COMP201

BY AYKHAN AHMADZADA

COURSE NOTES

Computer Systems &
Programming

A

KOC UNIVERSITY

Guest
Rectangle

COMP201 - Computer Systems &
Programming

Koc University — Spring 2025 | Department of Computer Engineering

INSTRUCTOR & TA

Instructor: Aykut Erdem

TA: N/A

SCHEDULE ASSESSMENT

Lectures: Tuesday & Thursday, 16:00— * 9 Labs (lowest 2 dropped, no make-up):

17:10 (Tower, Second Floor) 21%

Labs: Friday — 14:00-15:40 (Lab A, SNA * Class Participation: 5%

B242) « 16:00~17:40 (Lab B, SNA B149) ¢ 5 Programming Assignments (Ao 2%, A1—
A4 4% each): 18%

Delivery: In person. Lectures recorded and made e Midterm Exam: 28%

available via KUHub Learn. o Final Exam: 28%

COURSE DESCRIPTION

Solid understanding of the principles and abstractions of computer systems and machine programs using
C. Topics include the C language, compilation flow and runtime behavior, computer arithmetic, the
relationship between C and its assembly translation, and practical Unix power-user skills (shell, version
control, compilers, debuggers, profilers).

¢ Prerequisite: COMP132 (strong programming background recommended).

¢ Learning outcomes: memory management proficiency; compilation & runtime insights;
computer arithmetic; C>assembly relationship; Unix tooling.

TEXTS & REFERENCES

¢ R. E.Bryant & D. R. O’'Hallaron, Computer Systems: A Programmer’s Perspective, 3rd ed.,
Pearson (2016).

¢ B. W. Kernighan & D. M. Ritchie, The C Programming Language.

e A. Athalye, J. Gjengset, J. J. G. Ortiz, The Missing Semester of Your CS Education, MIT (2020).

Course Webpage: https://aykuterdem.github.io/classes/comp201.s25

Guest
Rectangle

© 2025 AYKHAN AHMADZADA

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means — electronic, mechanical, photocopying,
recording, or otherwise — without prior written permission from the author.

This work is a personal academic compilation created for educational purposes as
part of the COMP201 course at Kog¢ University.

Compiled in Istanbul, Turkey.

To everyone who learned that pointers are power and responsibility.

Guest
Rectangle

COMP201

#8 1.Introduction: Unix, the Command Line, and Basic C Programming

#8 2.Bits and Bytes, Representing and Operating on Integers

#R 3. Bits and Bitwise Operators

#8 4. Floating Points

#8 5. Chars and Strings in C

#8 6. More Strings, Pointers

#8 7. Arrays and Pointers

#8 8.The Stack and The Heap

#8 9. Realloc, Freed Memory, and Memory Leaks in C

#R 10. C Generics and Void Pointers

#8 11. Function Pointers and Generics in C

#8 12. Structs, const, and Generic Stack

Guest
Rectangle

®*® B F B X X B F B X F B H

13. Compiling C Programs

14. Introduction to x86-64 Assembly

15. Arithmetic and Logic Operations

16. x86-64 Condition Codes & Control Flow

17. More Control Flow

18. x86-64 Procedures

19. Data and Stack Frames

20. Security Vulnerabilities

21. Cache Memories

22. More Cache Memories

23. Optimization

24. Linking

25. Wrap-Up

Guest
Rectangle

1. Introduction: Unix, the
Command Line, and Basic C
Programming

Objective: These notes cover Lecture 1 (from Slide 22 through the end), focusing on
Unix and the Command Line, as well as an Introduction to the C Language.

Unix and the Command Line

Unix is a family of multitasking, multiuser operating systems that share a common set of
standards and tools. Many modern systems (e.g., Linux, macQOS) trace their origins to
Unix.

What is Unix?

Unix defines a standard environment and command set used widely for:
e Server administration (running websites, databases)
e Software development (compiling, debugging, version control)

e Embedded systems (Raspberry Pi, [oT devices)

Guest
Rectangle

What is the Command Line?

COMMAND-LINE INTERFACE: A text-based interface to interact with a computer
system by typing commands, rather than using graphical icons and menus.

A command-line interface (CLI) allows you to navigate directories, create/remove/edit
files, and execute programs or scripts directly.

Command Line vs. GUI
e Graphical User Interface (GUI): Uses icons, windows, and menus.
e CLI Text-based, often requiring memorized commands or references.

Even though the CLI appears more “retro,” it remains powerful and flexible for
development tasks, scripting, and large-scale automation.

Why Use Unix / the Command Line?

e Consistency: One set of commands/tools (15, <, rn, etc.) works across many
systems.

e Versatility: Easily handles repetitive tasks, advanced scripting, remote
administration.

e Efficiency: Powerful command chaining (piping), quick file navigation, and
automation.

Unix Commands Recap

Command Description

Is Lists files in the current folder

cd Changes the current directory

mkdir Creates a new directory/folder

rm Removes a file or folder

man Displays the manual for a command

vi/emacs Opens a text editor in the terminal
Example:

Guest
Rectangle

cd assignments // change to the "assignments" folder
1s // list files in the current folder

Command Line vs. GUI

Just like a GUI file explorer interface, a terminal interface:
* shows you a specific place on your computer at any given time.
* lets you go into folders and out of folders.

* lets you create new files and edit files.

* |lets you execute programs.

Graphical User Interface Command-line interface

The C Language

C was developed in the early 1970s to facilitate writing operating systems like Unix. It
provides low-level access to memory, compiles to efficient machine code, and forms the
basis for many modern languages (C++, Objective-C, Java).

C vs. C++ and Java

All three share basic syntax and structures (loops, conditionals). However:
e C:Procedural, minimal abstraction, direct memory manipulation.

e C++:Adds object-oriented features, large libraries, operator overloading, and
templates.

e Java: Runs on a virtual machine with garbage collection, fully object-oriented, large
standard library.

Programming Language Philosophies

Guest
Rectangle

PROCEDURAL PARADIGM: Organizes code into procedures/functions operating on
data, rather than bundling data and methods together.

C's design emphasizes performance and direct hardware control over high-level safety
features.

Why C?
e Efficiency: Speed and minimal overhead (often used in OS kernels, embedded
systems).

e Portability: Runs on nearly every platform.

¢ Foundation: Influenced many subsequent languages and is still widely used for
systems programming.

Programming Language Popularity

C remains top-ranked in surveys (e.g., TIOBE index) due to its broad usage in high-
performance and low-level applications.

Our First C Program

A simple “Hello, world!" in C:

/*
* hello.c
* Prints a welcome message.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return @; // © signals success

® #include <stdio.h> provides printf .

e ain returns aninteger (0 = success).

Guest
Rectangle

® .z and argv allow for command-line arguments.

Familiar Syntax

C shares operators and control structures with C++/Java:

int x = 10;
for (int 1 = 0; 1 < x; i++) {
if (1 %2 ==20) {
printf("Index %d is even.\n", 1i);

Boolean Variables

C uses stdbool.h forthe ool type, with values true or faise . Without <stdbool.h>, any
nonzero integer is considered true, and 0 is false.

#include <stdbool.h>

bool condition = false;
if (condition) {
!/l ...

Console Output (printf)

PRINTF: Prints text to standard output, defined in <stdio.h>. Format placeholders
match the argument types: %d for int, %s for string, %f for double, etc.

Example:

int num = 201;
printf("Welcome to COMP%d\n", num); // "Welcome to COMP201"

Writing, Debugging, and Compiling

9

Guest
Rectangle

The typical C workflow involves:
1. Editing code (e.g., vi, emacs, or another editor).
2. Compiling (e.g., gcc, clang).
3. Running the executable.
4. Debugging (e.g., using zdv , logging statements).

Example:

gcc hello.c -o hello // compile
./hello // run

Explanation of Each Part:

Keyword Meaning
- The GNU Compiler Collection command-line tool used to compile C
programs.
hello.c The source code file containing the C program that needs to be compiled.
-0 Specifies the output file name for the compiled executable.
1 The name of the generated executable file. If omitted, the default output is
a.out .
Edit » Compile » Test » Deploy
'y No errors
Debug “

Test reveals errors

Demo: Compiling and Running a C Program
Steps:

1. Edit a source file (e.g., heiio.c).

10

Guest
Rectangle

2. Complle with gcc hello.c -o hello .
3. Runvia ./nello.

4. If issues arise, use gdb or print statements to debug.

Recap

¢ Unix & Command Line: Essential for file management, building, and running
programs.

e C Language: Procedural, low-level, efficient—ideal for learning how software
interacts closely with hardware.

Next time, we'll delve deeper into how computers represent data in memory, manage
processes, and handle more advanced system-level details.

Self Test

#R Self-Test: Lecture 1

11

Guest
Rectangle

2. Bits and Bytes, Representing
and Operating on Integers

Bits and Bytes

In a digital computer, the bit (binary digit) is the smallest unit of information. Each bit can
be either 0 (off) or 1 (on). A byte is a group of 8 bits. Modern computer architectures
typically organize memory in byte-addressable form, meaning each byte has a unique
address in memory.

e Storing data (like text, images, audio) ultimately comes down to representing
patterns of Os and 1s.

e Asingle byte can hold values from 0 to 255 when using unsigned representation (2°
possible patterns).

BYTE-ADDRESSABLE MEMORY: Each byte in memory is assigned a unique numeric
address, allowing the CPU to access or modify it.

12

Guest
Rectangle

Byte (Binary): | 0 1 1 0 1 0 1 1

Bit

Byte (Hex): 6 b

Why Bits?

At the hardware level, electronic circuits use transistors that switch between two states
(voltage high or low). Software uses these two states to form the conceptual “0 or 1"
representation.

Base Conversions

Bits are naturally expressed as binary (base 2). However, we often convert between
binary, decimal (base 10), and hexadecimal (base 16) for readability.

Binary (Base 2)
e Usesdigits0and 1.

e For example, 1011, means:
Ix2B4+0x224+1x224+1x22=840+2+1=114,.

Decimal (Base 10)
e Our everyday number system uses digits 0-9.

e Converting from binary to decimal adds up powers of 2. Converting decimal to
binary often uses repeated division by 2, keeping track of remainders.

13

Guest
Rectangle

Base 2

Most significant bit (MSB) Least significant bit (LSB)

~ ~
1011

eights fours twos ones

=1*8 + 0*4 + 1°2 + 1%1 = 11,

Base 10 to Base 2

Question: What is 6 in base 2?

* Strategy:
— What is the largest power of 2 < 6?7 22=4
— Now, what is the largest power of 2 < 6 - 227 21=2
-6-22-21=0!

0110

23 22 21 20
=08 +1"4+1*2+0"1 =6

Hexadecimal (Base 16)
e Uses digits 0-9 plus A-F for 10-15.

e Each hex digit matches exactly 4 bits (binary):

o Forinstance, oxr correspondsto 1111, .

14

Guest
Rectangle

o Notation: ex3a or exir2s typically indicates a hexadecimal number.

e Convenient for compressing large binary numbers: 32 bits can be expressed with just

8 hex digits.

HEX DIGIT: A single symbol from 0, 1,2, 3,4,5,6,7,8,9, A, B,C, D, E, F, each
representing four bits.

Binary to Hexadecimal Table MATH
Binary Hexadecimal Binary Hexadecimal
(Base 2) (Base 16) (Base 2) (Base 16)

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 S 1101 D
0110 6 170 E
0111 7 1111 2

15

Guest
Rectangle

Multiplying by Base

1450 x 10 = 14500
1100, x 2 = 11000

Key Idea: inserting 0 at the end multiplies by the base!

Dividing by Base

1450 / 10 = 145
1100, / 2 = 110

Key Idea: removing 0 at the end divides by the base!

Integer Representations

Computers store integers in bit patterns. The common integer categories are:
1. Unsigned integers: Nonnegative (0 and above).
2. Signed integers: Include negative values, zero, and positive values.

In C, different integer types occupy different numbers of bytes, affecting the range of
values they can hold. For instance:

16

Guest
Rectangle

e int on many systems is 4 bytes (32 bits), typically ranging from -23' to 23'-1if
signed, or 0 to 2%2-1if unsigned.

e long (on 64-bit systems) is often 8 bytes (64 bits).

C DECLARATIONS:

int x; // typically 4 bytes (32-bit)
unsigned int y; // 4 bytes (32-bit), but stores only nonnegative
numbers

Different operating systems and compiler settings may alter these sizes (especially for
1ong). The fundamental concept remains the same: a certain number of bits store the
integer.

Unsigned Integers

An unsigned integer uses all bits to represent nonnegative numbers.
e For an 8-bit unsigned integer:
o Minimum = 0 (binary 00000000)
o Maximum = 255 (binary 11111111)
e Fora 32-bit unsigned integer:
o Minimum =0
o Maximum = 2%-1=4,294,967,295

Arithmetic on unsigned values is straightforward binary addition and subtraction. When a
calculation exceeds the maximum representable value, the result “wraps around” from
the top back to zero (an effect called overflow).

Example:
unsigned char a = 255; // 8-bit max

a=a+1; // Overflow! Wraps around to ©

Signed Integers

17

Guest
Rectangle

Signed integers include negative values, zero, and positive values. The question is how
to store “sign information” in bits. Several historical methods exist:

Sign-Magnitude Representation

SIGN-MAGNITUDE: The most significant bit (MSB) indicates sign (0 = positive, 1 =
negative). The remaining bits represent magnitude.

e Advantage: Conceptually simple for sign determination.
e Disadvantages:
o Two ways to represent zero (+0 and -0).

o Arithmetic operations are more complex because you must handle the sign bit
separately.

