Note: You may not get this command working, because it will be slightly

different on different Linux distributions

After linking, the executable is run (e.g., ./hello) to demonstrate that all components

have been integrated correctly.

Make and Makefiles

Introduction to Make

MAKE: A build automation tool that reads a Makefile—a set of rules that defines how

to compile and link a program. “GNU Make is a tool which controls the generation of

executables... from the program's source files.”

Purpose: Automate the build process by rebuilding only what is necessary.

Advantages:

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Programs… 9/12

123

Guest
Rectangle

General (usable for more than just C code)

Fast (only rebuilds modified dependencies)

Shareable (users compile by simply running make)

Structure of a Makefile

MAKEFILE RULE: Each rule contains a target, dependencies, and the commands

(recipes) to build the target. MAKEFILE = List of Rules.

target: dependencies
 command(s)

Example for a simple C program:

simple: simple.c
 gcc -o simple simple.c
clean:
 rm -rf simple

Usage

make simple
make clean

Note: Commands must be indented with a tab.

Advanced Makefile Example

REALISTIC MAKEFILE: For a project with multiple source files:

CC = gcc
CFLAGS = -g -std=c99 -pedantic -Wall

all: Far

Far: Far.o vector.o

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Program… 10/12

124

Guest
Rectangle

 $(CC) $(CFLAGS) $^ -o $@

Far.o: Far.c Far.h vector.h
 $(CC) $(CFLAGS) -c Far.c

vector.o: vector.c vector.h
 $(CC) $(CFLAGS) -c vector.c

clean:
 rm Far.o vector.o Far

.PHONY: clean all

Variables such as CC , CFLAGS , and automatic variables like $@ (target) and $^

(prerequisites) simplify the build process.

Generic Makefile Template

TEMPLATE: A generic Makefile for small projects:

PROGRAMS = hello

CC = gcc
CFLAGS = -g -Wall -O0 -std=gnu99
LDFLAGS = -lm

$(PROGRAMS): %: %.c
 $(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)

.PHONY: clean all
all: clean $(PROGRAMS)

clean:
 rm -f $(PROGRAMS) *.o

This template can be extended to include libraries or additional targets as needed.

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Program… 11/12

125

Guest
Rectangle

Final Summary & Takeaways

The GCC compilation process involves distinct phases: preprocessing, compiling,

assembling, and linking. Each phase transforms the C source code closer to a

runnable executable.

Make and Makefiles automate the build process by specifying dependencies and

recipes, ensuring that only the necessary components are rebuilt when changes

occur.

Understanding these processes enhances practical skills in compiling, debugging,

and organizing larger projects.

9/30/25, 7:52 PM 13. Compiling C Programs

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/13%20Compiling%20C%20Program… 12/12

126

Guest
Rectangle

14. Introduction to x86-64
Assembly

Learning Assembly

FOCUS AREAS:

Moving data

Arithmetic & logical operations

Control flow

Function calls

Learning Goals

LEARNING GOALS:

Understand what assembly language is and its importance

Recognize x86-64 assembly format

Master the mov instruction for data movement

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 1/11

127

Guest
Rectangle

Plan

1. Overview: GCC & Assembly

2. Demo: Disassembling an executable

3. Registers & assembly‐level abstraction

4. The mov instruction

Bits All the Way Down

Data types:

Integers (unsigned, 2’s complement)

Floating-point (IEEE single/double)

Char (ASCII)

Address (unsigned long)

Aggregates (arrays, structs)

Code: machine-encoded bits; assembly is human-readable form.

GCC and Assembly

GCC: Compiler that translates C (and other languages) to machine code.

High-level abstractions are lowered to bits.

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 2/11

128

Guest
Rectangle

Assembly is textual representation of machine code.

One C statement can map to multiple assembly instructions.

Demo: Looking at an Executable

Command: objdump -d <executable>

Examine:

Function labels & start addresses

Instruction bytes (hex)

Mnemonics & operands

Our First Assembly: sum_array

int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

Disassembly:

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 3/11

129

Guest
Rectangle

Explanation

Label & Address: sum_array at 0x4005b6

Hex Bytes: Machine code (e.g., ba 00 00 00 00). This is the machine code: raw

hexadecimal instructions, representing binary as read by the computer. Different

instructions may be different byte lengths. Executed by the CPU. These machine

codes are given as hexadecimal instructions, so that when you convert hexadecimals

int binary number (1 and 0s), you will see the real machine code.

Mnemonic: Instruction (e.g., mov $0x0,%edx). This is the assembly code: “human-

readable” versions of each machine code instruction. Assembler converts those into

machine code. Each instruction has an operation name (“opcode”).

Operands:

$ → “immediate”, constant

% → register, a storage location on the CPU

Memory addressing forms (e.g., (%rdi,%rcx,4))

Assembly Abstraction

ABSTRACTION:

C hides machine details; assembly exposes raw operations.

Assembly/machine code is processor-specific, no type checking.

Registers

REGISTER: 64-bit CPU storage for fast data access, parameters, and returns.

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 4/11

130

Guest
Rectangle

Bottom line: Registers are the CPU’s ultra-fast storage “slots” that your assembly

instructions use to pass data around, control program flow, and keep track of status.

Registers are not located in memory! They are fast read/write memory slot right on the

CPU that can hold variable values.

General-Purpose Registers

There are 16 general-purpose registers used in normal integer and pointer code.

%rax , %rbx , %rcx , %rdx , %rsi , %rdi , %rbp , %rsp

%r8 , %r9 , %r10 , %r11 , %r12 , %r13 , %r14 , %r15

Last 8 general-purpose registers, %r8 – %r15 , are added in the 64-bit extension, used for

additional arguments, temporaries, etc.

Category Register Names Primary Use

General-

Purpose

RAX , RBX , RCX , RDX , RSI , RDI ,

RBP , RSP

Integer arithmetic, passing

arguments, stack/frame

management

Pointer/Index RSI , RDI , RBP , RSP
Source/destination pointers in

memory operations and stack ops

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 5/11

131

Guest
Rectangle

Category Register Names Primary Use

Instruction Ptr. RIP Holds the address of the next

instruction to execute

Flags RFLAGS Status and control flags (zero, carry,

overflow, interrupt enable, etc.)

SIMD/Vector XMM0 – XMM15
Floating-point and 128-bit vector

operations (SSE, SSE2, etc.)

Control/System CR0 – CR4 , MSRs
CPU mode, paging, cache control,

model-specific registers

Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on registers.

Registers also hold parameters and return values for functions.

Registers are extremely fast memory!

Processor instructions consist mostly of moving data into/out of registers and

performing arithmetic on them. This is the level of logic your program must be in to

execute!

Machine-Level Code vs. Assembly

Assembly: Human-readable mnemonics.

Machine code: Hexadecimal bytes.

Sequential instructions occupy sequential addresses.

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 6/11

132

Guest
Rectangle

Instruction Set Architecture (ISA)

ISA: A contract between program/compiler

and hardware, defining CPU operations, data

formats, and control.

Defines operations that the processor

(CPU) can execute

Data read/write/transfer operations

Control mechanisms

x86-64 evolves from Intel’s 1978 design,

retaining legacy support.

Dictates register names and sizes.

The mov Instruction

mov src,dst: Copy data from src to dst.

Operand Types

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 7/11

133

Guest
Rectangle

Immediate: $Imm

Register: %reg

Memory: Imm(base,index,scale)

Operand Forms

Immediate

mov $0x104, %rax — load constant into %rax.

Register

mov %rbx, %rax — copy between registers.

Absolute Address

mov 0x104, %rax — load from memory address.

Indirect

mov (%rbx), %rax — load from address in register.

Base + Displacement

mov 0x10(%rax), %rdx — load from base + offset. RAX + 0x10 to RDX.

Indexed

mov (%rax, %rdx), %rcx — load from base + index. (value in RAX) + (value in RDX)

Indexed + Displacement

mov 0x10(%rax, %rdx), %rcx. (%rcx ← M[RAX + RDX + 0x10]) *M = “the memory at

address”

Scaled Indexed

mov (, %rdx,4), %rax — load from scale*index (scale*RDX).

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 8/11

134

Guest
Rectangle

Scaled Indexed + Displacement

mov 0x4(,%rdx, 4), %rax.

Base + Scaled Indexed

mov (%rax, %rdx, 2), %rcx.

Full Form

Imm(base,index,scale) ≡ address Imm + R[base] + R[index]*scale.

In the AT&T form

disp(base, index, scale)

– here:

disp (the displacement) is the constant before the parentheses (e.g. 0x10).

base is the first register inside the parentheses (e.g. %rax).

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 9/11

135

Guest
Rectangle

index is the second register inside (e.g. %rdx).

scale (if you have one) is the third element; if you omit it, it defaults to 1.