Two's Complement (Modern Standard)

TWO’S COMPLEMENT: A negative number is formed by inverting (flipping) all bits of
its positive version (one’s complement) and then adding 1.

1. If you have s (binary eeeee110 in 8 bits), you invert bits — 11111001, thenadd 1 —
11111010 . This results in the binary representation for —6.

2. To go back from -5, perform the same two’s complement steps.
Two’'s complement provides:
e One unique zero (no separate +0 and -0).

¢ Simple addition: No special sign logic. Normal binary addition works for negative
and positive.

o Efficient hardware for arithmetic.
In a 32-bit two’s complement:
e The MSB still indicates negativity if it's 1.

e Therange is typically -2°! through +23'-1.

18

Guest
Rectangle

Two’s Complement

Overflow

1111
1110

1101

1100

1011

0000

4-pit
two's complement
signed integer
representation

0001
0010

0011

0100

0101

Overflow occurs if an arithmetic result doesn't fit within the available bits. The final result

“wraps around” in a seemingly unpredictable way.

¢ Unsigned overflow: If you add 1to 255 in an 8-bit unsigned, you get 0.

e Signed overflow: If you exceed +2%'-1 (for 32-bit), it wraps to a negative number.

leae 2.0

o

eer ,306 ... 1,307, ..

BAAA

5D
/F“m

AN A AN

-

L. B32767...-32768...

s

2 =32,767... 32,766 ...

Real-World Examples

e The Gandhi bug in the game Civilization: When Gandhi’'s aggression rating (1) was

reduced by 2, it underflowed from 1to 255, making him extremely aggressive.

19

Guest
Rectangle

e Windows 95 uptime limit: The system timer was stored in a 32-bit integer counting
milliseconds. After ~49.7 days, it overflowed and crashed.

CAUSE: Finite bits can't store infinitely large or small numbers.

RESULT: Wrap-around or weird negative/positive flips.

Overflow

N
111...111 000...000 — —*
111,110 _—/—__ 000...001 <~
111...101 000...010

111...100 000...011

100...010 011...101

100...001 | | 011...110

100...000 011...111
(N

+1

20

Guest
Rectangle

Signed Numbers

111...111 000...000
11...110 000...001
111...101 000...010

111...100 000...0M1

Discontinuity
means overflow

Negative numbers beeeming less negative
SToquinu oAisod Buisealou

(ie. increasing)

Casting and Combining Types
In C, operations involving different integer types can lead to implicit conversions:
¢ A signed value combined with an unsigned of the same size typically converts the

signed operand to unsigned (if 32 bits each, for example). Negative signed values
become large positive values when reinterpreted in unsigned form.

e Printing with the wrong format specifier (% vs. %u vs. %«) interprets the same bits
differently in output.

Example:

int n = -5;

unsigned int m = n; // same bits, but interpreted as a large unsi
gned value

printf("n = %d, m = %u\n", n, m);

Output:
n = -5, m = 4294967291

21

Guest
Rectangle

...Program finished with exit code ©

If n's 32-bit patternis 11111111 11111111 11111111 11111011, then «» sees that as 4,294,967,291

in decimal.

When comparing signed and unsigned in expressions, the signed operand is promoted to
unsigned , Which can lead to unexpected results (e.g., =1 might become a large positive

unsigned).

The binary pattern for —1in 32-bit two's complement is exrrrrrrrr , which is 4,294,967,295
when interpreted as unsigned 32-bit.

Casting

0000

1111 0001

0010

1110
0011

1101 0011

4-pit
two's complement
signed integer
representation

4-bit
1100 unsigned integer 0100
representation

0100

1100

Code Examples

Unsigned Overflow
#include <stdio.h>
int main(void) {

unsigned int x = 4294967295U; // max 32-bit unsigned
X = X + 1; // wraps around to ©

22

Guest
Rectangle

printf("Wrapped: %u\n", x); // prints ©
return 0;

Two’'s Complement Negative

#include <stdio.h>

int main(void) {
int positive

6; // 0000 0110 in 8-bit, conceptual
int negative = ~6 + 1; // two’s complement: invert bits (~) an
d add 1

printf("%d\n", negative);

return 9;

Output:
-6

...Program finished with exit code ©

Depending on the system (usually 32-bit or 64-bit int), the logic remains the same, just
with more bits involved.

Comparison Between Different Types

23

Guest
Rectangle

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will
implicitly cast the signed argument to unsigned, and then performs the
operation assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 <0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 > S d 1
-2147483647 - 1 'gne yes
21474836470 >
i I
2147483647 — 1 Unsigned 0 No!
2147483647 > . size .)
I e inimum aximum
(int)2147483648U Signed ! Not P (eytes ¥ "
-1 > -2 Signed 1 yes int 4 2147483648 2147483647
(unsigned)-1 > -2 Unsigned 1 yes el 4o 4294967295
Summary

e Bits and Bytes: The fundamental representation of data in digital systems.

e Base Conversions: Binary — decimal — hex are useful to read and write integer
values.

¢ Unsigned Integers: Store only nonnegative values; wrap around on overflow.
¢ Signed Integers: Typically use two’'s complement for negative representation.

e Overflow: Occurs when results exceed the representable range, causing wrap-
around.

e Casting and Combining Types: Bit patterns stay the same, but the interpretation
changes if you switch from signed to unsigned or use mismatched prints format
specifiers.

Understanding these fundamentals is crucial for debugging low-level behaviors, ensuring
correct arithmetic operations, and writing robust C programs that handle all edge cases.

Self Test

R Self-Test: Lecture 2

24

Guest
Rectangle

25

Guest
Rectangle

4. Floating Points

Representing Real Numbers

Real numbers include fractions and decimals and have infinitely many possible values
between any two integers. Unlike integers, a fixed-width representation must
approximate real numbers.

¢ Challenge: There are infinitely many real numbers between any two integers.

e Solution: Use a fixed-width representation that sacrifices some accuracy for a finite,
manageable format.

e Approaches: Two primary methods are used:
o Fixed Point Representation
o Floating Point Representation
REAL NUMBER REPRESENTATION: A method to encode numbers with fractional

parts in a fixed number of bits.

Fixed Point Representation

Fixed point representation is similar to the standard decimal representation but in binary.
It extends the integer representation by adding a fixed number of bits for the fractional

26

Guest
Rectangle

part.
e Concept: The binary point is fixed in one position.
¢ Pros:
o Arithmetic is straightforward.
o Precision is predictable.
e Cons:
o The location of the binary point is fixed, limiting the range.

o To cover both very large and very small numbers, the bit-width must be
increased significantly.

Example:

A fixed point number might be represented as:

1011.011

where the bits to the left represent the integer part and those to the right represent the
fractional part.

Fixed Point

 Problem: we have to fix where the decimal point is in our representation.
What should we pick? This also fixes us to 1 place per bit.

Base 10 Base 2
To be able to store

5.07E30 =10.....0.1 g e camees

point representation,

100 zeros the bitwidth of the
0.86E-32 =0.0.....01 beatlesstzorbis
e — wide!
100 zeros

27

Guest
Rectangle

What is Fixed Point Number

Integers Real Numbers

Real Numbers 23.5
58.75

Integer Part Fractional part

Floating Point Representation

Floating point representation allows the decimal (or binary) point to “float,” enabling a
much wider range of values to be represented.

e Format: Numbers are expressed in the form:
+z x 2P

where z is the significand (or mantissa) and E is the exponent.
e Advantages:
o Wide dynamic range: can represent very small and very large numbers.
o Flexible: accommodates scientific notation.
e Disadvantages:
o Not every real number can be represented exactly.

o Rounding and precision issues occur due to the finite number of bits.

FLOATING POINT REPRESENTATION: A method to represent real numbers that uses

a significand and an exponent, allowing the decimal point to move, thereby enabling a
wide range of values.

28

Guest
Rectangle

Floating Point Numbers
Scientific Notation :

+ D.DDD x 10 ¥exp Must have One significant digit before decimal point

Floating Point Representation:

+ 1.BBB x 2 *exp

TT”T

sign Exponent

Fraction

Normalization in Floating Point Numbers

(111.101), =1.11101x 22 (Normalized Form) + 1.BBB x 2 fexp

4
When the radix point / binary point is shifted to left by a 1 bit position,
the exponent will be increased by 1
When the radix point / binary point is shifted to right by a 1 bit position,
the exponent will be decreased by 1

(0.01010), =1.010x22 (Normalized Form)

ALL ABOUT ELECTRONICS

IEEE Floating Point Format

The IEEE 754 standard is widely used for floating point arithmetic in digital systems.

Structure of Single Precision (32-bit)
¢ Sign Bit (1 bit): 0 for positive, 1 for negative.

e Exponent (8 bits): Stored with a bias (127 for single precision).

29

Guest
Rectangle

¢ Fraction (23 bits): Represents the fractional part of the significand.

The number is represented as:

where:

(—=1)* x 1.f x 2(e7127)

e sisthesign bit.

e e¢isthe stored exponent.

e fisthe fractional part (the bits to the right of the binary point).

IEEE SINGLE PRECISION FLOAT: A 32-bit format that provides a balance between
range and precision.

IEEE Single Precision Floating Point

31 30 23 22

S

exponent (8 bits)

fraction (23 bits)

Sign bit
(0 = positive)

30

X * 27

Guest
Rectangle

Floating Point Numbers

Exponent

Fraction

Exponent Mantissa/Significand

HENERENEER

ALL ABOUT ELECTRONICS

Exponent Field and Bias
e Bias: The exponent field in IEEE single precision has a bias of 127.

e Actual Exponent: Calculated by subtracting the bias from the stored exponent

value.

Actual Exponent = e — 127

e This method allows both positive and negative exponents to be stored in an

unsigned format.

NOTE: The exponent is stored as an unsigned integer with a fixed bias, which simplifies
comparison and arithmetic at the bit level.

31

Guest
Rectangle

IEEE 754

Half Precision (16 bits)
Single Precision (32 bits)
Double Precision (64 bits)

Quadruple Precision (128 bits)
Octuple Precision (256 bits)

ALL ABOUT ELECTRONICS

IEEE 754 Single Precision Format

+ 1.BBB x Z Exponent

T 8-bits = 0 to 255 (unsigned)
Sign Exponent

Fraction

sign Exponent Mantissa/Significand

1 bit 8 bit 23 bit

ALL ABOUT ELECTRONICS

Guest
Rectangle

Biased Representation

Bias = 2"1-1

n - no of bits

8 bits - Bias = 127

In biased Representation

ALL ABOUT ELECTRONICS

Biased Representation

Actual Biased Biased
Number Representation

-127 0000 0000
0000 0001

01111110
01111111
1000 0000

11111110
11111111

ALL ABOUT ELECTRONICS

Guest
Rectangle

Exponent

exponent (8 bits) fraction (23 bits)

* The exponent is not represented in two's complement.

* Instead, exponents are sequentially represented starting from 000...1 (most
negative) to 111...10 (most positive). This makes bit-level comparison fast.

* Actual value = binary value - 127 (“bias”)

11111110 254 - 127 = 127
11111101 253 - 127 = 126
00000010 2 - 127 = -125
00000001 1 - 127 = -126

Fraction Field and Normalization

¢ Normalization: In normalized numbers, the significand is adjusted so that there is an
implicit leading 1 before the binary point. This “hidden bit” provides an extra bit of
precision.

¢ Fraction Field: Only the bits to the right of the binary point are stored.
Stored Value = 1.f

¢ Denormalized Numbers: When the exponent is all zeros, the number is
denormalized; the implicit leading 1is assumed to be 0, allowing representation of
numbers very close to zero.

KEY POINT: Normalization maximizes precision by ensuring that the significand is in a
standard form.

34

Guest
Rectangle

1. Rule for Normalized vs. Denormalized

Condition Type Leading Digit in Mantissa
Exponent # 0 (1 < exponent = 254) MNormalized Implicit 1 {1.300)

Exponent = 0 (eedae008) Denormalized Implicit @ { 8.0)

Key Difference:

* Normalized numbers — Always have an implicit 1 before the mantissa.

* Denormalized numbers — The leading 1 is missing, so the mantissa is 8.xxx .

Floating Point Arithmetic and Pitfalls

Floating point arithmetic is not as straightforward as integer arithmetic due to several
issues:

¢ Alignment: To add two floating point numbers, their exponents must be aligned,
which may require shifting the significand and can lead to loss of precision.

¢ Rounding: The result of an operation may be rounded to fit into the available bits.

¢ Non-Associativity: Floating point addition is not necessarily associative. For
example:

(3.14 + 1€20) — 1e20 = 3.14 + (1e20 — 1€20)

e Over/Underflow: Results that exceed the representable range become infinity or
zero (or denormalized numbers), leading to unexpected behavior.

35

Guest
Rectangle

Representing Exceptional Values

If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

Sign Exponent Fraction

any All ones All zeros

* The sign bit indicates whether it is positive or negative infinity.

* Floats have built-in handling of over/underflow!
— Infinity + anything = infinity
- Negative infinity + negative anything = negative infinity
- Ete.

PRACTICAL TIP: Avoid using floating point numbers for high-precision financial
calculations and be cautious when comparing floating point values for equality.

Floating Point in C

C provides two main floating point types:
¢ float: Single precision (32-bit)
e double: Double precision (64-bit)
Conversions and Casting:

e Converting from float or double to int truncates the fractional part (rounding toward
zero).

e Conversions may result in rounding errors or undefined behavior when the value
exceeds the target type's range.