Example:

0x10(%rax, %rdx)

Displacement = 0x10

Base = %rax

Index = %rdx

Scale = 1 (implicit)

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 10/11

136

Guest
Rectangle

Goals of Indirect Addressing

PURPOSE: Provide flexible memory references (arrays, pointers) via displacement,

base, index, and scale.

Final Summary & Takeaways

SUMMARY: Covered assembly intro: data models, GCC workflow, disassembly,

registers, ISA, mov, addressing modes, and practice.

KEY TAKEAWAYS:

Assembly maps high-level constructs to CPU ops

Registers are fast, limited storage

Addressing modes enable complex memory access

Mastery of mov and addressing is foundational

9/30/25, 7:52 PM 14. Introduction to x86-64 Assembly

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/14%20Introduction%20to%20x86-64… 11/11

137

Guest
Rectangle

15. Arithmetic and Logic
Operations

Plan

Data and Register Sizes

The lea Instruction

Logical and Arithmetic Operations

Data Sizes

DATA SIZE: Assembly terminology for data units.

Byte: 1 byte

Word: 2 bytes

Double word: 4 bytes

Quad word: 8 bytes

SUFFIXES: Instruction suffix indicates data size.

b — byte (8-bit)

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 1/12

138

Guest
Rectangle

w — word (16-bit)

l — double word (long) (32-bit)

q — quad word (64-bit)

C Type ↔ Suffix ↔ Intel Data Type

C Type Suffix Size (bytes) Intel Data Type

char b 1 Byte

short w 2 Word

int l 4 Double word

long q 8 Quad word

char * q 8 Quad word

float s 4 Single precision

double l 8 Double precision

Register Sizes

REGISTER SUBREGISTERS: Each 64-bit register has smaller aliases.

General-Purpose Registers

64-bit 32-bit 16-bit 8-bit

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

%rbp %ebp %bp %bpl

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 2/12

139

Guest
Rectangle

64-bit 32-bit 16-bit 8-bit

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

%r12 %r12d %r12w %r12b

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

Register Responsibilities

COMMON USAGE:

%rax — return value

%rdi — first function argument

%rsi — second function argument

%rdx — third function argument

%rip — instruction pointer (address of next instruction)

%rsp — stack pointer (top of stack)

mov Variants

MOV SIZES: mov may be suffixed to specify operand size:

movb — byte

movw — word

movl — double word

movq — quad word

NOTE: movl to a register zero‐extends the upper 32 bits.

Practice #1: mov and Data Sizes

For each, choose the correct suffix (b , w , l , or q):

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 3/12

140

Guest
Rectangle

1. mov__ %eax, (%rsp)

2. mov__ (%rax), %dx

3. mov__ $0xff, %bl

4. mov__ (%rsp,%rdx,4), %dl

5. mov__ (%rdx), %rax

6. mov__ %dx, (%rax)

Answers:

movl %eax, (%rsp)
movw (%rax), %dx
movb $0xff, %bl
movb (%rsp,%rdx,4), %dl
movq (%rdx), %rax
movw %dx, (%rax)

movabsq Instruction

movabsq: Load a 64-bit immediate into a register.

movq supports only 32-bit immediates as source.

Use movabsq $IMM64, %reg .

Example:

movabsq $0x0011223344556677, %rax

Practice #2: mov and Upper Bytes

Determine how each modifies the upper bytes of %rax (initial %rax = 0):

1. movabs $0x0011223344556677, %rax → %rax = 0x0011223344556677

2. movb $-1, %al → %rax = 0x00112233445566FF

3. movw $-1, %ax → %rax = 0x001122334455FFFF

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 4/12

141

Guest
Rectangle

4. movl $-1, %eax → %rax = 0x00000000FFFFFFFF

5. movq $-1, %rax → %rax = 0xFFFFFFFFFFFFFFFF

movz and movs

ZERO-EXTEND (movz): Fills upper bytes with zeros

SIGN-EXTEND (movs): Fills upper bytes by sign‐extending the source’s MSB

Zero-Extend Variants

Instruction Description

movzbw byte → word (zero-extend)

movzbl byte → double word

movzwl word → double word

movzbq byte → quad word

movzwq word → quad word

Operation: R ← ZeroExtend(S)

Sign-Extend Variants

Instruction Description

movsbw byte → word (sign-extend)

movsbl byte → double word

movswl word → double word

movsbq byte → quad word

movswq word → quad word

movslq double word → quad word

cltq %eax → sign-extend in %rax

Operation: R ← SignExtend(S)

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 5/12

142

Guest
Rectangle

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 6/12

143

Guest
Rectangle

The lea Instruction

lea src, dst: Load Effective Address.

Copies the address computed by src into dst , instead of dereferencing.

Same operand forms as mov .

Example:

lea 6(%rax), %rdx # %rdx ← 6 + R[%rax]

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 7/12

144

Guest
Rectangle

mov 6(%rax), %rdx # %rdx ← M[6 + R[%rax]]

lea vs. mov Examples

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Load M[6 + R[%rax]] into %rdx %rdx ← 6 + R[%rax]

(%rax,%rcx), %rdx Load M[R[%rax] + R[%rcx]] into %rdx %rdx ← R[%rax] + R[%rcx]

(%rax,%rcx,4), %rdx Load M[R[%rax] + 4·R[%rcx]] into %rdx %rdx ← R[%rax] + 4·R[%rcx]

7(%rax,%rax,8),
%rdx

Load M[7 + R[%rax] + 8·R[%rax]] into

%rdx

%rdx ← 7 + R[%rax] +

8·R[%rax]

Unary Instructions

Unary Instructions: Operate on single operand (register or memory).

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Bitwise NOT

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 8/12

145

Guest
Rectangle

Examples: incq 16(%rax) , dec %rdx , not %rcx .

Binary Instructions

Binary Instructions: Operate on two operands (register/memory, immediate).

Destination cannot be memory if source is memory.

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply (trunc.)

xor S, D D ← D ^ S Exclusive OR

or S, D D ← D | S OR

and S, D D ← D & S AND

Examples: addq %rcx, (%rax) , xorq $16, (%rax,%rdx,8) .

Large Multiplication

Full 128-bit product:

imulq S — signed full multiply → R[%rdx]:R[%rax] ← R[%rax] * S

mulq S — unsigned full multiply

Two-operand imul S, D: truncated result in D.

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic%… 9/12

146

Guest
Rectangle

To summarize:

imul : Truncates the result to fit in a 64-bit register.

mulq : Produces a 128-bit result, storing it across two registers (%rdx and %rax).

Division & Remainder

Dividend / Divisor = Quotient + Remainder

Dividend high 64 bits in %rdx , low 64 bits in %rax .

Divisor → operand.

Quotient → %rax , Remainder → %rdx .

Instruction Effect

idivq S Signed divide:

R[%rax] ← (R[%rdx]:R[%rax]) ÷ S ; R[%rdx] ← (R[%rdx]:R[%rax]) mod S

divq S Unsigned divide (same mapping).

cqto Sign‐extend %rax into %rdx for a 128-bit dividend.

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic… 10/12

147

Guest
Rectangle

To summarize:

Division and Remainder Terminology: The dividend divided by the divisor equals

the quotient plus the remainder.

Registers for Division:

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic… 11/12

148

Guest
Rectangle

The dividend's high-order 64 bits are stored in %rdx , and the low-order 64 bits

are in %rax .

The quotient is placed in %rax , and the remainder is in %rdx .

Division Instructions:

idivq is for signed division.

divq is for unsigned division.

cqto sign-extends the 64-bit value in %rax to fill both %rax and %rdx .

x86-64 Limitations: Most divisions use only 64-bit divisors, with up to 128-bit

dividend support using the two registers.

Shift Instructions

Syntax: sal/shl/sar/shr k, D where k = immediate or %cl.

Instruction Effect Description

sal k, D D ← D << k Left shift

sar k, D D ← D >>ᵃ k Arithmetic right

shr k, D D ← D >>ˡ k Logical right

Shift Amount (%cl): Only low-order log₂(width) bits of %cl are used.

9/30/25, 7:52 PM 15. Arithmetic and Logic Operations

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/15%20Arithmetic%20and%20Logic… 12/12

149

Guest
Rectangle

16. x86-64 Condition Codes &
Control Flow

Lecture Plan

Practice: Reverse Engineering

Assembly Execution and %rip

Control Flow Mechanics

Reverse Engineering Practices

Follow along at: https://godbolt.org/z/QQj77g

Reverse Engineering Example

int add_to(int x, int arr[], int i) {
 int sum = ___?___;
 sum += arr[___?___];
 return ___?___;
}

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 1/10

150

Guest
Rectangle

add_to:
 movslq %edx, %rdx
 movl %edi, %eax
 addl (%rsi,%rdx,4), %eax
 ret

%edi = x ; %rsi = arr ; %edx = i

movslq %edx, %rdx ⇒ sign-extend i

movl %edi, %eax ⇒ sum = x

addl (%rsi,%rdx,4), %eax ⇒ sum += arr[i]

ret ⇒ return sum

Learning Assembly

Moving data around

Arithmetic & logical operations

Control flow

Function calls

Executing Instructions

Execution:

Instructions & data reside in memory.