NOTE: Choose the appropriate floating point type (float or double) based on the
required precision and range for your application.

The Ariane 5 Example: Real-World Implications

36

Guest
Rectangle

On June 4, 1996, the Ariane 5 rocket self-destructed shortly after liftoff due to an overflow

error:

e Cause: Conversion from a 64-bit floating point number to a 16-bit signed integer led

to an overflow.

e Context: Software reused from Ariane 4 assumed that the horizontal velocity would

always be within the range of a 16-bit integer. However, Ariane 5's higher speed

invalidated this assumption.

e Lesson: Even well-established standards can fail if underlying assumptions are not

revalidated in new contexts.

Dynamic Range (Positive Only)

s
0
0
Denormalized ©
numbers
0
0
0
0
0
0
Normalized 0
numbers 0
0
0
0
0

exp

0000
0000
0000

0000
0000
0001
0001

0110
0110
0111
0111
0111

1110
1110
1111

frac

000
001
010

110
111
000
001

110
111
000
001
010

110
111
000

E

-6
-6
-6

-6
-6
-6
-6

=il
=il

Value

0
1/8*1/64
2/8*1/64

6/8%1/64
7/8*1/64
8/8*1/64
9/8*1/64

14/8%1/2
15/8*1/2
8/8%*1
9/8*1
10/8*1

14/8%128
15/8*128
inf

Summary and Conclusion

This lecture has covered:

1/512
2/512

6/512
7/512
8/512
9/512

14/16
15/16

9/8
10/8

224
240

Qs <
mm !
I
- m
X
©
|
W
jah])
w

closest to zero

Bias = 24-1)-1=7

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

41

e Representing Real Numbers: The challenges of representing an infinite set of real

numbers in a fixed-width format.

¢ Fixed Point Representation: Its simplicity and inherent limitations.

¢ Floating Point Representation: The IEEE standard, including the structure of single

precision (sign, exponent with bias, fraction), and normalization.

37

Guest
Rectangle

¢ Floating Point Arithmetic: Issues such as alignment, precision loss, non-

associativity, and overflow/underflow.

¢ Floating Point in C: How C implements floating point types (float and double) and

the implications of conversions.

¢ Real-World Impact: The Ariane 5 incident illustrates the critical importance of

proper floating point handling in safety-critical systems.

Understanding these concepts is crucial for designing reliable digital systems and writing

robust software that involves numerical computations.

FLOATING POINT FORMAT IEEE-754, 32 BITS

MSB LSB
1[1]oJoJoJo[1]1]o[1]1]1]1]o] o] o [HICHGNONGNGNN o[oJolololofo]o
. o Sl
- _ I
EXPONENT MANTISSA
8 BITS 23 BITS
SIGN BIT
e NEGATIVE EXAMPLE: -248.75
0=POSITIVE HEXADECIMAL: C3 78 C0 00
Self Test

R Self-Test: Lecture 4

38

Guest
Rectangle

5. Chars and Strings inC

Objective & Scope

This note covers the essential concepts from the lecture on Chars and Strings in C. It
explains how characters and strings are represented and manipulated in C, details the
standard library functions for string operations.

CharactersinC
I CHAR: A basic data type in C that represents a single character (or glyph).
e Typically 1 byte (8 bits) in size.
e Characters are stored as integer values using ASCII encoding:
o Forexample, ‘A" is65, 'a* is97,and ‘o' is48.

e Arithmetic on characters is supported:

char uppercaseA = 'A'; // 65
int diff = '¢' - 'a'; // 2

UNICODE & UTF-8: Modern systems often use Unicode to represent a vast range of
characters.

39

Guest
Rectangle

e UTF-8 is a variable-width encoding that efficiently stores common English characters
while supporting many others.

ASCII

0 1 2[_3‘4]5 6 7 8 9 A BI_C]D E F

U+0000 U+0001 U+0002 U+0003 U+0004 U+0005 U+0006 u+0007 u+0008 U+0008 U+000A U+000B U+000C U+0000D U+000E U+000F

O/ NUL | SOH | STX | ETX | EOT ENQ | ACK | BEL BS HT LF VT FF CR SO S1
5

0 1 2 3 4 [] 7 8 9 10 1" 12 13 14 15
U+0010 U+0011 U+0012 U+0013 U+0014 U+0015 U+0016 U+0017 u+o018 U+0019 U+001A U+001B u+001C U+001D U+001E U+001F
- DLE| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN| EM | SUB | ESC FS GS RS Us
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 n

U+0020 U+0021 U+0022 U+0023 U+0024 U+0025 U+0026 U+0027 u+00z8 U+0029 U+D02A U+D02B U+n02C U+002D U+00ZE U+002F

2| sp ! ! # $ % | & ' () * + . - . /

3z 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

U+0030 U+0031 U+0032 U+0033 U+0034 U+0035 U+0036 U+0037 U+0038 U+0039 U+D03A U+D03B U+D03Cc U+003D U+D03E U+003F

S0 1 2 3 4 5 6 7 8 9 : 2 < = > ?

48 49 50 51 52 | 53 54 55 56 57 58 59 60 61 62 63
U+0040 U+0041 U+0042 U+D043 U+D044 U+0045 U+0046 U+0047 U+00ag U+0049 U+D04A U+D04B U+D04C U+004D U+004E U+004F

“4 @ A B | C D|E F | G| H | J K LI M N| O

64 65 66 | 67 | 68 | 69 70 Ll T2 73 T4 75 | 76 | L T8 T8 |
U+0050 U+0051 U+0052 U+0053 U+0054 U+0055 U+0056 U+0057 u+0058 U+0059 U+D05A U+0058 U+005C U+005D U+00SE U+005F

S P/ Q|R|S|T|U|V W|[X|Y!|Z|[|\N]|]T1]|~r]|_

80 81 82 a3 84 a5 86 ar a8 89 80 a1 92 93 34 95

U+0060 U+0061 U+0062 U+0063 U+D064 U+0065 U+0066 U+0067 u+0068 U+0069 U+D0BA U+00BB U+006C U+D0BD U+006E U+006F

6 a b c d e f g h i j k 1 m | n 0

96 a7 98 299 100 101 102 103 104 105 106 107 108 109 110 m
U+0070 U+007T1 U+0072 U+0073 U+0074 U+0075 U+0076 U+0077 u+oo7e U+0079 U+D0TA u+007B U+007C U+007D U+00TE U+007F
7
- p q r S t u v w X y z { | } ~ | DEL

112 13 114 115 116 17 118 119 120 121 122 123 124 125 126 127

Common ctype.h Functions
® isalpha(ch) : Checks if cn is aletter.
® iclower(ch), isupper(ch) : Determine the case of cn .
e isspace(ch) : Checks for whitespace (e.g., space, tab, newline).
e isdigit(ch) : Checks if cn is adigit.

® oupper(ch) and tolower(ch) : Convert characters between upper and lower case.

C Strings

C STRING: A sequence of characters stored in an array that ends with a null character

(\0).
e There is no dedicated string type in C; strings are simply arrays of char .

e The null terminator indicates where the string ends and must be accounted for in
memory allocation.

40

Guest
Rectangle

String Length

e strien(str) computes the number of characters before the null terminator.

int length = strlen("Hello"); // returns 5

e Note: str1en is O(n) because it scans the string until e .

Passing Strings to Functions

e When astring (a char[]) is passed to a function, it decays into a pointer (char +) to its
first element.

void processString(char *str) {
// Modifications here affect the original string.

Common String Operations

Comparing Strings
e Use strcmp(strl, str2) OF strncmp(strl, str2, n) tO compare string contents.

if (strcmp("Hello", "World") == @) {
// Strings are identical.

Copying Strings
® trcpy(dst, src) copies the entire string (including the null terminator).

e Buffer Overflows: Ensure that the destination array has enough space.
char destination[6];

strcpy(destination, "Hello"); // Valid if destination is large e
nough.

41

Guest
Rectangle

® strncpy(dst, src, n) copies at most n characters. It may not append o' if the
source is longer than », so manual termination is often required:

char buf[6];
strncpy(buf, "Hello, world!", 5);
buf[5] = '\@'; // Ensure proper termination.

Concatenating Strings

® strcat(dst, src) appends src to the end of dst .

e st must have sufficient space for the concatenated result.
char greeting[13];
strcpy(greeting, "Hello ");

strcat(greeting, "World!");
// greeting now contains "Hello World!"

Working with Substrings

e Because C strings are pointers, you can create substrings by pointer arithmetic:

char word[] = "racecar";
char *sub = word + 4; // Points to "car"

e To make an independent substring, use strncpy and manually add the null terminator:

char subword[5];
strncpy(subword, word, 4);

subword[4] = '\@'; // subword now contains "race"

Key Takeaways

e Characters in C are stored as small integers (typically using ASCII) and can be
manipulated using standard arithmetic and ctype functions.

42

Guest
Rectangle

e C Strings are arrays of characters terminated by "\o' . They require careful handling
to avoid buffer overflows.

e Standard Library Functions (from string.n) enable common operations like
comparison, copying, and concatenation, but always ensure that the destination
buffers are large enough and properly null-terminated.

¢ Pointer Arithmetic facilitates efficient substring operations, though modifications
affect the original string memory.

Understanding these fundamentals is crucial for safe and effective text manipulation in C.

43

Guest
Rectangle

6. More Strings, Pointers

Recap: C Strings and Common String Functions

C STRING: A C string is an array of characters terminated by a null character ("\\0").
Functions such as strlen depend on this terminator to determine the string's length.

Common Functionsin string.h

® strlen(str)

Returns the number of characters in a string before the null terminator.

int len = strlen("Hello"); // len is 5

® strcmp(strl, str2) and strncmp(strl, str2, n)
Compare two strings lexicographically.

o stremp compares until a difference is found ora "\e' is reached.

O strncmp COmMpares at most n characters.

if (strcmp("apple", "banana") < @) {
// "apple" comes before "banana"

44

Guest
Rectangle

strchr(str, ch) and strrchr(str, ch)
O strchr returns a pointer to the first occurrence of cn in str.

O strrchr returnsa pointer to the last occurrence.

char *p = strchr("Daisy", 'a'); // p points to "aisy"

strstr(haystack, needle)

Searches for the substring needie in haystack and returns a pointer to its first
occurrence, or wit if not found.

char *sub = strstr("Daisy Dog", "Dog"); // sub points to "Dog"

strcpy(dst, src) and strncpy(dst, src, n)

o strepy copies the source string (including the null terminator) to the destination
array.

O strncpy copies at most » characters; if s~ islonger,no "\e' is appended
automatically.

char dest[6];
strcpy(dest, "Hello"); // Correct if dest is large enough.
// If dest is too small, this will cause a buffer overflow.

strcat(dst, src) and strncat(dst, src, n)

Concatenate src onto the end of dst, ensuring the result is null-terminated. The
destination must be large enough to hold the combined string.

char greeting[13];

strcpy(greeting, "Hello ");
strcat(greeting, "World!"); // greeting becomes "Hello World!"

strspn(str, accept) and strcspn(str, reject)

45

Guest
Rectangle

o strspn returns the length of the initial segment of st~ containing only characters

in accept .

o strespn returns the length of the initial segment that contains none of the
charactersin reject .

int span = strspn("Daisy Dog", "aDeoi"); // span might be 3

Searching in Strings
Searching functions help locate characters or substrings:
e Character Search:

Use strchr to find the first occurrence and strrchr for the last occurrence of a
character.

e Substring Search:
Use strstr to locate a substring within another string.
e Span Functions:

strspn @and strcspn Measure how many characters at the beginning of a string meet a
certain condition (either belonging or not belonging to a set).

Strings as Parameters and Arrays of Strings

e Whena Cstring (a char[1) is passed as a parameter, it automatically decays to a
pointer (char +) to its first element.

void processString(char *str) {
// Operations here affect the original string.

e An array of strings can be defined using pointers:

char *stringArray[] = { "Hello", "Hi", "Hey there" };
printf("%s\n", stringArray[@]); // Prints "Hello"

46

Guest
Rectangle

Pointers in C

POINTER: A variable that stores a memory address. Pointers are essential for dynamic
memory management and for passing large data efficiently.

Basics of Pointers

e Declaration and Initialization:

int x = 2;
int *xPtr = &x; // xPtr stores the address of x
printf("%d", *xPtr); // Dereferencing xPtr prints 2

¢ Pass-by-Reference via Pointers:
Since C passes all parameters by value, pointers are used to allow functions to

modify the original variable.

void modify(int *p) {
*p = 3;

int main() {

int x = 2;

modify(&x);
printf("%d", x); // x is now 3
return 9;
}
Pointer Arithmetic

e Pointers can be incremented or decremented to traverse arrays:

char *str = "apple"; // Assume it points to a string literal
printf("%s\n", str); // prints "apple"

47

Guest
Rectangle

printf("%s\n", str + 1); // prints "pple"
printf("%s\n", str + 3); // prints "le"

e Using the subscript notation (e.g., str[3]) is equivalent to using pointer arithmetic

and dereferencing ((str + 3)).

Strings in Memory
Understanding how strings are stored is crucial:
e Char Arrays (char[]):
o Declared as an array, they reside in stack memory.

o Their contents can be modified.

char str[6];
strcpy(str, "apple"); // Modifiable copy stored on the stack.

e String Literals (char *):

o Declared as a pointer initialized to a literal, they reside in the read-only data

segment.

o Attempting to modify them (e.g., mystringle] = 'n';) leads to undefined behavior
(often a segmentation fault).