CPU fetches bytes, decodes, executes.

%rip holds the address of the next instruction.

Register Responsibilities

Special Registers:

%rax — return value

%rdi — 1st argument

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 2/10

151

Guest
Rectangle

%rsi — 2nd argument

%rdx — 3rd argument

%rip — program counter (next instruction address)

%rsp — stack pointer

Instructions Are Just Bytes!

Machine code is stored as raw bytes; assembly is a mnemonic overlay.

%rip – Program Counter

%rip: Program counter holding the address of next instruction.

Automatically advances by instruction length.

Can be changed by jump instructions.

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 3/10

152

Guest
Rectangle

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 4/10

153

Guest
Rectangle

Going In Circles

Loops are implemented by “interfering” with %rip via jump instructions.

Jump!

jmp target — unconditional jump to target.

jmp *%rax — indirect jump to address in %rax .

jmp

Direct: jmp Label

Indirect: jmp *Operand

“Interfering” with %rip

Unconditional jumps allow repetition or skips, forming loops.

Control

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 5/10

154

Guest
Rectangle

Control Flow: C’s if/else/while/for → assembly’s cmp + conditional jumps.

Conditional Jumps

There are also variants of jmp that jump only if certain conditions are true (“Conditional

Jump”). The jump location for these must be hardcoded into the instruction.

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 6/10

155

Guest
Rectangle

Instruction Synonym Condition

je jz Equal / zero (ZF=1)

jne jnz Not equal / not zero (ZF=0)

js Negative (SF=1)

jns Nonnegative (SF=0)

jg jnle Signed > (ZF=0 ∧ SF=OF)

jge jnl Signed ≥ (SF=OF)

jl jnge Signed < (SF≠OF)

jle jng Signed ≤ (ZF=1 ∨ SF≠OF)

ja jnbe Unsigned > (CF=0 ∧ ZF=0)

jae jnb Unsigned ≥ (CF=0)

jb jnae Unsigned < (CF=1)

jbe jna Unsigned ≤ (CF=1 ∨ ZF=1)

Condition Codes

Wait a minute – how does the jump instruction know anything about the compared

values in the earlier instruction? The CPU has special registers called condition codes

that are like “global variables”. They automatically keep track of information about the

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 7/10

156

Guest
Rectangle

most recent arithmetic or logical operation. Alongside normal registers, the CPU also has

single-bit condition code registers. They store the results of the most recent arithmetic

or logical operation. Here are the most common condition codes:

Flags register bits:

CF: Carry flag (unsigned overflow, The most recent operation generated a carry

out of the

most significant bit. Used to detect overflow for unsigned operations)

ZF: Zero flag (result == 0, The most recent operation yielded zero)

SF: Sign flag (result < 0, The most recent operation yielded a negative value.)

OF: Overflow flag (signed overflow, The most recent operation caused a two’s-

complement

overflow-either negative or positive)

Setting Condition Codes

cmp S1, S2 → computes S2 − S1, sets flags, discards result.

Instruction Description

cmpb Compare byte

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 8/10

157

Guest
Rectangle

Instruction Description

cmpw Compare word

cmpl Compare double word

cmpq Compare quad word

TEST Instruction

Syntax: test S1, S2

Operation: Computes S1 & S2 , sets flags, and discards the result.

Use case: Often used to check the sign or zero of a value, for example:

test %reg, %reg

Flags Behavior

Arithmetic/Logical Instructions: Update CF, ZF, SF, and OF.

lea : Does not modify any flags.

Logical Operations (e.g., xor): Clear CF and OF (CF = OF = 0).

Shifts:

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Code… 9/10

158

Guest
Rectangle

Set CF to the last bit shifted out.

Clear OF (OF = 0).

inc / dec : Update OF and ZF, but leave CF unchanged.

Final Recap

Topics:

Reverse Engineering C→assembly

Execution model & %rip

Control flow via condition codes & jumps

Next Time: Conditional branches in depth

9/30/25, 7:52 PM 16. x86-64 Condition Codes & Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/16%20x86-64%20Condition%20Cod… 10/10

159

Guest
Rectangle

17. More Control Flow

Lecture Plan

If statements (cont’d.)

Loops

While loops

For loops

Other Instructions That Depend On Condition Codes

Loops and Control Flow

Example: while (i < 100)

void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 1/8

160

Guest
Rectangle

400570: mov $0x0, %eax # i = 0
400575: jmp 40057a # jump to test
400577: add $0x1, %eax # i++
40057a: cmp $0x63, %eax # compare i to 99
40057d: jle 400577 # if i ≤ 99, jump back to add
40057f: repz retq # return

%eax holds i .

mov $0x0, %eax initializes i to 0.

jmp unconditionally jumps to the comparison.

add $0x1, %eax increments i .

cmp $0x63, %eax computes i - 99 , setting flags (e.g., SF=1 while i<99).

jle (“jump if less or equal”) tests ZF or SF≠OF and loops if i ≤ 99 .

When i becomes 100, the loop exits and the function returns.

Common While Loop Construction

Pattern:

1. Init

2. jmp to test

3. Body

4. Test (cmp + conditional jump)

5. Loop back if condition holds

Pseudocode:

while (test) {
 body
}

Assembly Skeleton:

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 2/8

161

Guest
Rectangle

 init
 jmp test
body:
 <body instructions>
test:
 cmp <…>
 jl body
 ret

Common For Loop Construction

C Syntax:

for (init; test; update) {
 body
}

Assembly AS While-Loop:

 init
 jmp test
body:
 <body>
 <update>
test:
 cmp <…>
 jl body
 ret

For compilation, for is lowered to a while(test){ body; update; } form.

Back to Our First Assembly (sum_array)

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 3/8

162

Guest
Rectangle

int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

4005b6: mov $0x0, %edx # i = 0
4005bb: mov $0x0, %eax # sum = 0
4005c0: jmp 4005cb # jump to test
4005c2: movslq %edx, %rcx # sign-extend i
4005c5: add (%rdi,%rcx,4), %eax # sum += arr[i]
4005c8: add $0x1, %edx # i++
4005cb: cmp %esi, %edx # compare i to nelems
4005cd: jl 4005c2 # if i < nelems, loop
4005cf: repz retq # return

1. sum is in %eax .

2. i is in %edx .

3. The instruction add (%rdi,%rcx,4), %eax implements sum += arr[i] .

4. cmp %esi, %edx tests i < nelems , and jl jumps when true (signed <).

Condition Code–Dependent Instructions

Three instruction classes read CPU flags set by arithmetic/logical ops:

1. Conditional jumps (je , jl , etc.)

2. set instructions (set a byte register to 0/1)

3. Conditional moves (new versions of mov) (cmov…)

set : Read Condition Codes

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 4/8

163

Guest
Rectangle

Purpose: Write 1 or 0 into a byte register (e.g., %al) based on flags.

Destination: single-byte register or memory.

Does not alter other bytes of the register—commonly zero‐extended after via

movzbl .

Example:

int small(int x) {
 return x < 16;
}

cmp $0xf, %edi # compare x to 15
setl %al # %al = 1 if x<16 else 0
movzbl %al, %eax # zero-extend into %eax
ret

Instr Synonym Condition

sete setz Equal / zero (ZF=1)

setne setnz Not equal / non-zero (ZF=0)

sets Negative (SF=1)

setns Nonnegative (SF=0)

setg setnle Greater (signed >) (ZF=0 ∧ SF=OF)

setge setnl ≥ (signed ≥) (SF=OF)

setl setnge < (signed <) (SF≠OF)

setle setng ≤ (signed ≤) (ZF=1 ∨ SF≠OF)

seta setnbe Above (unsigned >) (CF=0 ∧ ZF=0)

setae setnb ≥ (unsigned ≥) (CF=0)

setb setnae Below (unsigned <) (CF=1)

setbe setna ≤ (unsigned ≤) (CF=1 ∨ ZF=1)

cmov : Conditional Move

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 5/8

164

Guest
Rectangle

Purpose: Move src→dst if a condition holds, without branching.

dst must be a register.

Often used for C’s ternary operator.