"Hello, world!";
'h'; // Not allowed.

char *myString
// myString[o]

e Reassignment:

o Arrays cannot be reassigned to point to new memory (e.g., str = anotherstr; IS
illegal when st- is declared as an array).

o Pointers can be reassigned:

char *pStr = "apple";
pStr = "banana"; // Valid: pStr now points to a different liter

48

Guest
Rectangle

al.

e Pointer to an Array:

When you declare a pointer and assign it to an array, it points to the first element of
the array.

char arr[6];
strcpy(arr, "apple");
char *p = arr; // p points to 'a’

Exercises: char* vs. char[] Behavior

Consider these scenarios:

1. Reassigning an Array:

char str[7];
strcpy(str, "Hellol");
// str = str + 1; // Compile error: you cannot reassign an arra

y.

2. Modifying a String Literal:

"Hello2";
'u'; // May cause a segmentation fault because strin

char *str
// str[1]

g literals are read-only.

3. Using a Pointer to a Modifiable Array:

char arr[7];
strcpy(arr, "Hello3");
char *p = arr;

p=p+1; // Allowed: p now points to the second characte
r.
p[1] = 'u'; // Modifies the underlying array.

49

Guest
Rectangle

printf("%s", p); // May print "ellu3" (depending on the modific
ation).

These examples illustrate the differences in behavior between arrays and pointers,
especially regarding reassignment and modification.

Key Takeaways

e C Strings are null-terminated arrays of characters. Their functions depend on the
presence of the null terminator.

e String Functions:
o Use functions like strien, stremp, strchr, etc, to operate on strings.
o Be mindful that these functions assume proper null termination.

e Pointers:

o Pointers store memory addresses and are used to efficiently pass data to
functions.

o Pointer arithmetic allows traversal and creation of substrings.
e Memory Segments:
o Strings declared as arrays are stored on the stack and are modifiable.

o String literals (assigned to char +) reside in read-only memory and should not be
modified.

e Parameter Passing:

o When passing a string to a function, the array decays to a pointer, meaning
modifications within the function affect the original data.

e Arrays vs. Pointers:

o Arrays cannot be reassigned, while pointers can be redirected to point
elsewhere.

o Understanding these differences is crucial for avoiding common pitfalls such as
segmentation faults and buffer overflows.

50

Guest
Rectangle

This comprehensive overview should serve as a solid foundation for understanding more
about strings, pointers, and memory management in C.

51

Guest
Rectangle

1. Arrays and Pointers

Arrays and Pointers - Comprehensive Note

This note covers the key concepts from the lecture on arrays and pointers. It reviews
common string library functions, the fundamentals of pointers, how character arrays
work in memory, the differences between arrays and pointers for strings, pointer
arithmetic, and parameter passing. Detailed examples and exercises illustrate the
behavior of strings in memory, modifications via pointers, and the use of double pointers
to modify pointer variables.

Recap: Common string.h Functions

® strlen(str)

Returns the number of characters in a C string (up to, but not including, the null
terminator).

® strcmp(strl, str2) and strncmp(strl, str2, n)
Compare two strings lexicographically.
o Returns 0 if the strings are identical.

o Returns a negative value if str1 comes before str> in alphabetical order.

52

Guest
Rectangle

o Returns a positive value if st-1 comes after str2.
o strncmp Stops comparing after at most n characters.
® strchr(str, ch) and strrchr(str, ch)
Search for a character in a string.
O strchr returns a pointer to the first occurrence of .
o strrchre returns a pointer to the last occurrence.
o Returns wuiL if the character is not found.

® strstr(haystack, needle)

Searches for the first occurrence of the substring needie in haystack and returns a
pointer to its start, or wit if not found.

® strcpy(dst, src) and strncpy(dst, src, n)
Copy the source string to the destination (including the null terminator).

O strncpy copies at most » characters and does not necessarily add a null
terminator.

® strcat(dst, src) and strncat(dst, src, n)
Concatenate src onto the end of dst .
o strncat appends at most n characters and always adds a null terminator.
® strspn(str, accept) and strcspn(str, reject)

o strspn returns the length of the initial segment of <t~ containing only characters
from accept .

o strespn returns the length of the initial segment of st containing no characters
from reject .

Recap: Pointers

¢ Definition: A pointer is a variable that stores a memory address. In C, pointers allow
you to pass around the address of a memory instance rather than copying its
contents.

e Key Points:

53

Guest
Rectangle

o One pointer (typically 8 bytes on a 64-bit system) can represent any memory
location.

o Pointers are essential for dynamic memory allocation on the heap.

o They allow functions to modify data in its original memory location because C
does not have true pass-by-reference (only pass-by-value of pointers).

Example:

int x = 2;
int *xPtr = &x; // XPtr holds the address of x
printf("%d", *xPtr); // Dereferences xPtr to print 2

Recap: Character Arrays

e Storage: When you declare a character array (e.g., char str[6];), contiguous memory
is allocated on the stack for all its characters.

¢ Modification: The contents of a character array created this way can be modified
because they reside in writable memory.

Example:

char str[6];

strcpy(str, "apple"); // Copies "apple" into the array allocated o
n the stack

Recap: String Parameters

e Conversion: When passing a char[] to a function, it is implicitly converted to a char

* .

e Usage: All string functions (like those in string.h) accept char + parameters, so you
can pass a character array directly.

¢ Representation: Although char [] and char + both represent strings in usage
(accessing characters via index, printing, using library functions), under the hood
they differ. Arrays refer to a fixed block of memory while pointers can be reassigned.

54

Guest
Rectangle

Recap: Strings in Memory
Important points about string memory:

e |Ifastringis created asa char[], its characters reside in stack memory and can be
modified.

e You cannot assign a new value to a char[] variable because it refers to a fixed block
of memory.

e Passinga char[] as a parameter automatically convertsittoa char *.

e Astring created asa char + that points to a literal (e.g., char *p = "Hello";) residesin a
read-only data segment, so its characters should not be modified.

e A char + isreassignable; you can change what it points to.

e Adding an offset to a C string pointer gives you a substring that starts that many
characters past the beginning.

e Modifications made to a string through a pointer parameter persist outside the
function since both the caller and callee refer to the same memory.

Difference Between char[] and char *

e char[] (Array):
o Declared with a fixed size (e.g., char str[7];).
o Memory is allocated on the stack.
o Cannot be reassigned to point to another location.

e char * (Pointer):
o Can be assigned to point to a string literal (e.g., char *pstr = "Hello";).
o The pointer is reassignable.

o When pointing to a literal, the string is in a read-only segment and should not be
modified.

Example Comparison:

95

Guest
Rectangle

char aString[] = "Hello, world!"; // Array, modifiable characters
in stack memory.

char *pString = "Hello, world!"; // Pointer, points to a constant s
tring in data segment.

Arrays and Pointers
e You can set a pointer equal to an array; it will point to the first element.

Example:
char str[6];

strcpy(str, "apple");
char *ptr = str; // ptr now points to str[0]

e Equivalently, you can write:
char *ptr = &str[0];
e Avoid writing confusing expressions like:

char *ptr = &str; // Although equivalent in some contexts, this ca
n be misleading.

Pointer Arithmetic
e Concept: Pointer arithmetic allows you to adjust the pointer by a number of
elements.
Example:
char *str = "apple"; // Suppose str points to address oxffeo.
char *str2 = str + 1; // Points to the second character ('p').
char *str3 = str + 3; // Points to the fourth character ('1').

printf("%s", str); // Prints "apple"

56

Guest
Rectangle

printf("%s", str2); // Prints "pple"
printf("%s", str3); // Prints "le"

e Bracket Notation:

Using strlindex] is equivalentto *(str + index) and accesses the character at that
offset.

String Behavior and Modifications

e When a function receives a string parameter (as a char *), it gets a copy of the
pointer. Both the caller and callee refer to the same memory.

e Changes made to the characters of the string in the function will persist outside the
function.

Example:

void myFunc(char *myStr) {
myStr[4] = 'y*;

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // Prints "apply"

Exercises: char* vs. char[] and Modifiability

Several exercises illustrate the differences between string pointers and arrays, including:
e Attempting to reassign an array (which leads to compile errors).

e Reassigning a pointer to a string literal (which can lead to segmentation faults if
modifications are attempted).

e Using a character array to allow modifications and then observing the results when
using pointer arithmetic and reassignment.

Y

Guest
Rectangle

Common Observations:

e Arrays cannot be reassigned; for example, str = str + 1; isillegal if str is declared as

an array.

e A char + pointing to a string literal should not be modified, or it may cause a

segmentation fault.

e When a character array is used and then its address is passed to a pointer variable,
modifications made via the pointer affect the array.

char* vs char|]

exercises

Suppose we use a

variable str as follows:

For each of the

str = str + 1;
str[1] = "u';
printf("%s", str);

©

» Will there be a compile error/segfault?
* If no errors, what is printed?

following instantiations:

char str[7];

strcpy(str, "Hellol");
Compile error (cannot reassign array)

char arr[7];

strcpy(arr, "Hello3");
char *str = arr;

Prints eulo3

char *str = "Hello2";

Segmentation fault (string literal)

char *ptr
char *str

Segmentation fault (string literal)

"Hello4";
ptr; 0

&

Difference Between C Arrays and Pointers for Strings

In C, strings are represented as character arrays (char arr[]) Or pointers (char *ptr).
Below is a detailed comparison:

Feature

Definition

Memory
Allocation

Character Array (char
arr[])

char str[] = "Hello";

Allocated on the stack
(modifiable).

58

Pointer to String (char *ptr)

char *str = "Hello";

String literal stored in read-only
memory (modification may cause a crash).

Guest
Rectangle

Feature

Modifiable?

Storage Location

Size
Determination

Reassignment?

Example of
Modification

Dynamic
Allocation?

Use in Functions

Example Function
Call

Character Array (char
arr[])

4 Yes, can modify individual
characters (str[0] = "h").

Stored in stack or global
memory.

Canuse sizeof(str) toget
the total allocated size.

¥ No, arr = "New" isinvalid

(array name is fixed).

str[@] = 'h'; // Works
X No, arrays have a fixed
size.

Passes the entire array
reference (modifications
persist).

void print(char str[])

Pointer to String (char *ptr)

., No (if pointing to a string literal).
Modifying *str leads to undefined
behavior.

Stored in read-only memory (if a string
literal) or heap (if malloc is used).

sizeof(str) gives only pointer size (4 or
8 bytes), not string length.

4 Yes, ptr = "New" is valid (pointer can
be reassigned).

ptr[@] = 'h'; // ¥ Undefined behavior
(if pointing to a literal)

=4 Yes, can allocate dynamically using

malloc() .

Passes only the pointer address (efficient).

void print(char *str)

Example Code

Il Character Array (Modifiable)
char str[] = "Hello";
str[@] = 'h'; // 4 Works
printf("%s", str); // Output: "hello"

1 Pointer to String (Immutable if pointing to a literal)

char *str = "Hello";
str[@] = 'h'; // X Undefined behavior (segfault risk)

59

Guest
Rectangle

! Pointer with Dynamic Allocation (Safe & Modifiable)

char *str = malloc(10);

strcpy(str, "Hello");

str[@] = 'h'; // 1 Works
printf("%s", str); // Output: "hello"
free(str);

<" Use arrays when the size is fixed, and pointers when flexibility is needed! &

C Parameters and Passing Values vs. Pointers

e Passing by Value:
When you pass a simple data type (like an int or char) to a function, C passes a copy
of that value.

Example:
void printSquare(int x) {

int square = x * x;
printf("%d", square);

int main(int argc, char *argv[]) {
int num = 3;
printSquare(num); // Prints 9

e Passing by Pointer:
When you want a function to modify the actual instance of a variable, you pass its
address.

Example for modifying a variable:

void doubleNum(int *x) {
X = () * (03

60

Guest
Rectangle

int main(int argc, char *argv[]) {
int num = 2;
doubleNum(&num); // Now num becomes 4
printf("%d", num);

e Strings as Parameters:
Passing a string (asa char [1) to a function convertsittoa char *, meaning that any
modifications made to the string inside the function will persist outside.

Exercises: Print Square and Flip Case
Print Square Exercise:

The function should take an integer and print its square.

void printSquare(int x) {
int square = x * x;
printf("%d", square);

int main(int argc, char *argv[]) {
int num = 3;
printSquare(num); // Expected output: 9

Since the function only performs a calculation without modifying the original value,
passing by value is appropriate.

Flip Case Exercise:

To flip the case of a character, use a pointer so that the modification affects the original
variable.

void flipCase(char *1letter) {

if (isupper(*letter)) {
*letter = tolower(*letter);

61

Guest
Rectangle

} else if (islower(*letter)) {
*letter = toupper(*letter);

}

}

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(&ch);

printf("%c", ch); // Expected output: 'G’

Here, passing the address of the character allows the function to change its value.

Pointers Summary

If an operation does not require modifying the input, pass the data type directly.
To modify a specific instance, pass the pointer (address) to that instance.
A function that takes an address can access and modify the actual memory content.

Avoid setting a function parameter to a new value if you intend to modify the caller's
instance; such assignments only change the function's local copy of the pointer.

Example Pitfall:

void advanceStr(char *str) {
str += 2; // This only modifies the local copy of the pointer.

The above does not change the pointer in the caller’'s context.

Double Pointers and Modifying Pointer Variables

Sometimes you want to modify the pointer itself (not just the data it points to). This is
done using a double pointer.