Example:

int max(int x, int y) {
 return x > y ? x : y;
}

cmp %edi, %esi # compare x to y
mov %edi, %eax # assume x
cmovle %esi, %eax # if x≤y, move y
ret

Instr Synonym Condition

cmove S,R cmovz Equal / zero (ZF=1)

cmovne cmovnz Not equal / non-zero (ZF=0)

cmovs Negative (SF=1)

cmovns Nonnegative (SF=0)

cmovg cmovnle > (signed >) (ZF=0 ∧ SF=OF)

cmovge cmovnl ≥ (signed ≥) (SF=OF)

cmovl cmovnge < (signed <) (SF≠OF)

cmovle cmovng ≤ (signed ≤) (ZF=1 ∨ SF≠OF)

cmova cmovnbe Above (unsigned >) (CF=0 ∧ ZF=0)

cmovae cmovnb ≥ (unsigned ≥) (CF=0)

cmovb cmovnae Below (unsigned <) (CF=1)

cmovbe cmovna ≤ (unsigned ≤) (CF=1 ∨ ZF=1)

Ternary Operator

Syntax: condition ? (expression If True) : (expression If False)

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 6/8

165

Guest
Rectangle

Semantics: Evaluates one of two expressions based on a test—often lowered to cmp +

cmov in assembly.

Practice: Conditional Move

int signed_division(int x) {
 return x / 4;
}

leal 3(%rdi), %eax # bias for signed division
testl %edi, %edi # set flags based on x
cmovns %edi, %eax # if x ≥ 0, restore x
sarl $2, %eax # arithmetic divide by 4
ret

Biasing ensures that -14/4 rounds toward zero (result -3).

Practice: Fill In The Blank

long loop(long a, long b) {
 long result = _______;
 while (_________) {
 result = ____________;
 a = _________;
 }
 return result;
}

loop:
 movl $1, %eax
 jmp .L2
.L3:
 leaq (%rdi,%rsi), %rdx
 imulq %rdx, %rax

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 7/8

166

Guest
Rectangle

 addq $1, %rdi
.L2:
 cmpq %rsi, %rdi
 jl .L3
 rep; ret

Answers:

result = 1;

a < b;

result = result * (a + b);

a = a + 1;

Recap

Assembly Execution & %rip

Control Flow Mechanics

Condition Codes

Conditional Jumps, set , cmov

Loops: While & For

If statements (cont’d.)

Other instructions depending on flags

Next Time: Function calls in assembly

9/30/25, 7:52 PM 17. More Control Flow

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/17%20More%20Control%20Flow%201… 8/8

167

Guest
Rectangle

18. x86-64 Procedures

Plan

Revisiting %rip

Calling Functions

The Stack

Passing Control

Passing Data

Local Storage

Register Restrictions

Recursion Example

%rip

%rip is the instruction pointer, holding the address of the next instruction.

Offsets (<+n>) are relative to function start.

Unconditional jumps (jmp) use a signed byte to adjust %rip .

Instructions are variable-length bytes.

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 1/10

168

Guest
Rectangle

Without jumps, hardware adds the instruction’s byte size to %rip .

Loop Example:

0x400570 <+0>: mov $0x0,%eax
0x400575 <+5>: jmp 0x40057a <loop+10>
0x400577 <+7>: add $0x1,%eax
0x40057a <+10>: cmp $0x63,%eax
0x40057d <+13>: jle 0x400577 <loop+7>
0x40057f <+15>: repz retq

How do we call functions in assembly?

Requirements:

1. Pass Control: Transfer %rip to callee, then resume.

2. Pass Data: Place parameters, retrieve return value.

3. Manage Memory: Allocate/deallocate stack space.

%rsp

%rsp is the stack pointer, pointing to the top of the stack (stack grows downward).

push

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 2/10

169

Guest
Rectangle

pushq S:

%rsp -= 8

M[%rsp] = S

Equivalent to subq $8,%rsp + movq S,(%rsp) .

pop

popq D:

D = M[%rsp]

%rsp += 8

Equivalent to movq (%rsp),D + addq $8,%rsp .

Stack Example

Initial: %rsp = 0x108 , %rax = 0x123

pushq %rax # %rsp → 0x100; [0x100] = 0x123
popq %rdx # %rdx = 0x123; %rsp → 0x10

Calling Functions In Assembly

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 3/10

170

Guest
Rectangle

Caller invokes callee, handling %rip , parameters, and stack frame.

Remembering Where We Left Off

callq Label pushes return address (next %rip) onto stack, jumps to Label. retq pops

that address into %rip , resuming caller.

Example: Remembering Where We Left Off

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 4/10

171

Guest
Rectangle

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 5/10

172

Guest
Rectangle

Parameters and Return

Argument Registers:

%rdi,%rsi,%rdx,%rcx,%r8,%r9 for first six args.

Additional args: pushed onto stack in

reverse order.

Return value: in %rax .

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 6/10

173

Guest
Rectangle

Local Storage

Locals live on stack if:

Out of registers

Address-of operator used

Arrays/structs

// Assume swap_add is defined elsewhere:
long swap_add(long *p1, long *p2);

long caller(void) {
 long arg1 = 534;
 long arg2 = 1057;
 long sum = swap_add(&arg1, &arg2);
 return sum;
}

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 7/10

174

Guest
Rectangle

subq $0x10,%rsp
movq $534, (%rsp) # arg1
movq $1057, 8(%rsp) # arg2
leaq 8(%rsp),%rsi # &arg2
movq %rsp, %rdi # &arg1
call swap_add

Register Restrictions

Caller-saved (volatile): %rax, %rcx, %rdx, %rsi, %rdi, %r8–%r11

Callee-saved (non-volatile): %rbx, %rbp, %r12–%r15

Caller saves volatile if needed across calls.

Callee saves non-volatile if it uses them.

Caller/Callee

A function may be both caller and callee in nested calls.

Caller-Owned (Calle Saved) Registers

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 8/10

175

Guest
Rectangle

Callee must preserve these (push/pop around use).

push %rbp
push %rbx
...
pop %rbx
pop %rbp

Callee-Owned (Caller Saved) Registers

Caller must preserve these if it needs their values after a call.

push %r10
push %r11
call func
pop %r11
pop %r10

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e5… 9/10

176

Guest
Rectangle

Example of Everything Learned about Assembly

Recap

%rip revisited

Function calls: stack, control, data, locals

Register conventions

Recursion example

9/30/25, 7:52 PM 18. x86-64 Procedures

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/18%20x86-64%20Procedures%201e… 10/10

177

Guest
Rectangle

19. Data and Stack Frames

Arrays

Array: A contiguous block of memory holding elements of the same type. Access via

base address plus offset.

Allocation

Declaration T A[L] reserves L * sizeof(T) bytes contiguously.

Multi-dimensional arrays use row-major order:

Access

One-dimensional: A[i] at A + i*K where K = sizeof(T) .

Two-dimensional:

Multi-level (pointer arrays): load pointer then apply offset.

Address(A[i][j]) = A+ (i× C + j)× sizeof(T).

A[i][j] ⟶ A+ (i× C + j)K.

9/30/25, 7:52 PM 19. Data and Stack Frames

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/19%20Data%20and%20Stack%20Fra… 1/6

178

Guest
Rectangle

Pointer Arithmetic: In assembly, index scaling uses the addressing mode (%base,

%index, scale).

Example: 1D Array Access

int get_digit(int *z, int idx) { return z[idx]; }

%rdi = z, %rsi = idx
movl (%rdi,%rsi,4), %eax # load z[idx]
ret

Structures & Alignment

Structure: Memory layout of fields in declaration order, with padding to satisfy each

field’s alignment.

Layout Rules

Fields placed in order; compiler inserts padding so each field’s offset is a multiple of

its alignment.

Overall size of the struct is padded to a multiple of the largest field alignment.

Common Types & Alignments (x86-64)

1 byte: char (align 1)

2 bytes: short (align 2)

4 bytes: int , float (align 4)

8 bytes: pointers, double (align 8)

Accessing Members

Compute member address: base + offset .

For array‐in‐struct: combine array indexing and struct offset.

Example:

9/30/25, 7:52 PM 19. Data and Stack Frames

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/19%20Data%20and%20Stack%20Fra… 2/6

179

Guest
Rectangle

struct rec {
 int a[4];
 int i;
 struct rec *next;
};
int *get_ap(struct rec *r, size_t idx) {
 return &r->a[idx];
}

%rdi = r, %rsi = idx
leaq (%rdi,%rsi,4), %rax # address of r->a[idx]
ret

Floating-Point Operations

XMM Registers: 16 registers (%xmm0–%xmm15), each 128 bits, used for SIMD FP.

Calling Convention

Arguments: %xmm0 , %xmm1 , …

Return: %xmm0

Caller-saved: all XMM registers.

Scalar & SIMD Instructions

Single-precision:

Scalar add: addss %xmm1, %xmm0

SIMD add (4 floats): addps %xmm1, %xmm0

Double-precision:

Scalar add: addsd %xmm1, %xmm0

SIMD add (2 doubles): addpd %xmm1, %xmm0

Memory Referencing

9/30/25, 7:52 PM 19. Data and Stack Frames

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/19%20Data%20and%20Stack%20Fra… 3/6

180

Guest
Rectangle

Load/store between memory and XMM: movss / movsd (scalar), movaps / movapd (aligned

SIMD).

Example: Double Increment

double dincr(double *p, double v) {
 double x = *p;
 *p = x + v;
 return x;
}

%rdi = p, %xmm0 = v
movapd %xmm0, %xmm1 # copy v
movsd (%rdi), %xmm0 # x = *p
addsd %xmm0, %xmm1 # t = x + v
movsd %xmm1, (%rdi) # *p = t
ret

9/30/25, 7:52 PM 19. Data and Stack Frames

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/19%20Data%20and%20Stack%20Fra… 4/6

181

Guest
Rectangle

9/30/25, 7:52 PM 19. Data and Stack Frames

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/19%20Data%20and%20Stack%20Fra… 5/6

182

Guest
Rectangle

Final Takeaways

Arrays: contiguous, row-major, address = base + index×sizeof(type).

Structures: ordered fields with padding for alignment; total size padded to largest

alignment.

Floating-Point: use XMM regs, follow calling convention, choose scalar vs. SIMD

instructions appropriately.

9/30/25, 7:52 PM 19. Data and Stack Frames

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/19%20Data%20and%20Stack%20Fra… 6/6

183

Guest
Rectangle

20. Security Vulnerabilities

Floating-Point Operations & SIMD

XMM Registers: Sixteen 128-bit registers (%xmm0–%xmm15) used for floating-point

and SIMD.

SSE vs AVX:

SSE3: Handles scalar and packed single-precision floats (4 lanes) or doubles (2

lanes).

AVX: Extends SIMD width and instruction set (not detailed here).

Calling Convention: FP args in %xmm0, %xmm1, …; result in %xmm0; all XMM are

caller-saved.

Scalar & SIMD Instructions

Single-precision scalar: addss %xmm1, %xmm0

Single-precision SIMD: addps %xmm1, %xmm0

Double-precision scalar: addsd %xmm1, %xmm0

Packed double: addpd %xmm1, %xmm0

9/30/25, 7:52 PM 20. Security Vulnerabilities

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/20%20Security%20Vulnerabilities%201… 1/5

184

Guest
Rectangle

Zeroing XMM: xorpd %xmm0, %xmm0 sets %xmm0 to 0.

Example: Simple FP Routines

float fadd(float x, float y) { return x + y; }
double dadd(double x, double y) { return x + y; }

%xmm0 = x, %xmm1 = y
addss %xmm1, %xmm0 # for fadd
ret
addsd %xmm1, %xmm0 # for dadd
ret

Linux Memory Layout

Memory Segments:

Text: executable code (read-only)

Data: global/static variables, constants

Heap: dynamic allocations (malloc)

Stack: function frames, grows downward (8 MB limit)

Stack Frame Structure

Prologue:

push %rbp
mov %rsp, %rbp
sub $N, %rsp # reserve locals/spills

Epilogue:

mov %rbp, %rsp
pop %rbp

9/30/25, 7:52 PM 20. Security Vulnerabilities

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/20%20Security%20Vulnerabilities%201… 2/5

185

Guest
Rectangle

ret

Layout: return address @[%rbp+8], saved regs, local buffers @[%rbp−...].

Buffer-Overflow Vulnerabilities

Buffer Overflow: Writing beyond an array’s bounds, corrupting adjacent stack data

(return addresses, canaries).

Out-of-Bounds Struct Write

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; // no bounds check

9/30/25, 7:52 PM 20. Security Vulnerabilities

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/20%20Security%20Vulnerabilities%201… 3/5

186

Guest
Rectangle

 return s.d;
}

Behavior: Writing s.a[2] or beyond corrupts s.d or stack metadata, altering

returned value or crashing.

Classic gets Based Overflow

void echo() {
 char buf[4];
 gets(buf); // reads unlimited bytes
 puts(buf);
}

Attack: An input longer than 4 bytes overwrites the saved %rbp and return address,

enabling control-flow hijack.

Exploitation & Mitigations

Code-Injection & ROP

Code Injection: Embedding machine code in input and redirecting execution to it.

Return-Oriented Programming (ROP): Chaining short instruction sequences

(“gadgets”) ending in ret to perform complex actions without injecting new code.

Common Protections

Safe APIs:

fgets instead of gets

strncpy / snprintf instead of strcpy / sprintf

Address Space Layout Randomization (ASLR): Randomizes stack, heap, libraries.

Non-Executable Stack (NX bit): Prevents execution in writable segments.

Stack Canaries:

Compiler (fstack-protector) inserts a known value before return address

9/30/25, 7:52 PM 20. Security Vulnerabilities

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/20%20Security%20Vulnerabilities%201… 4/5

187

Guest
Rectangle

Verified before function return; crash on mismatch

Final Takeaways

Floating-point and SIMD require correct use of XMM regs and instructions.

Understanding memory segments and stack frames is essential to identify overflow

risks.

Buffer overflows remain critical vulnerabilities but can be mitigated by safe coding,

hardware and OS defenses, and compiler features.

9/30/25, 7:52 PM 20. Security Vulnerabilities

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/20%20Security%20Vulnerabilities%201… 5/5

188

Guest
Rectangle

21. Cache Memories

The Memory Abstraction

Writing & Reading Memory

LOAD (Read): Transfer a word from memory to a register, e.g.

movq A(%rsp), %rax # Read the 8-byte value at address %rsp + A in
to %rax

STORE (Write): Transfer a register’s value to memory, e.g.

movq %rax, A(%rsp) # Write %rax into memory at address %rsp + A

Traditional Bus Structure & Transactions

A bus carries address, data, and control signals between CPU and memory:

1. Address Phase: CPU places address A on the bus.

2. Memory Access: Memory reads A and drives the data word onto the bus.

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 1/7

189

Guest
Rectangle

3. Data Phase: CPU reads the data word into the register.

Storage Technologies & Trends

SRAM vs DRAM

SRAM (Static RAM): Fast (~4 ns), expensive, no refresh needed, used for caches.

DRAM (Dynamic RAM): Slower (~60 ns), cheaper, requires periodic refresh, used for

main memory.

Enhanced DRAMs

SDRAM: Synchronous control via clock.

DDR SDRAM (DDR, DDR2, DDR3, DDR4): Double-data-rate transfers; distinguished

by prefetch buffer width.

Nonvolatile Memories

Flash Memory: Electrically erasable, block-level erase, wears out after ~10⁵ cycles;

used in SSDs.

3D XPoint & Emerging NVMs: Higher endurance, persistent storage.

Magnetic Disks

Magnetic Disk: Electromechanical access, nonvolatile, high capacity, slower (seek ≈ 9

ms + rotational latency).

Access Time Formula:

Example:

Solid State Disks (SSDs)

Page/Block Structure: Pages (4 KB–512 KB), Blocks (32–128 pages).

T ​ =access T ​ +seek T ​ +rotation T ​transfer

T ​ =seek 9 ms, T ​ =rotation ​ ×2
1

​ ×7200
60 1000 ≈ 4 ms, T ​ ≈transfer 0.02 ms.

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 2/7

190

Guest
Rectangle

Erase-before-Write Constraint: Must erase an entire block before writing.

Wear Leveling: Controller distributes writes evenly to extend endurance.

The CPU–Memory Performance Gap

Trend: CPU speed doubles roughly every 18 months, while DRAM latency improves

only ~7 % per year, widening the gap.

Locality of Reference

Principle of Locality: Programs tend to reuse data/instructions near in time

(temporal) or address (spatial).

Temporal Locality: Recently accessed items likely reused soon.

Spatial Locality: Nearby addresses likely accessed together.

Example:

int sum = 0;
for (i = 0; i < n; i++)

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 3/7

191

Guest
Rectangle

 sum += a[i]; // stride-1 ⇒ good spatial locality

The Memory Hierarchy

Memory Hierarchy: Storage levels from fastest/smallest to slowest/largest; each

upper level acts as a cache for the next.

Levels:

1. CPU Registers

2. L1 Cache (SRAM)

3. L2/L3 Cache (SRAM)

4. Main Memory (DRAM)

5. Local Secondary Storage (SSD/HDD)

6. Remote Storage (Network)

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 4/7

192

Guest
Rectangle

Cache Basics

Cache: Small, fast memory holding a subset of blocks from a larger device to provide

low-latency access.