Skip Spaces Example:
The function skipspaces modifies the string pointer to skip any leading spaces.

62

Guest
Rectangle

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

int main(int argc, char *argv[]) {
char *str =" hello";
skipSpaces(&str);
printf("%s", str); // Expected output: "hello"

return 0;

Here, a double pointer is used so that the function can update the caller’s pointer
directly.

Summary of Key Concepts

e String Library Functions: Familiarity with functions like strlen, strcpy, strcmp, etc., is
crucial for string manipulation.

¢ Pointers: Pointers store memory addresses, enabling efficient data manipulation,
memory allocation, and parameter passing.

e Character Arrays vs. Pointers: Arrays allocate fixed, modifiable memory on the
stack, while pointers can be reassigned and may point to immutable data.

e Pointer Arithmetic: Allows you to navigate through memory by adjusting the
pointer based on the size of the data type.

e Parameter Passing: Passing by value copies data; passing by pointer (or address)
allows functions to modify the original data.

e Double Pointers: Essential for modifying pointer variables within functions.

This comprehensive note incorporates all the detailed information from the slides on
arrays, pointers, string behavior, and parameter passing. It is designed to be a complete
resource on these topics, ensuring that all key concepts and examples are included for
effective understanding.

63

Guest
Rectangle

8. The Stack and The Heap

The Stack and The Heap — Comprehensive
Note Lk

This note covers the fundamental concepts of memory management in C, focusing on
the use of pointers, arrays, the stack, and the heap. It includes detailed explanations,
examples, and exercises to illustrate pointer practice, pointer arithmetic, how arrays are
stored in memory, and the differences between stack and heap allocation. The note also
explains how to properly allocate and free memory on the heap to avoid memory leaks.

Pointers Practice and “* Wars” Stories

Pointers are variables that store memory addresses. They are essential for passing data
by reference and for dynamic memory allocation.

e Invariable declaration, the asterisk () creates a pointer.

o Example:
Here, ch stores a character, cptr stores the address of a character, and strptr
stores the address of a pointer to a char.

64

Guest
Rectangle

char ch = 'r';
char *cptr = &ch;
char **strptr = &cptr;

e When reading from or writing to memory, the dereference operator () accesses the
value at the address.

o Example:
char ch = 'r';
ch = ch + 1; // Increment ch: now 's'

char *cptr = &ch;
*cptr = *cptr + 1; // Increment value pointed to by cptr:
now 't'

e A more advanced example shows modifying the pointer itself using a double pointer:

o Example:
char ch = 'r';
char *cptr = &ch;
char **strptr = &cptr;
*strptr = *strptr + 1; // This modifies the pointer cptr it
self (its value, i.e., the address)

Diagrams and pen-and-paper exercises (labeled as "* Wars: Episode I/11") help in
visualizing how values and addresses change through pointer operations.

e Pen and Paper Exercise ("A * Wars Story"):
Consider the function:

void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

65

Guest
Rectangle

Initially, » pointsto = and q pointsto b.The statement *» = *q; makes the value of =
become 20, and then » = 4; makes p pointto b.Diagrams are recommended to keep

track of addresses (e.g., 0xffe800, 0xffe804) and values.

—

oxffe804

Oxffe804

Arrays in Memory

Arrays in C are blocks of contiguous memory allocated on the stack. Key points include:

e Declaring an array (e.g., char stris];) allocates space for the entire array.

e When using functions like strcpy , the contents of the array are copied into this

contiguous block.

e The array variable (e.g., str) refers to the entire block and is not a pointer itself. For
example, sizeof(str) returns the total size of the array in bytes.

e You cannot reassign an entire array (e.g., nuns = nuns2; is illegal).

Arrays as Parameters

When an array is passed to a function, C automatically converts it to a pointer to its first

element. This means:

66

Guest
Rectangle

¢ Inthe function, you lose information about the original array size; sizeof on the
parameter returns the size of a pointer.

e Both the caller and callee refer to the same memory, so modifications within the
function persist outside.

Example:

void myFunc(char *myStr) {
// Operates on the same memory as passed from main

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
myFunc(str);
// str still holds the modified value, if any changes were made

Arrays of Pointers

Arrays can also be arrays of pointers. For instance:
char *stringArray[5];

This declaration reserves space for 5 pointers to char. Each element can point to a string
literal or a dynamically allocated string. This is useful for grouping multiple strings (e.g.,
command-line arguments).

void printArgs(char *argv[]) {
while (*argv) {
printf("%s\\n", *argv);

argv++;

67

Guest
Rectangle

Here, argv is effectively char #+argy — a pointer to (pointers to char). It still decays to a
pointer to the first element (argvie1), which itself is a pointer to char .

Pointer Arithmetic

Pointer arithmetic is based on the size of the type to which the pointer points. Key ideas:

e Adding an integer to a pointer moves the pointer by that number of elements, not
bytes.

e Example with characters:

char *str = "apple"; // Suppose str is at address Oxff@, point

s to 'a’

char *strl = str + 1; // Now points to ©@xffl, which
holds 'p'

char *str3 = str + 3; // Now points to ©@xff3, which
holds '1'

printf("%s", str); // Prints "apple" starting at address oOxffo
printf("%s", strl); // Prints "pple" starting at address oxffl
printf("%s", str3); // Prints "le" starting at address oxff3

e For aninteger array, pointer arithmetic scales by sizeof(int) .

int nums[] = {52, 23, 34, 12};

// Suppose the array starts at address 0x1000:

// nums[0@] (52) is at address 0x1000,

// nums[1] (23) is at address 0x1004,

// nums[2] (34) is at address 0x1008, and so on.

int *numsPtr = nums; // Points to nums[@] (52) at address ©
x1000

int *numsPtrl = nums + 1; // Points to nums[1] (23) at address ©
x1004 (i.e., 0x1000 + sizeof(int))

int diff = numsPtrl - nums; // diff equals 1, meaning they are
one element apart

68

Guest
Rectangle

Bracket notation (e.g., str[i1) is just syntactic sugar for pointer arithmetic: «(str + i) .

String Behavior and Modifications
Several important points about strings and pointers:
e Creating a String as a char Array:

When you declare a string as a char[], its memory is allocated on the stack and is
modifiable.

¢ Creating a String as a char Pointer:

When you declare a string as a char + pointing to a literal, the string resides in a
read-only data segment. Modifying it leads to undefined behavior (often a
segmentation fault).

e Passing Strings to Functions:

Whether you pass a char[] ora char *, a copy of the pointer is passed. Therefore, if
you modify the string via the pointer, changes persist outside the function.

¢ Adding an Offset:

Adding an offset to a pointer gives you a substring. For example, st~ + 1 returns a
pointer starting from the second character.

Exercises in the lecture illustrate common pitfalls, such as attempting to reassign an array
(which causes compile errors) and the difference between modifying a string literal
versus a character array.

C Parameters: Pass by Value vs. Pass by Pointer
e Pass by Value:

A function that receives an int or char gets a copy of the value. Changes inside the
function do not affect the original variable.

Example:
void printSquare(int x) {

int square = x * x;
printf("%d", square);

69

Guest
Rectangle

int main(int argc, char *argv[]) {
int num = 3;
printSquare(num); // Prints 9

e Pass by Pointer:

To modify the original variable, you pass its address. The function can then
dereference the pointer and modify the data at that address.

Example:

void doubleNum(int *x) {
X = (%x) ()

int main(int argc, char *argv[]) {
int num = 2;
doubleNum(&num); // num becomes 4
printf("%d", num);

e Passing Strings:

When passing strings (arrays), the function receives a pointer to the first element.
Any modifications made are reflected in the caller's memory.

Exercises: char* vs. char[] and Parameter Passing

Several exercises demonstrate the differences:
e Reassigninga char[] (an array) is not allowed.
e A char + pointing to a literal should not be modified.

e When using pointer arithmetic on strings, remember that a pointer points to the
memory address of the first character, and arithmetic operations advance the
pointer by the size of the element type.

70

Guest
Rectangle

Flip Case Example:

void flipCase(char *letter) {
if (isupper(*letter)) {
*letter = tolower(*letter);
} else if (islower(*letter)) {
*letter = toupper(*letter);

}

}

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(&ch);

printf("%c", ch); // Prints 'G'

This exercise demonstrates modifying a specific instance by passing its address.

Double Pointers and Modifying Pointer Variables

Sometimes, you want to modify the pointer itself rather than the data it points to. This is
achieved using a double pointer.

Skip Spaces Example:

void skipSpaces(char **strPtr) {
int numSpaces = Str\spn(*str\Ptr‘, n ||);
*strPtr += numSpaces;

int main(int argc, char *argv[]) {
char *str = " hello";
skipSpaces(&str);
printf("%s", str); // Prints "hello"
return 0;

71

Guest
Rectangle

Here, a double pointer (char ++) is used so that the function can update the caller’s
pointer, effectively skipping the initial spaces.

The Stack and the Heap

The Stack

e Definition:

The stack is where local variables and function parameters are stored. Each function
call pushes a new frame onto the stack, and when the function returns, its frame is
removed.

e Properties:

o The stack grows downward as functions are called and shrinks upward when they
return.

o Local variables in the stack are automatically cleaned up when a function finishes.

o Recursive function calls consume stack space, and too deep recursion can cause
a stack overflow.

o Interesting fact: C does not clear out memory when a function’s frame is
removed. Instead, it just marks that memory as usable for the next function call.
This is more efficient!

e Example - Function Calls and Recursion:

Consider a recursive function for computing factorial:

int factorial(int n) {
if (n == 1) return 1;

else return n * factorial(n - 1);

int main(int argc, char *argv[]) {
printf("%d", factorial(4)); // Computes 24
return 9;

72

Guest
Rectangle

Each recursive call has its own stack frame.

e Memory Diagram:

Diagrams in the lecture show the stack layout for functions like nzin, funci, and

func2 , with variables =, b,

The Stack

void func2() {

int d =

}

void funcl() {
int ¢ = 99;
func2();

int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
printf("Done.");
return 9;

The Stack

char *create_string(char ch, int num) {
char new_str[num + 1];
for (int i = 9; i < num; i++) {
new_str[i] = ch;
}

new_str[num] =
return new_str;

ne';
}

int main(int argc, char *argv[]) {

char *str = create string('a‘', 4);
printf("%s", str); // want "aaaa"
return 9;

c,and d stored in their respective frames.

Memory

Stack ==

main

arges!_|

0xfffo

Q
—_
~

o

argv:

Hh
5
[e]
=

Q

func2

ﬁ

0x0

Stack

Problem: local variables go away when a function

and the address will be for unknown memory!

finishes. These characters will thus no longer exist,

0x0

Memory

55

main
argc:

str:
argwi 0ffo_|

73

Guest
Rectangle

The Heap and Dynamic Memory
e Definition:

The heap is a memory region that you manage manually. Memory allocated on the
heap remains allocated until you explicitly free it.

e Dynamic Memory Allocation:

o malloc: Allocates a specified number of bytes and returns a pointer to the
beginning of the block. It does not initialize the memory.

char *new_str = malloc(sizeof(char) * (num + 1));

Always check if the allocation was successful (e.g., using assert(new_str 1= NULL);).

malloc

void *malloc(size t size);

To allocate memory on the heap, use the malloc function (“memory
allocate”) and specify the number of bytes you'd like.

« This function returns a pointer to the starting address of the new memory.
It doesn't know or care whether it will be used as an array, a single block
of memory, etc.

« void * means a pointer to generic memory. You can set another pointer
equal to it without any casting.

« The memory is not cleared out before being allocated to you!
* If malloc returns NULL, then there wasn't enough memory for this request.

o calloc: Similar to malloc but initializes the allocated memory to zero.

int *scores = calloc(20, sizeof(int));

74

Guest
Rectangle

Other heap allocations: calloc

void *calloc(size t nmemb, size t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

* You might notice its interface is also a little different—it takes two parameters,
which are multiplied to calculate the number of bytes (nmemb * size).

// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int i = @; i < 20; i++) scores[i] = ©@;

* calloc is more expensive than malloc because it zeros out memory. Use
only when necessary!

o strdup: Allocates memory on the heap and duplicates a given string.

char *str = strdup("Hello, world!");

This function makes it easier to obtain a modifiable copy of a string literal.

Other heap allocations: strdup

char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc
and copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[@] = 'h’';

o Freeing Memory:

Memory allocated on the heap must be freed using the frec() function to avoid
memory leaks. Each allocated block should be freed only once.

75

Guest
Rectangle

char *bytes = malloc(4);
// Use the memory...
free(bytes);

Freeing memory multiple times or freeing a pointer that was not allocated with
malloc/calloc can lead to undefined behavior.

Cleaning Up with free

void free(void *ptr);
« If we allocated memory on the heap and no longer need it, it is our
responsibility to delete it.

« To do this, use the free command and pass in the starting address on
the heap for the memory you no longer need.

« Example:
char *bytes = malloc(4);

free(bytes);

e Memory Leaks:

A memory leak occurs when allocated heap memory is not freed. Tools like Valgrind

help detect memory leaks.
o Exercise - Array of Multiples Using malloc:

Write a function that returns an array of the first 1en multiples of a given number.

int *array_of_multiples(int mult, int len) {
int *arr = malloc(sizeof(int) * len);
assert(arr != NULL);
for (int i = 0; 1 < len; i++) {

mult * (i + 1);

arr[i]

76

Guest
Rectangle

return arr;

Cleaning Up and Memory Management

Freeing Heap Memory:

After you are done using memory allocated on the heap, always free it.

char *str = strdup("Hello!");
// Use the string...
free(str);

Common Pitfalls:

o Freeing the same block of memory twice.

o Freeing only part of an allocated block.

o Not freeing memory, which leads to memory leaks.
Exercise on Freeing Memory:

The lecture includes examples where memory allocated inside a loop must be freed
within the loop, and then later the overall allocated memory (like a duplicated string)
must also be freed.