Hit: Data found in cache → low latency.

Miss: Data not in cache → fetch from lower level.

Miss Types:

Cold (Compulsory): First reference to a block.

Conflict: Multiple blocks map to the same cache location.

Capacity: Working set exceeds cache size.

Cache Use Cases

Hardware MMU/TLB for address translation

Web browser cache (pages)

OS buffer cache (disk blocks)

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 5/7

193

Guest
Rectangle

Cache Organization

Address Breakdown & Block Size

Block Size (B): Bytes transferred per cache fill (power of 2).

Offset (b bits = log₂ B): Byte index within the block.

Index (s bits = log₂ (number of sets)): Cache set selector.

Tag (t bits = m – s – b): Remaining high-order bits.

Practice Example (6-bit address, B = 4):

Address 0x15 (0b010101) ⇒ offset = 01₂ = 1, block number = 5.

Mapping & Replacement

Direct-Mapped: One location per block.

Set-Associative: Blocks map to a set; replacement policy selects victim.

Fully-Associative: Any block can go anywhere; high hardware cost.

Replacement Policies: LRU, FIFO, Random.

Multi-Level Cache Example

Example (Intel Core i7):

L1 i-cache/d-cache: 32 KB, 8-way, ~4 cycles

L2 unified: 256 KB, 8-way, ~10 cycles

L3 unified: 8 MB, 16-way, ~40–75 cycles

Block size: 64 bytes

Performance Metrics

Miss Rate (MR): misses ÷ accesses

Hit Time (HT): time to access cache + tag check

Miss Penalty (MP): extra time on miss

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 6/7

194

Guest
Rectangle

Typical Values: L1 MR = 3–10 %, L2 MR < 1 %, L1 HT ≈ 4 cycles, L2 HT ≈ 10 cycles, MP ≈

50–200 cycles.

Final Summary & Takeaways

Locality underpins cache effectiveness.

Hierarchy balances speed, capacity, and cost across levels.

Cache parameters (block size, capacity, associativity) and policies (placement,

replacement) determine performance.

Key metrics (MR, HT, MP) guide design and tuning.

Common pitfalls: Poor data layout (high stride), conflict misses, suboptimal block

sizes.

9/30/25, 7:52 PM 21. Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/21%20Cache%20Memories%201f2345… 7/7

195

Guest
Rectangle

22. More Cache Memories

Cache Organization and Mapping

Block Size (B)

BLOCK SIZE: Number of bytes transferred per cache fill (power of 2, e.g., 64 bytes).

Offset bits (b): log₂ B = number of low-order bits used to select a byte within a

block.

Cache Size (C) and Sets (S)

CACHE SIZE (C): Total capacity in bytes (e.g., 32 KiB).

NUMBER OF SETS (S): C / (B × E), where E is associativity (ways).

Index bits (s): log₂ S = bits used to select the cache set.

Tag bits (t): Remaining bits t = m – s – b (m = address width).

Replacement Policies

REPLACEMENT POLICY: Determines which block to evict on a miss when a set is full.

9/30/25, 7:52 PM 22. More Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/22%20More%20Cache%20Memories… 1/6

196

Guest
Rectangle

LRU (Least Recently Used)

FIFO (First-In, First-Out)

Random

Performance Metrics

MISS RATE (MR): misses / total accesses

HIT TIME (HT): time to access cache and perform tag check

MISS PENALTY (MP): additional time on a miss to fetch from lower level

Typical Values:

L1: MR = 3–10 %, HT ≈ 4 cycles

L2: MR < 1 %, HT ≈ 10 cycles

MP ≈ 50–200 cycles

Multi-Level Caches

MULTI-LEVEL CACHE: Multiple cache levels (L1, L2, L3) balance hit time vs. miss rate.

Example (Intel Core i7):

L1 i-cache/d-cache: 32 KB, 8‑way, 4 cycles

L2 unified: 256 KB, 8‑way, 10 cycles

L3 unified: 8 MB, 16‑way, 40–75 cycles

Block size: 64 bytes for all levels.

Write Policies

WRITE-THROUGH: Writes update lower level immediately (consistent but higher

latency).

WRITE-BACK: Defers write to lower level until eviction; uses dirty bit to track

modified blocks.

WRITE-ALLOCATE: On write miss, fetches block into cache before writing.

9/30/25, 7:52 PM 22. More Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/22%20More%20Cache%20Memories… 2/6

197

Guest
Rectangle

NO-WRITE-ALLOCATE: On write miss, writes directly to lower memory without

caching.

9/30/25, 7:52 PM 22. More Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/22%20More%20Cache%20Memories… 3/6

198

Guest
Rectangle

9/30/25, 7:52 PM 22. More Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/22%20More%20Cache%20Memories… 4/6

199

Guest
Rectangle

The Memory Mountain

MEMORY MOUNTAIN: A 3D surface plotting read throughput (MB/s) vs. working set

size and stride to quantify spatial and temporal locality.

Test Function (C pseudocode):

long data[MAXELEMS];
int test(int elems, int stride) {
 long acc0=0, acc1=0, acc2=0, acc3=0;
 long limit = elems - 4*stride;
 for (long i = 0; i < limit; i += 4*stride) {
 acc0 += data[i];
 acc1 += data[i+stride];
 acc2 += data[i+2*stride];
 acc3 += data[i+3*stride];
 }
 for (long i = limit; i < elems; i++) {
 acc0 += data[i];
 }
 return acc0 + acc1 + acc2 + acc3;
}

Methodology:

9/30/25, 7:52 PM 22. More Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/22%20More%20Cache%20Memories… 5/6

200

Guest
Rectangle

1. Call test() once to warm caches.

2. Call test() again and measure read throughput.

Final Summary & Takeaways

Cache parameters (B, C, E) and bit fields (b, s, t) define mapping behavior.

Replacement policies (LRU, FIFO, Random) affect conflict miss rates.

Performance metrics (MR, HT, MP) guide design and tuning.

Write policies trade consistency vs. performance.

Memory Mountain visualizes how working set size and stride impact throughput.

9/30/25, 7:52 PM 22. More Cache Memories

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/22%20More%20Cache%20Memories… 6/6

201

Guest
Rectangle

23. Optimization

Plan

Writing Cache-Friendly Code

Compiler Optimization Techniques

Writing Cache-Friendly Code

Loop Interchange for Spatial Locality

SPATIAL LOCALITY: Accessing memory addresses that are contiguous.

/* ijk order */
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 double sum = 0.0;
 for (k = 0; k < n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;

9/30/25, 7:53 PM 23. Optimization

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/23%20Optimization%201fc34575a838… 1/4

202

Guest
Rectangle

 }
}

Poor locality on b[k][j] (column-wise).

Interchange to kij or ikj to traverse contiguous rows of b .

Blocking (Tiling) for Temporal Locality

BLOCKING: Partition loops into smaller tiles that fit in cache to maximize data reuse.

for (int i = 0; i < n; i += B)
 for (int j = 0; j < n; j += B)
 for (int k = 0; k < n; k += B)
 /* B×B mini-block multiply */
 for (int ii = i; ii < i+B; ii++)
 for (int jj = j; jj < j+B; jj++) {
 double sum = 0.0;
 for (int kk = k; kk < k+B; kk++)
 sum += a[ii][kk] * b[kk][jj];

9/30/25, 7:53 PM 23. Optimization

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/23%20Optimization%201fc34575a838… 2/4

203

Guest
Rectangle

 c[ii][jj] += sum;
 }

Choose B so that 3·B² < CacheSize .

Reduces miss rate from O(n³) to O(n³/(4B)).

Compiler Optimization Techniques

What Is Optimization

OPTIMIZATION: The process of improving program efficiency in time or space, often

aided by compiler transformations.

GCC Optimization Levels

O0 — No optimization (baseline).

O2 — Enable most safe, standard optimizations.

O3 — Aggressive optimizations (may increase code size).

Os — Optimize for code size.

Ofast — Disregard some language standards for speed.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Common GCC Optimizations

CONSTANT FOLDING: Compute constant expressions at compile time.

COMMON SUB-EXPRESSION ELIMINATION: Reuse previously computed

expressions.

DEAD CODE ELIMINATION: Remove code with no effect on program output.

STRENGTH REDUCTION: Replace expensive operations (e.g., multiply/divide) with

cheaper ones (add/shift).

CODE MOTION: Hoist invariant code out of loops.

TAIL RECURSION: Convert tail-recursive calls into loops.

LOOP UNROLLING: Expand loop bodies to reduce control overhead.

9/30/25, 7:53 PM 23. Optimization

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/23%20Optimization%201fc34575a838… 3/4

204

Guest
Rectangle

Limitations of GCC Optimization

Cannot optimize across unknown function calls (e.g., repeated strlen() inside loops).

May not hoist calls when data-dependence is unclear.

Algorithmic improvements often yield greater gains than micro-optimizations.

Final Summary & Takeaways

Cache-Friendly Coding: Loop interchange and blocking dramatically improve

memory reuse.

Compiler Flags: Use O2 as a default; higher levels (e.g., O3) for performance-critical

code.

Profile First: Identify hotspots with tools like callgrind before manual tuning.

Balance Effort: Prioritize algorithmic complexity before low-level optimizations.

9/30/25, 7:53 PM 23. Optimization

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/23%20Optimization%201fc34575a838… 4/4

205

Guest
Rectangle

24. Linking

Linking Overview

What Is Linking?

LINKING: The process of taking one or more relocatable object files and combining

them into a single executable or shared library by resolving symbol references and

adjusting addresses.

Enables modular development: compile each source file independently.

Produces final binaries containing only the code and data needed at run time.

Linker Role in Toolchain

1. Compilation & Assembly:

Source files (.c) → Compiler frontend (preprocessing → parsing → codegen) →

Compiler backend (assembly) → Assembler → Produces relocatable object files

(.o).

2. Linking:

Linker (ld) takes .o files (and static libraries) to produce:

Executable Object File (e.g., a.out , prog), or

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 1/13

206

Guest
Rectangle

Shared Object File (dynamically loadable .so).

Step 1: Symbol Resolution

Symbol Concepts

SYMBOL: A name that identifies a function or global variable in code.

DEFINITION (Definition Site): The object file section where a symbol’s storage or

code is allocated (e.g., int foo = 5;, void bar() { ... }).

REFERENCE (Reference Site): A use of a symbol declared externally (e.g., calling an

external function or accessing a global variable).

Symbol Tables in Object Files

Each relocatable object file (.o) contains a symbol table listing:

Name: ASCII identifier (foo , sum , array).

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 2/13

207

Guest
Rectangle

Section & Offset: Where the symbol resides (e.g., .text , .data , .bss).

Size & Visibility: Size in bytes, and whether the symbol is global (external) or

local (static).

SYMBOL RESOLUTION: The linker’s process of matching each undefined (external)

symbol reference to exactly one definition across all input object files and libraries.

If a reference has no matching definition → undefined symbol error.

If multiple strong definitions exist → duplicate symbol error.

Weak vs. strong symbols: uninitialized globals are “weak,” initialized globals and

functions are “strong.”

Rule: one strong definition allowed; linking picks the one strong symbol, ignoring

weak duplicates.

Example: Resolving sum and array

// main.c
int sum(int *a, int n); // reference to sum
int array[2] = {1, 2}; // definition of array

int main() {
 int val = sum(array, 2); // sum: reference; array: reference
 return val;
}
// sum.c
int sum(int *a, int n) { // definition of sum
 int i, s = 0;
 for (i = 0; i < n; i++) s += a[i];
 return s;
}

Linker Behavior:

1. In main.o , sees reference to sum and to array .

2. In sum.o , sees definition of sum .

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 3/13

208

Guest
Rectangle

3. In main.o , sees definition of array .

4. Linker resolves:

sum reference → sum definition in sum.o .

array reference → array definition in main.o .

Step 2: Relocation

What Is Relocation?

RELOCATION: Adjusting symbol addresses and placeholder references in object code

so that instructions and data pointers refer to the correct absolute memory locations

in the final executable.

Each .o file’s sections (.text , .data , .bss) begin at offset 0 relative to that file.

The linker concatenates sections from multiple .o files, computing final base

addresses for each section.

Every instruction or data reference with a relocation entry is updated to reflect the

final address of the target symbol.

Relocation Entries

Relocation Record: In the .rel.text or .rel.data section of a relocatable file,

containing:

Offset: Byte offset within the section where adjustment is needed.

Type: Type of relocation (e.g., absolute, PC-relative).

Symbol: Name/index of the symbol whose final address is used.

During linking, the linker reads these records, computes each symbol’s final address,

and patches the instruction operand or data word at the given offset.

Object File Types

Relocatable Object File (.o)

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 4/13

209

Guest
Rectangle

RELOCATABLE (.o): Contains code and data in sections that can be combined with

other relocatable files.

Sections:

.text (machine code)

.rodata (read-only constants)

.data (initialized globals)

.bss (uninitialized globals; allocated at load time)

.symtab (symbol table)

.rel.text , .rel.data (relocation info)

Produced by the assembler (as) from a single translated source file.

Executable Object File (e.g., a.out , prog)

EXECUTABLE: Contains code and data with all symbols resolved and addresses fixed;

ready to be loaded by the OS loader.

Sections:

ELF header, Program header table (for runtime loader)

.text , .rodata , .data , .bss (merged across modules)

Optional debug sections (.debug , .symtab) if compiled with g .

Shared Object File (.so)

SHARED OBJECT (.so): A special relocatable file intended for dynamic linking at load

or run time.

Contains exportable symbols and relocation entries that the dynamic loader (ld-

linux.so) processes when an executable is run.

Can be loaded by multiple processes simultaneously, saving memory.

ABI versioning and SONAME used to manage compatibility.

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 5/13

210

Guest
Rectangle

The ELF Format

ELF Basics

ELF (Executable and Linkable Format): Standard binary format on Linux for all object

files.

Unified format for .o , executables, and .so .

Consists of:

1. ELF Header: Magic number, bit-width (32/64), endianness, file type, target

architecture.

2. Program Header Table (executables only): Information for runtime loader:

segment addresses, sizes, permissions.

3. Section Header Table: Describes each section’s name, type, offset, size (e.g.,

.text , .data , .symtab , .rel.text).

4. Sections:

.text — machine code

.rodata — read-only constants

.data — initialized globals

.bss — uninitialized globals (occupies no file space)

.symtab — symbol table entries

.rel.text , .rel.data — relocation entries

.debug* — debug information (optional)

Static Libraries

What Is a Static Library?

STATIC LIBRARY (.a): An archive of multiple relocatable object files packaged

together, used to resolve external references at link time.

Common usage: grouping related functions (e.g., libc.a , libm.a , libvector.a).

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 6/13

211

Guest
Rectangle

The linker searches archives in command-line order and extracts only those object

files that satisfy currently unresolved symbols.

Creating and Using Static Libraries

1. Compile Modules Individually:

gcc -c addvec.c # produces addvec.o
gcc -c multvec.c # produces multvec.o

2. Archive into Library:

ar rcs libvector.a addvec.o multvec.o

3. Link with Library:

gcc -o prog main.o -L. -lvector -lm

Order matters: unresolved references from main.o must come before lvector .

The linker only pulls object files from libvector.a that define needed symbols.

Advantages & Limitations

Advantages:

Space efficiency: executables include only used functions.

Convenience: group related modules.

Limitations:

Duplicate code across different executables (each static binary has its own

copy).

Cannot update library code without relinking executables.

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 7/13

212

Guest
Rectangle

Shared (Dynamic) Libraries

What Is a Shared Library?

SHARED LIBRARY (.so): A relocatable object file that is loaded and linked at load time

or run time, allowing code sharing across multiple processes.

Dynamically linked by the loader (ld-linux.so) when the executable starts, or by

explicit calls to dlopen() at run time.

Building and Linking Shared Libraries

1. Compile with Position-Independent Code (PIC):

gcc -fPIC -c addvec.c # addvec.o contains PIC
gcc -fPIC -c multvec.c # multvec.o contains PIC

2. Create Shared Object:

gcc -shared -o libvector.so addvec.o multvec.o

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 8/13

213

Guest
Rectangle

3. Link Executable Dynamically:

gcc -o prog main.o -L. -lvector

At load time, the dynamic linker searches for libvector.so in library paths, loads it,

resolves symbols, and performs necessary relocations.

Load-Time vs. Run-Time Dynamic Linking

Load-Time Linking:

Occurs when the program is started (via execve).

The dynamic linker resolves undefined symbols against loaded shared libraries,

relocates code for position differences, and then transfers control to main .

Run-Time Linking (dlopen):

A running program can load a shared library with dlopen("libvector.so", RTLD_LAZY) .

Retrieve function pointers with dlsym() , call routines, then unload with dlclose() .

Advantages & Trade-offs

Advantages:

Single copy of library code in memory shared by all processes.

Easier library updates: fix a bug in libfoo.so and all executables using it benefit

without relinking.

Trade-offs:

Slight load-time overhead for dynamic symbol resolution.

Potential for “dependency hell” if incompatible versions are loaded at run time.