Where should we free memory below so that all memory is freed properly?

1 char *str = strdup("Hello");

2 assert(str != NULL);

3 char *ptr = str + 1;

4 for (int 1 = 0@; i < 5; i++) {

5 int *num = malloc(sizeof(int));
6 assert(num != NULL);

7 *num = 1;

8 printf("%s %d\n", ptr, *num);

9 free(num);

10 }

11 printf("%s\n", str);
12 free(str);

77

Guest
Rectangle

Summary and Key Takeaways

Pointers and Arrays: Understand the differences between arrays (fixed, stack-
allocated) and pointers (reassignable, can point to heap or read-only data).

Pointer Arithmetic: This allows you to navigate through an array by moving the
pointer by increments of the data type size.

Parameter Passing: Passing by value versus passing by pointer is crucial for
determining whether modifications persist outside a function.

Double Pointers: Use them when you need to modify a pointer variable itself (e.g.,
skipping spaces in a string).
The Stack vs. The Heap: The stack is for local, temporary storage with automatic

cleanup, while the heap is for dynamic memory that you must manage manually.

Dynamic Memory Functions: Use malloc, calloc, and strdup to allocate memory on
the heap and always use free to release it.

Memory Leaks and Debugging: Memory leaks can cause long-term issues; tools
like Valgrind help ensure your program cleans up after itself.

This note integrates all the key details from the lecture on the stack and the heap,
covering pointers, arrays, pointer arithmetic, and dynamic memory management in C.

Enjoy studying and happy coding!

78

Guest
Rectangle

9. Realloc, Freed Memory, and
Memory Leaks inC

Objective & Scope

This lecture explores dynamic memory management in C. The focus is on using functions
such as malloc, calloc, realloc, strdup, and free, while understanding common memory
bugs and the differences between stack and heap memory.

Recap: Arrays Of Pointers

Arrays of pointers allow you to group multiple strings or data items without storing all
the data contiguously.

ARRAY OF POINTERS: An array that stores pointers, each pointing to separate
memory locations (e.g., strings).

char *stringArray[5]; // Space for 5 pointers to char

e Usage: Manage collections of strings or dynamically allocated objects.

e Memory Layout: Each pointer may reference data in different memory areas, such
as the heap or static storage.

79

Guest
Rectangle

Recap: Pointer Arithmetic

Pointer arithmetic in C adjusts addresses based on the size of the data type pointed to—

not in raw bytes.

POINTER ARITHMETIC: The process of moving a pointer by an offset multiplied by
the size of its data type.

char *str = "apple";
char *strl = str + 1; // Points to 'p'

Example with int:

int *nums = ...;
int *numsl = nums + 1; // Moves by sizeof(int)

e Array Indexing: The syntax pir[i] isequivalentto (per + 1) .

e Safety Considerations: Ensure pointer arithmetic stays within the bounds of
allocated memory to avoid undefined behavior.

Recap: The Stack

The stack is the memory area where local variables and function parameters are stored.
Memory on the stack is automatically managed.

STACK: A region of memory used for local variables and function calls. It grows
downward and is deallocated when a function returns.

o Lifetime: Local variables exist only during the execution of the function.

e Common Pitfall: Returning the address of a local (stack) variable results in

undefined behavior.

Recap: The Heap

The heap is used for dynamic memory allocation, allowing data to persist beyond the
scope of a single function call until explicitly freed.

80

Guest
Rectangle

HEAP: Memory that is allocated during runtime and remains allocated until it is
manually deallocated using functions like free.

e Usage: Ideal for large or variable-sized data that must persist after the function exits.

e Management: The programmer is responsible for both allocation and deallocation,

making proper error checking crucial.

Recap: malloc

The malloc function allocates a block of memory on the heap and returns a pointer to it.

MALLOC:
void *malloc(size_ t size);

Allocates size bytes on the heap and returns a pointer to the allocated memory, or

wwir if allocation fails.

¢ Initialization: Memory allocated by malloc is not automatically zeroed.

¢ Error Handling: Always check that the pointer returned by malloc is not wii before

using it.

Recap: Always Assert with the Heap
Using assertions after allocation ensures that the program terminates early if memory

allocation fails.

ASSERT: A debugging aid that checks a condition (e.g., non-NULL pointer) and aborts

the program if the condition is false.

e Robust Programming: Helps catch allocation failures immediately.

e Example:

int *arr = malloc(sizeof(int) * len);
assert(arr != NULL);

81

Guest
Rectangle

Other Heap Allocations: calloc

CALLOC: The calloc function allocates memory for an array and initializes all bits to
zero.

void *calloc(size_t nmemb, size_t size);

Allocates memory for nmenv elements, each of size size , and sets all bytes to zero.

e Performance: Generally slower than malloc due to initialization.

e When to Use: Ideal when you need a clean, zero-initialized memory block.

Other Heap Allocations: strdup

STRDUP: The strdup function duplicates a string by allocating enough memory on
the heap and copying the content.

char *strdup(const char *s);

Returns a pointer to a new, null-terminated string that is a duplicate of - .

e Convenience: Eliminates manual memory allocation and copying.

e Memory Management: Remember to free the duplicated string when it is no longer
needed.

Implementing strdup

A custom implementation of strdup demonstrates how dynamic memory and string
copying work together.

Custom strdup Implementation:

char *myStrdup(const char *str) {
char *heapStr = malloc(strlen(str) + 1);
assert(heapStr != NULL);
strcpy(heapStr, str);

82

Guest
Rectangle

return heapStr;

e Safety: Check allocation success with assert.

¢ Null-Termination: Ensure that the copied string is properly terminated.

Cleaning Up with free

FREE: The free function is used to release memory that was previously allocated on
the heap.

void free(void *ptr);

Frees the memory block pointed to by ptr . Only pointers returned by allocation

functions should be freed.

e Double-Free Error: Freeing the same memory twice can lead to undefined behavior.

e Ownership: Only free the memory you are responsible for and that was allocated
dynamically.

Memory Leaks

Memory leaks occur when allocated memory is not properly freed, potentially leading to
resource exhaustion.

MEMORY LEAK: A situation in which memory is allocated but not deallocated,
eventually exhausting available heap memory.

e Detection: Tools like Valgrind can help identify memory leaks.

e Prevention: Ensure every allocated block has a corresponding free call.

realloc

The realloc function resizes an existing memory block. It may extend the current block or
allocate a new block and free the old one.

83

Guest
Rectangle

REALLOC:
void *realloc(void *ptr, size t size);

Resizes the memory block pointed to by ptr to size bytes and returns a pointer to
the new memory block.

Further Understanding

¢ In-Place vs. Relocation: If there is enough space, realloc expands the block in place;
otherwise, it moves the data to a new location.

e Usage Example:

char *str = strdup("Hello");

char *addition = world!";

str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);

printf("%s", str);

free(str);

Heap Allocator Analogy: A Hotel

This analogy helps conceptualize how dynamic memory management functions operate:
e malloc: Checking into a hotel room (allocating memory).

¢ realloc: Expanding your room by connecting adjacent rooms or moving to a larger
suite.

e free: Checking out of the hotel (deallocating memory).

e Responsibility: Just as you must check out to avoid charges, you must free allocated
memory to avoid leaks.

e Consequences: Failure to manage your “room” (memory) properly can lead to errors
and wasted resources.

84

Guest
Rectangle

Heap Allocation Interface: A Summary
The key functions for dynamic memory management in C are:
® malloc(size)
® calloc(nmemb, size)
® realloc(ptr, size)
® strdup(s)

® free(ptr)

Engineering Principles: Stack vs Heap
Understanding the trade-offs between stack and heap memory is essential:
e Stack:
o Pros: Fast allocation/deallocation, automatic management.
o Cons: Limited size (typically around 8MB) and less flexible.
e Heap:
o Pros: Larger, more flexible, and suitable for dynamic data.

o Cons: Requires manual management, prone to leaks and errors.

Further Understanding
e When to Use:
o Use the stack for local variables and fixed-size data.
o Use the heap for large, dynamic, or persistent data.

¢ Design Considerations: Choose based on performance, safety, and memory
requirements.

Pointers and Working with Dynamic Memory

Dynamic memory management is error-prone if not handled carefully. Common issues
include:

e Use-After-Free: Accessing memory after it has been deallocated.

85

Guest
Rectangle

¢ Double-Free: Freeing the same memory block twice.
¢ Insufficient Allocation: Allocating too little memory.
¢ Incorrect Pointer Arithmetic: Leading to out-of-bounds access.

e Returning Local Addresses: Returning pointers to stack variables.

MEMORY BUGS: Errors in dynamic memory handling that can result in undefined
behavior, program crashes, or security vulnerabilities.
e Debugging: Use tools like Valgrind to detect memory errors.

e Best Practices: Initialize pointers, check allocation results, and clearly document
memory ownership.

Exercises and Common Errors

Exercise 1: Improper Pointer Assignment

e lIssue: A function allocates memory and assigns it to a local pointer, but the caller’s
pointer remains unchanged.

e Example:

void myfunc(int *arr) {
int *p_arr = malloc(2 * sizeof(int));
42;
24;
arr = p_arr; // Does not modify the caller's pointer

p_arr[0]

p_arr[1]

int main(void) {
int *arr = NULL;
myfunc(arr);
// arr remains NULL, leading to undefined behavior when accesse

free(arr);

86

Guest
Rectangle

return 0;

e Lesson: Use pointers-to-pointers if you need to modify the caller’s pointer.

Exercise 2: Incorrect Allocation Size
e Issue: Allocating insufficient memory by using the wrong sizecof expression.

e Example:

int myfunc(int **array, int n) {

int **int_array = malloc(n * sizeof(int)); // Incorrect: should
use sizeof(int*)

*array = int_array;

return 9;

e Lesson: Always use the correct type size when allocating memory.

Final Summary & Takeaways
e Dynamic Memory Management:
o Use malloc, calloc, realloc, and strdup to allocate memory dynamically.
o Always free allocated memory to avoid memory leaks.
e Pointer Arithmetic:
o Understand that pointer arithmetic is based on the size of the data type.

e Memory Bugs:

o Common pitfalls include use-after-free, double-free, insufficient allocation, and
returning pointers to local variables.

e Best Practices:
o Always check allocation results.

o Use assertions to catch errors early.

87

Guest
Rectangle

o Choose between stack and heap based on the specific needs of your program.

88

Guest
Rectangle

10. C Generics and Void Pointers

Overview: Genericsin C

GENERICS: The practice of writing functions that operate on any data type, thereby
reducing code duplication and simplifying maintenance. In C, generics are achieved
using void pointers (void *) along with functions like memcpy and memmove.

¢ Benefits:
o Code reuse: Write one function that works for multiple data types.
o Easier maintenance: Fix bugs or make improvements in one place.
e Common Applications:
o Sorting and searching arrays of any type.
o Generic swap functions for data elements.

o Manipulating user-defined structures.

Generic Swap Function

Traditional Swap Functions

For specific types, swap functions are defined separately:

89

Guest
Rectangle

void swap_int(int *a, int *b) {
int temp = *a;

*a = *b;
*b = temp;
}
For strings:

void swap_string(char **a, char **b) {
char *temp = *aj;
*a = *b;

*b = temp;

The Challenge for Generics

To write a single swap function for any type, we must:
e Use woid * pointers since the data type is not known.
e Determine the size (in bytes) of the data to swap.

o Use atemporary storage buffer and copy the raw bytes.

Implementation Using memcpy

*GENERIC SWAP (Using void): A generic swap function takes two pointers and the
number of bytes to swap.

Function Prototype:

void swap(void *datalptr, void *data2ptr, size_t nbytes);

Step-by-Step Implementation:
1. Allocate temporary storage as an array of char Of size nbytes (since char is1byte).

2. Copy nbytes from the first pointer into the temporary storage using nencpy .

90

Guest
Rectangle

3. Copy nbytes from the second pointer to the first pointer.

4. Copy nbytes from the temporary storage to the second pointer.

Code Example:

#tinclude <stdio.h>

#include <string.h>

void swap(void *datalptr, void *data2ptr, size t nbytes) {

int

char temp[nbytes];

memcpy (temp, datalptr, nbytes);
memcpy (datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

main(void) {
int x = 2, y = 5;
swap(&x, &y, sizeof(x));

printf("After swap: x = %d, y = %d\n", X, y);

short s1 = 10, s2 = 20;
swap(&sl, &s2, sizeof(sl));

printf("After swap: sl = %d, s2 = %d\n", sl1, s2);

char *strl = "Hello";
char *str2 = "World";
swap(&strl, &str2, sizeof(strl));

printf("After swap: strl = %s, str2 = %s\n", stri,

return 9;

91

str2);

Guest
Rectangle

memcpy

memcpy is a function that copies a specified amount of bytes at one
address to another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in
dest. (It also returns dest). It does not support regions of memory that

overlap. . :
P memcpy must take pointers to the bytes to work with to

know where they live and where they should be copied to.

int x 5;

int y = 4;
memcpy (&x, &y, sizeof(x)); // like x =y

memmove

memmove is the same as memcpy, but supports overlapping regions of
memory. (Unlike its name implies, it still “copies”).

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in
dest. (It also returns dest).

92

Guest
Rectangle

int main()
{
// i B 5% RS
int sourcel[10] = {1,2,3,4,
int destination[10];

memmove (source+2, source, sizeof(int) * 8);

for (int 1 = 0; 1 < 10; i++)
printf("destination[%d]=%d\n", i, destination[i]);

for (int 1 = 0; 1 < 10; 'i++)
printf("source[%d]=%d\n", i, sourcel[il]);

Generic Array Swap (Swap Ends)

Problem Statement

Write a function that swaps the first and last elements of an array of any data type.

Challenges
e Pointer Arithmetic with void * :

Arithmetic cannot be directly performed on void * pointers because C does not
know the size of the elements.

e Solution:

Cast the void * pointertoa char * pointer so that arithmetic is done in bytes.

Implementation Strategy
1. Add an additional parameter for the element size.

2. Compute the address of the last element as:

last element address = (charx)arr + (nelems — 1) x elem_bytes

3. Use the generic swap function to swap the first and last elements.

93

Guest
Rectangle

Code Example:

#include <stdio.h>
#include <string.h>

void swap(void *datalptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memcpy (datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

void swap_ends(void *arr, size t nelems, size t elem_bytes) {
// Cast arr to char* for byte-wise pointer arithmetic
swap(arr, (char *)arr + (nelems - 1) * elem_bytes, elem bytes);

int main(void) {
int nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[@]));
printf("After swap_ends: nums[@] = %d, nums[%zu] = %d\n", nums
[0], nelems - 1, nums[nelems - 1]);

// Example with strings

char *strs[] = {"Hi", "Hello", "Howdy"};

nelems = sizeof(strs) / sizeof(strs[0]);

swap_ends(strs, nelems, sizeof(strs[@]));

printf("After swap_ends: strs[@] = %s, strs[%zu] = %s\n", strs
[0], nelems - 1, strs[nelems - 1]);

return 0;

Generics Pitfalls

94

Guest
Rectangle

VOID POINTER PITFALLS: Although vcid * allows generic programming, it lacks type
safety. C cannot check the type of data pointed to by a voia +, making errors such as
incorrect element size or misinterpreting memory content possible.

Common Pitfalls:

e Dereferencing Issues:

You cannot directly dereference a void * because the compiler does not know the
size of the data.

e Pointer Arithmetic:

Arithmetic on void * is not allowed; casting toa cnar « is necessary.

¢ Incorrect Size Parameter:

Failing to pass the correct number of bytes can lead to data corruption or memory
errors.

e Memory Overlap:

nencpy does not support overlapping regions; use nemmove if overlap is possible.

ADVICE: Always verify that the element size passed to generic functions is accurate,
and use explicit casts to ensure correct pointer arithmetic.

/] /*

// * COMP201

// * Lecture R13

/] *§

// * This program implements a generic swap function that
// * works for any variable type. It also shows how you
// * can call the function incorrectly and what happens in
// * memory if you do so.

/] */

#include <stdio.h>
#include <string.h>

/* This is a generic swap function that can swap the data pointed

95

Guest
Rectangle

* to by the two pointers, of the given size in bytes.
*/
void swap(void *datalptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memcpy (datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

int main(int argc, char *argv[]) {
// Example 1
int x = Oxffffffff;
int y = Oxeeeeeeee;
printf("BEFORE: Xx = Ox%Xx, y = Ox%x\n", X, y);
//swap(&x, &y, sizeof(x));
swap(&x, &y, sizeof(short)); // what happens if we do this?
printf("AFTER: X = Ox%Xx, y = @x%x\n", X, y);

// Example 2

char stringl[10] "Hello";

char string2[10] "Goodbye";

printf("BEFORE: stringl: %s\n", stringl);

printf("BEFORE: string2: %s\n", string2);

//swap(stringl, string2, sizeof(stringl));

swap(stringl, string2, sizeof(int)); // what happens if we do
this?

printf("AFTER: stringl: %s\n", stringl);

printf("AFTER: string2: %s\n", string2);

return 0;

Output:

BEFORE: x = Oxffffffff, y = Oxeeeeeeee
AFTER: x = Oxffffeeee, y = Oxeeeeffff
BEFORE: stringl: Hello

96

Guest
Rectangle

BEFORE: string2: Goodbye
AFTER: stringl: Goodo
AFTER: string2: Hellbye

Final Summary & Takeaways

e Generics in C allow the creation of functions that work with any data type using void
« pointers.

e A generic swap function can be implemented using nencpy to handle arbitrary data
types, provided the element size is known.

e Generic array operations (such as swapping the first and last elements) require
careful pointer arithmetic using casts to char * to work with raw bytes.

e Pitfalls:
o Lack of type safety with void
o The necessity of accurate element size specification

o Use of nencpy Vvs. memmove in overlapping regions

97

Guest
Rectangle

11. Function Pointers and Generics
inC

Recap: Generics in C

*VOID POINTER (void): A generic pointer that can point to any data type. However,
since C does not perform type checking on void *, pointer arithmetic and
dereferencing require explicit casts.

Key points:
e Use nencpy Or memmove to copy arbitrary data.
e To perform arithmetic, cast a void * toa char * because sizeof(char) is1byte.
e Generic functions (like a generic swap) reduce code duplication by handling different
data types.

Example: Generic Swap Function

void swap(void *datalptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memcpy (datalptr, data2ptr, nbytes);

98

Guest
Rectangle

memcpy (data2ptr, temp, nbytes);

This function swaps the bytes at two memory locations regardless of the data type,
provided the number of bytes is specified.

memset

memset is a function that sets a specified number of bytes at one address to a
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5];
memset(counts, @, 3); // zero out first 3 bytes at counts
memset(counts + 3, Oxff, 4) // set 3rd entry’s bytes to 1s

Introduction to Function Pointers

FUNCTION POINTER: A variable that holds the address of a function and allows
functions to be passed as parameters or assigned to variables.

General Syntax:

[return typel (*[namel) ([parameter types])

Function pointers enable writing generic algorithms that can delegate type-specific
operations (such as comparisons or printing) to user-provided functions.

Declaring a Function Pointer

For a comparison function that compares two generic elements:

99

Guest
Rectangle

bool (*compare fn)(void *a, void *b);
Or, using the more common integer-returning comparison (similar to strcmp):

int (*compare fn)(void *a, void *b);

Generic Bubble Sort Using Function Pointers

Motivation

Bubble sort is a simple sorting algorithm that repeatedly swaps adjacent elements if they
are out of order. To make bubble sort generic, the algorithm must:

e Work on an array of any type.
e Rely on a user-supplied comparison function to decide if two elements are in the
correct order.

Generic Bubble Sort Prototype

void bubble sort(void *arr, int n, int elem_size bytes, int (*compa
re_fn)(void *a, void *b));

Implementation Outline
1. Accessing Elements:

Calculate the address of the i-th element using:
void *p_elem = (char *)arr + i * elem_size bytes;

2. Comparison:
Use the passed comparison function to compare adjacent elements.
3. Swapping:

Call the generic swap function to exchange elements when needed.

100

Guest
Rectangle

Example Implementation

void bubble sort(void *arr, int n, int elem_size bytes, int (*compa
re_fn)(void *, void *)) {
bool swapped;
do {
swapped = false;
for (int 1 = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem_size b
ytes;
void *p_curr_elem = (char *)arr + i * elem_size bytes;
if (compare_fn(p_prev_elem, p _curr_elem) > @) { // Com
pare returns >0 if out-of-order
swap(p_prev_elem, p_curr_elem, elem_size bytes);
swapped = true;

}
} while (swapped);

Example: Integer Comparison Function

int integer_compare(void *a, void *b) {
int int_a = *(int *)a;
int int_b = *(int *)b;
return int_a - int_b;

Usage:
int nums[] = {4, 2, -5, 1, 12, 56};

int count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, count, sizeof(nums[@]), integer_ compare);

101

Guest
Rectangle

Additional Generic Operations

Generic Array Rotation (Swap Ends)

Swapping the first and last elements of an array generically requires pointer arithmetic
with a specified element size.

void swap_ends(void *arr, size t nelems, size t elem_bytes) {
// Cast to char* for byte arithmetic
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);

Usage Example:
int nums[] = {5, 2, 3, 4, 1};

size t nelems = sizeof(nums) / sizeof(nums[0@]);
swap_ends(nums, nelems, sizeof(nums[@]));

Generic Printing and Counting Matches

Generic functions can also accept function pointers for printing elements or counting
matches in an array. For example:

Count Matches Prototype

int count_matches(void *base, int nelems, int elem_size bytes, bool
(*match_fn)(void *));

#include <stdbool.h>
// Callback functions to be used in count_matches

bool match_less_than_three(void *ptr) {
return *(int *)ptr < 3;

bool match_nonnegative(void *ptr) {

102

Guest
Rectangle

return *(int *)ptr >= 0;

Example Implementation

int count_matches(void *base, int nelems, int elem_size bytes, bool
(*match_fn)(void *)) {
int count = 0;
for (int i = @; i < nelems; i++) {
void *elem ptr = (char *)base + i * elem_size bytes;
if (match_fn(elem_ptr)) {
count++;

}

return count;

This function iterates over a generic array and uses a match function to determine if each
element satisfies a condition.

Standard Library Usage and Function Pointers

STANDARD LIBRARY FUNCTIONS: Functions such as qgsort, bsearch, 1find, and
1search in the C standard library use function pointers for comparing elements. These
functions require the caller to supply a comparison function that follows a specific
signature, allowing the functions to work with any data type.

e Example:
gsort(base, nelems, elem_size bytes, compare_fn);

This demonstrates how function pointers are integral to writing flexible, generic code in
C.

103

Guest
Rectangle

» gsort - | can sort an array of any type! To do that, | need you to provide me
a function that can compare two elements of the kind you are asking me to
sort.

* bsearch - | can use binary search to search for a key in an array of any type!
To do that, | need you to provide me a function that can compare two
elements of the kind you are asking me to search.

» 1find - | can use linear search to search for a key in an array of any type! To
do that, | need you to provide me a function that can compare two elements
of the kind you are asking me to search.

* 1search - | can use linear search to search for a key in an array of any type!
| will also add the key for you if | cant find it. In order to do that, | need you
to provide me a function that can compare two elements of the kind you are
asking me to search.

« scandir - | can create a directory listing with any order and contents!
To do that, | need you to provide me a function that tells me whether
you want me to include a given directory entry in the listing. | also need
you to provide me a function that tells me the correct ordering of two
given directory entries.

Final Summary & Takeaways
e Generics:
o void * pointers enable writing code that works with any data type.

o Operations such as swapping and array manipulation are implemented by
treating memory as a sequence of bytes.

¢ Function Pointers:

o Allow passing functions as parameters to perform type-specific operations (e.g.,
comparisons).

o Have a standard syntax and are used in many standard library functions.
e Generic Bubble Sort:

o lllustrates how to combine generic data handling with function pointers to
create a reusable sorting algorithm.

e Generic Utility Functions:

104

Guest
Rectangle

o Beyond sorting, generic functions can be written for printing, counting matches,
and array rotations.

e Key Pitfalls:
o wid = lacks type safety; correct element sizes must be provided.
o Pointer arithmetic with voia * requires casting to char * .

o Always verify that function pointers match the expected signatures.

105

Guest
Rectangle

12. Structs, const, and Generic
Stack

Objective & Scope
This note introduces two fundamental topics in C programming:
e The use of const and structs to create robust, maintainable code.

e The design and implementation of a generic stack data structure that works with
any data type.

These topics build on previous lectures covering generics, void pointers, and generic
swap functions. Prerequisites include familiarity with basic memory operations (e.g.,
memcpy) and previous exposure to generic programming techniques in C.

Recap of Generics So Far

GENERICS: The use of voia *+ pointers and functions like memcpy / memmove enables us to
write code that operates on data of any type.

KEY IDEA: By combining void pointers with function pointers, we can create reusable
algorithms (e.g., generic swap and bubble sort) that delegate type-specific operations
to user-provided functions.

106

Guest
Rectangle

The const Keyword

Global and Local Constants

CONST VARIABLE: A variable declared with const cannot be modified after
initialization.

Example:

const double PI = 3.1415;
const int DAYS_IN_WEEK = 7;

const with Pointers

CONST POINTER TO DATA: A declaration like const char *s means that the characters
pointed to by s cannot be modified through .

Example:

char buf[6];

strcpy(buf, "Hello");

const char *s = buf;

// s[@] = 'h'; // Error: cannot modify data via s

However, the pointer itself can be changed:

s = "World"; // Valid: changing where s points is allowed

const in Function Parameters

Using const in function parameters signals that the function will not modify the data
pointed to by the parameter.

Example:
int countUppercase(const char *str) {

int count = 0;
for (int i = @; i < strlen(str); i++) {

107

Guest
Rectangle

if (isupper(str[i])) {
count++;

}

return count;

Here, str isdeclared asa const char + to prevent modification of its content.

Structs in C

Defining and Using Structs

STRUCT: A user-defined data type that groups related variables (members) under one

name.

Example:

struct date {
int month;
int day;

};

struct date today;
today.month = 1;
today.day = 28;

Typedef and Struct Initialization

Wrapping a struct definition ina typedes allows you to create variables without

repeatedly writing the keyword struct .

Example:

typedef struct date {
int month;
int day;

108

Guest
Rectangle

} date;

date new_years_eve = {12, 31};

Passing Structs to Functions

When a struct is passed by value, a copy is made. To modify the original struct, pass a
pointer.

By Value:

void advance_day(date d) {
d.day++;

By Reference:

void advance_day(date *d) {
d->day++; // equivalent to (*d).day++;

int main(void) {
date my _date = {1, 28};
advance_day(&my_date);

printf("%d\\n", my date.day); // Output: 29
return 0;

Arrays of Structs

Arrays of structs are declared like any other arrays. They can be initialized either in full or
field-by-field.

Example:

typedef struct my_struct {

int x;

109

Guest
Rectangle

char c;
} my_struct;

my_struct array_of_structs[5];
array_of_structs[@] = (my_struct){e, 'A'};

Generic Stack Implementation

Motivation and Overview
STACK: A data structure that supports last-in, first-out (LIFO) operations: push, pop,
and peek.

GOAL: Create a generic stack that can store elements of any type.

From Type-Specific to Generic Stack

Traditional implementations for specific types (e.g., an int stack) are straightforward:

Example:

typedef struct int_node {
struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

For a generic stack, we must:
e Usea wid * pointerin each node to store data of any type.

e Store the element size in the stack structure for correct memory operations.

Generic Stack Data Structures

110

Guest
Rectangle

GENERIC STACK STRUCTS:

Definition:

typedef struct node {
struct node *next;
void *data;

} node;

typedef struct stack {
int nelems;
size_t elem_size bytes;
node *top;

} stack;

Generic Stack Operations

Creating a Stack

stack_create: Allocates a new stack with the specified element size.

Code Example:

stack *stack_create(size_t elem_size bytes) {
stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size bytes = elem_size_ bytes;
return s;

Pushing onto the Stack

When pushing, the stack must allocate memory for a copy of the element to ensure the
data persists.

stack_push:

111

Guest
Rectangle

void stack push(stack *s, const void *data) {
node *new node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size bytes);
memcpy (new_node->data, data, s->elem_size bytes);
new_node->next = s->top;
s->top = new_node;
s->nelems++;

Popping from the Stack

Instead of returning the popped element (which may cause memory management
issues), the caller provides a memory location to copy the data.

stack_pop:

void stack pop(stack *s, void *addr) {

if (s->nelems == @) {
// Handle error (e.g., exit or return error code)
fprintf(stderr, "Cannot pop from empty stack\\n");
exit(1);

}

node *n = s->top;

memcpy(addr, n->data, s->elem_size bytes);

s->top = n->next;

free(n->data);

free(n);

s->nelems--;

Example Usage of the Generic Stack
Example: Pushing and popping integers.

#include <stdio.h>
#include <stdlib.h>

112

Guest
Rectangle

#include <string.h>

// (Assume stack and node struct definitions and functions are defi
ned as above)

int main(void) {
stack *int_stack = stack create(sizeof(int));
int value;

int x = 7;

stack_push(int_stack, &x);

X = 42;
stack_push(int_stack, &x);

// Pop the top element into 'value'
stack_pop(int_stack, &value);
printf("Popped: %d\\n", value);

// Clean up remaining elements...

while (int_stack->nelems > @) {
stack_pop(int_stack, &value);
printf("Popped: %d\\n", value);

free(int_stack);
return 0;

Final Summary & Takeaways

e const Keyword:
o Used to declare variables and pointers that should not be modified.

o Essential for defining immutable data and ensuring safe function contracts.

113

Guest
Rectangle

e StructsinC:

o Allow creation of custom data types grouping related variables.

O typedef can simplify struct usage.

o Passing structs by pointer enables modification of the original data.
e Generic Stack Implementation:

o Generic stacks leverage void * to store any data type and require element size to
manage memory.

o Key operations (push, pop, create) must carefully manage dynamic memory to
avoid leaks.

o A generic stack improves code reusability and forms the basis for other generic
data structures.

e Generics and Function Pointers:

o Function pointers and generic programming techniques are foundational for
writing flexible and reusable C code.

114

Guest
Rectangle

13. Compiling C Programs

Objective & Scope

This note details the processes involved in compiling C programs using GCC, along with
an introduction to Make and Makefiles. The lecture covers material on GCC's internal
pipeline—preprocessor, compiler, assembler, and linker—as well as how Make
automates building projects.

GNU

115

Guest
Rectangle

GNU: “GNU's Not Unix”

* GNU is a Unix-like operating system. That means it is a
collection of many programs: applications, libraries, developer
tools, even games. The development of GNU, started in Jan 1984,
is known as the GNU Project. Many of the programs in GNU are
released under the auspices of the GNU Project; those we call GNU
packages.

* The program in a Unix-like system that allocates machine resources and talks
to the hardware is called the “"kernel! GNU is typically used with a kernel called
Linux. This combination is the GNU/Linux operating system. GNU/Linux is
used by millions, though many call it “Linux” by mistake.

» GNU's own kernel, The Hurd, was started in 1990 (before Linux was started).
Volunteers continue developing the Hurd because it is an interesting technical
project.

- taken from www.gnu.org .

The GCC (Gnu Compiler Collection) Compilation Process
Below is the 4 stages of compilation:
e Preprocessing:

Handles directives such as file inclusion, macro expansion, and conditional
compilation. It produces a modified source file ready for actual compilation.

e Compiling:

Converts the preprocessed code into assembly language by parsing and optimizing
the code.

e Assembling:

Translates the assembly code into object (machine) code, producing intermediate
binary files, which are the binary formats that the computer can directly execute.

e Linking:

The linker takes the intermediate binary file (or multiple object files, if your program
is split over several source files) along with any libraries your code depends on. Then
it combines object files and libraries to produce the final executable program

116

Guest
Rectangle

The GNU Compiler Collection (GCC)

Source Code (.c, .cpp, .h]l
Preprocessing Step 1: Preprocessor (cpp)

Include Header, Expand Macro (.1, -ii)l
Compilation Step 2: Compiler (gcc, g++)

Assembly Code {.s}l

Assemble Step 3: Assembler (as)
Machine Code (.o, .obj)l
Static Library (.1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code {.exe]l

The Preprocessor

PREPROCESSOR: Handles directives such as #define and #inciude . It performs macro
substitution and file inclusion, effectively “pasting” the contents of header files into
the source.

e Object Macros:

#define BUFFER_SIZE 1024
foo = (char *) malloc(BUFFER_SIZE);

e Function Macros:

#define min(X,Y) ((X) < (Y) ? (X) : (Y))
#define twice(X) (2*(X))

¢ Importing Files:

The #inciude directive includes the content of header files.

117

Guest
Rectangle

i C Source Code

C Program

|

Are there .
No . Object . Executable
Preprocessor >—————| Compiler L LN Linker
Directives Code Code

A

iYes

Pre-Processor Perform Action

SCALER

Topres

When you run the command:

gcc -E -0 hello.i hello.c

1. £ Option
e Tells GCC to run only the C preprocessor phase.
e This expands macros and includes, but stops before compilation.
2. o Option
e Specifies the output file name.
e Here, neilo.i will contain the preprocessed C code.
As aresult, you'll find that nei10.: holds all the code after preprocessing—making it

useful for debugging or inspecting macro expansions and #inciude directives.

The Compiler (output: assembly code)

118

Guest
Rectangle

COMPILER: Transforms the preprocessed code into assembly code. Its primary
function is parsing the C source code and generating corresponding assembly
instructions.

¢ Demo Command:

gcc -S hello.1

o Purpose:

The -s option tells GCC to compile the input file down to assembly
language.

o What It Does:

It converts the preprocessed source (in this case, hei10.1) into an assembly
file (commonly named re110.5) and stops before generating object code
(before sending to assembler).

The Assembler (output: object code) and ELF

ASSEMBLER: Converts assembly code into machine code, resulting in an object file
(e.g., hello.o)

e ELF (Executable and Linkable Format):

A cross-platform standard that represents object code and executable files. It
includes several sections:

o .text: Executable code.

o .data: Global or static variables with predefined values.
o .rodata: Read-only data.

o .bss: Uninitialized global or static variables.

o .comment: Meta information about the object file.

¢ Demo Commands:

as -0 hello.o hello.s
readelf -e hello.o

119

Guest
Rectangle

1. Assembling:
Command: s o hello.o hello.s
e Purpose: Converts the assembly file (he110.<) into an object file (hello.0).
e Details:

o as is the GNU assembler, which translates assembly language into
machine code.

0 o hello.o setsthe output file name to neiio.o.
o The produced object file is in ELF format and is ready for linking.
2. Inspecting the Object File:
Command: readelf -e hello.o

e Purpose: Displays all (and only) the header information in the ELF object
file (hello.o)

e Details:
O readelf IS atool used to examine the contents of ELF files.

o The e option (or -a11) outputs all header information, including the
ELF header, section headers, and program headers.

o This command is useful for verifying and debugging the structure of

your object file.

Table below outlines several common sections in an ELF (Executable and Linkable
Format) file produced by assemblers and compilers on Unix-like systems. Each section
has a specific purpose in the final binary

120

Guest
Rectangle

The Assembler - ELLF

Section |Contents Code Example
.text Executable code (x86 assembly) mov -0x8(%rbp),%rax
data Any global or static vars that have a pre- int val = 3
’ defined value and can be modified (as global var)
.rodata |Variables that are only read (never written) const int a = 0;

All uninitialized data; global variables and static
.bss variables initialized to zero or or not explicitly |static int i;
static int i; initialized in source code

Comments about the generated ELF (details
.comment |such as compiler version and execution
platform)

The Assembler - ELF

ELF header

Program header table

dext

Jrodata

.data

Section header table

nm hello.o

e Purpose:

The command nn hello.0 is used to display the symbol table of the object file nei10.0.
It shows the symbols defined in and referenced by the file.

121

Guest
Rectangle

e What It Does:
o Lists symbols (such as functions and global variables) with their addresses.

o lIdentifies the type of each symbol (e.g., text for code, data for initialized variables,
bss for uninitialized variables).

o Flags undefined symbols that need to be resolved during the linking phase.
Conclusion:
These two tools offer complementary views of an ELF file:

¢ readelf: Displays detailed header information, including the ELF header, section
headers, program headers, and other metadata about the file's structure. It helps you
understand how the file is organized and how the sections are laid out.

e nm: Lists the symbol table, showing you the names and types of symbols (functions,
variables, etc.) defined in or referenced by the ELF file. It helps you see how symbols
are used within the file.

Together, these tools let you inspect almost all the important metadata and symbol
information in an ELF file, though they don't display the raw binary content of each
section.

The Linker (output: executable)

When the assembler generates object files (typically in ELF format on Unix-like systems),
the linker then takes these ELF object files, along with any libraries, and combines them
into a final executable (or shared library), which is also usually in ELF format. The linker
resolves symbols and rearranges sections so that the resulting ELF file is properly
structured for execution by the operating system's loader.

LINKER: Combines object files into a single executable and resolves references to
external functions and libraries.
e Static Linking:

The machine code of external functions used in your program is copied into the

executable (files usually have a ".a" extension).

e Dynamic Linking:

122

Guest
Rectangle

Only an offset table is created in the executable. The operating system loads the
machine code needed for external functions during execution (files usually have a
".s0" extension).

¢ Demo Command:

ld --dynamic-linker /1ib64/1d-linux-x86-64.s0.2 hello.o -0 he
llo -1c --entry main

1d : Invokes the GNU linker.

o

O --dynamic-linker /1ib64/1d-linux-x86-64.s0.2 <
Specifies the dynamic linker (loader) to use at runtime. In this case, it points to
the 64-bit Linux dynamic linker.

O nello.o : The input object file generated by the assembler (or compiler).
O -0 hello: Sets the output file name to neiio, which will be the final executable.

o -1c:Links against the standard C library (1ibc), ensuring that standard
functions (like those from prints or malloc) are available in the executable.

O --entry main : Specifies the entry point of the executable. Here, the linker will
set the starting function to nain .

o Note: You may not get this command working, because it will be slightly
different on different Linux distributions

After linking, the executable is run (e.g., ./ne110) to demonstrate that all components

have been integrated correctly.

Make and Makefiles

Introduction to Make

MAKE: A build automation tool that reads a Makefile—a set of rules that defines how
to compile and link a program. “GNU Make is a tool which controls the generation of
executables... from the program’s source files.”

e Purpose: Automate the build process by rebuilding only what is necessary.

e Advantages:

123

Guest
Rectangle

o General (usable for more than just C code)
o Fast (only rebuilds modified dependencies)

o Shareable (users compile by simply running make)

Structure of a Makefile

MAKEFILE RULE: Each rule contains a target, dependencies, and the commands
(recipes) to build the target. MAKEFILE = List of Rules.

target: dependencies
command(s)

e Example for a simple C program:

simple: simple.c

gcc -o simple simple.c
clean:

rm -rf simple

e Usage

make simple
make clean

Note: Commands must be indented with a tab.

Advanced Makefile Example

REALISTIC MAKEFILE: For a project with multiple source files:

CC = gcc
CFLAGS = -g -std=c99 -pedantic -Wall

all: Far

Far: Far.o vector.o

124

Guest
Rectangle

$(CC) $(CFLAGS) $” -0 %@

Far.o: Far.c Far.h vector.h
$(CC) $(CFLAGS) -c Far.c

vector.o: vector.c vector.h
$(CC) $(CFLAGS) -c vector.c

clean:
rm Far.o vector.o Far

.PHONY: clean all

Variables such as cc, criacs, and automatic variables like ¢