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a838803… 9/13

214

Guest
Rectangle

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a83880… 10/13

215

Guest
Rectangle

Common Linking Errors & Puzzles

Duplicate Symbol Definitions

Occurs when two or more object files (or libraries) each provide a strong definition of

the same symbol.

Example:

// In a.c
int x; // weak (uninitialized) definition of x
void p1() { }

// In b.c
int x; // weak definition of x
void p2() { }

Linking succeeds, both x definitions are identical weak symbols — one is

chosen arbitrarily.

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a83880… 11/13

216

Guest
Rectangle

If one were int x = 7; (strong) and the other int x; (weak), the strong definition

is chosen.

Two strong definitions (e.g., int x = 7; in both) → linker error: duplicate

symbol.

Undefined References

Occurs when a symbol is referenced but not defined in any input file or library.

Fixes:

1. Add the missing object file or library to the link line.

2. Ensure correct order: object files referencing library symbols must appear before

l<lib> on the linker command line.

Relocation Errors

Occurs when a relocation entry cannot be processed because the target symbol is

missing or incompatible.

Common Causes:

Mixing position-dependent and position-independent code incorrectly.

Attempting to statically link PIC objects without fPIC .

Mismatched architectures (e.g., compiling for x86_64 but linking with i386

libraries).

Final Summary & Takeaways

Linking Stages:

1. Symbol Resolution: Match symbol references to definitions, enforce one strong

definition, handle weak symbols.

2. Relocation: Adjust addresses in code and data based on final section

placements.

Object File Categories:

Relocatable (.o): Input to linker; contains symbol tables and relocation entries.

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a83880… 12/13

217

Guest
Rectangle

Executable: Fully linked binary ready for loading.

Shared Object (.so): Dynamically linked library loaded at run time or load time.

Static vs. Dynamic Libraries:

Static (.a): Linked at compile/link time, duplicate code in each executable.

Shared (.so): Loaded by dynamic linker, one copy of code shared by multiple

processes, can be updated independently.

Link-Time Errors:

Duplicate strong symbols → linker error.

Undefined references → missing input file or library.

Relocation failures → architecture or PIC mismatches.

Good Practices:

Use static keyword for internal-linkage variables/functions to avoid unintended

symbol exports.

Organize libraries: put frequently used functions in shared libraries when

appropriate.

Always place libraries (l) after object files in link command.

Use versioned SONAMEs for shared libraries to manage compatibility.

9/30/25, 7:52 PM 24. Linking

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/24%20Linking%2020034575a83880… 13/13

218

Guest
Rectangle

25. Wrap-Up

Recap: Core Topics Covered

1. Bits and Bytes

Representation: How integers and floating-point values are encoded in binary.

Integers: Signed (two’s complement) and unsigned representations; overflow and

bitwise operations.

Floats: IEEE-754 format for single and double precision; rounding, precision limits,

and pitfalls (e.g., floating-point comparisons).

2. Characters and C Strings

C Strings: Arrays of char terminated by a null byte ('\\0').

Operations: strlen , strcpy , strcmp , pointer manipulation.

Implications: Memory safety (buffer overflows), efficient string traversal, and the

importance of the null terminator.

3. Pointers, Stack, and Heap

9/30/25, 7:52 PM 25. Wrap-Up

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/25%20Wrap-Up%2020234575a83880c… 1/5

219

Guest
Rectangle

Pointers: Variables that store memory addresses; dereferencing and pointer

arithmetic.

Stack Allocation: Automatic (local) variables, function call frames, cleanup on return.

Heap Allocation: Dynamic memory via malloc / free ; fragmentation and manual

management.

Trade-Offs: Stack is fast and auto-managed; heap is flexible but requires careful

allocation and deallocation.

4. Generics in C

Void Pointers (void *): Type-agnostic pointers for data abstraction.

Memcpy & Function Pointers: Copying arbitrary data blocks; passing behavior via

function pointers.

Use Cases: Implementing generic data structures (e.g., linked lists, dynamic

arrays) without compile-time type information.

5. Assembly Language

Compilation Workflow: C source → assembly (.s) → object (.o) → executable.

Registers & Instructions: mov , add , call , ret ; calling conventions and RTL (Register

Transfer Language).

Stack Frames: Layout of saved registers, return addresses, and local variables;

understanding push / pop and frame pointers.

6. Cache Memories

Memory Hierarchy: Registers → L1/L2/L3 cache → DRAM → secondary storage.

Locality of Reference:

Temporal: Reuse recently accessed data.

Spatial: Access contiguous addresses.

Cache Parameters: Block size, associativity, hit/miss rates, write policies.

9/30/25, 7:52 PM 25. Wrap-Up

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/25%20Wrap-Up%2020234575a83880c… 2/5

220

Guest
Rectangle

Strategies: Loop restructuring (interchange, blocking) to improve cache

performance.

7. Optimization Techniques

Loop Transformations:

Loop Interchange: Reorder nested loops to access data in cache-friendly order.

Blocking/Tiling: Break large loops into cache-sized chunks to maximize data

reuse.

Compiler Optimizations:

Constant Folding, Dead Code Elimination, Common Subexpression

Elimination, Strength Reduction, Loop Unrolling, Code Motion.

GCC Flags: O2 (standard optimizations), O3 (aggressive), Os (size-optimized),

Ofast (unsafe but fast).

8. Linking

Separate Compilation: Source files → compiled object files.

Static Linking: Combine .o files (and .a archives) into a single executable; symbols

resolved at link time.

Dynamic Linking (Shared Libraries):

.so Files: Position-Independent Code (PIC), loaded at run time by the dynamic

loader (ld-linux.so).

Advantages: Single shared copy in memory, easier updates, reduced executable

size.

Relocation & Symbol Resolution: Adjust addresses and resolve external references;

handle weak vs. strong symbols, duplicate definitions, and undefined references.

COMP201 Tools and Techniques

Unix and the Command Line

9/30/25, 7:52 PM 25. Wrap-Up

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/25%20Wrap-Up%2020234575a83880c… 3/5

221

Guest
Rectangle

Shell Proficiency: Navigating directories (cd), listing files (ls), file permissions

(chmod/chown), process management (ps/kill).

Text Processing: grep , awk , sed , sort , uniq for filtering and transforming text.

Build Systems:

Makefiles: Define targets, dependencies, and build commands.

gcc Invocation: Common flags for compilation (O2 , g , Wall , library linking

l<name>).

Coding Style

Code Readability: Consistent indentation, meaningful variable/function names,

modular functions.

Commenting Practices: Brief, descriptive comments for non-obvious logic; header

comments for file/module purpose.

Error Handling: Check return values from system/library calls, handle errno , use

assertions (assert) for invariants.

Debugging with GDB

Breakpoints & Watchpoints:

break <location> , watch <expression> to halt execution on conditions.

Stepping: step (into function calls), next (over calls), continue (resume).

Inspecting State:

print <variable> , info registers , backtrace for call stacks.

Core Dumps:

Enable core files via ulimit -c unlimited ; analyze with gdb <exec> core .

Memory Checking with Valgrind

valgrind --leak-check=full <executable>: Detects memory leaks, unreachable

blocks, and improper frees.

Invalid Reads/Writes, Use-after-free, Double Free.

9/30/25, 7:52 PM 25. Wrap-Up

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/25%20Wrap-Up%2020234575a83880c… 4/5

222

Guest
Rectangle

Memory Errors:

Massif Tool: valgrind --tool=massif for heap profiling; visualize allocation over time.

Profiling with Callgrind

valgrind --tool=callgrind <executable>: Records function call counts and

instruction counts.

Analysis:

Use kcachegrind or qcachegrind to visualize hotspots and call graphs.

Optimization Guidance: Focus on “expensive” functions or loops consuming the

most instructions or cache misses.

Final Takeaways

Foundation in C and Systems: Grasp of low-level data representation, memory

hierarchy, and linking processes empowers you to write efficient, safe, and portable

code.

Toolchain Mastery: Proficiency with Unix/CLI, Makefiles, GDB, Valgrind, and profilers

is essential for debugging, analyzing, and optimizing real-world applications.

Performance Mindset: Understanding how code maps to hardware (caches,

pipelines) guides algorithmic and code-level optimizations.

Lifelong Learning Path: The concepts and skills from COMP201 serve as a

springboard into specialized areas—embedded systems, operating systems,

compilers, networking, databases, security, HPC, and beyond.

Practice and Exploration: Continuously apply these tools and techniques in

projects, open-source contributions, and research to deepen your expertise and

adapt to evolving technologies.

9/30/25, 7:52 PM 25. Wrap-Up

file:///C:/Users/Aykhan/Downloads/COMP201/comp201/COMP201%2019d34575a838800da399d6bdc582e3bf/25%20Wrap-Up%2020234575a83880c… 5/5

223

Guest
Rectangle

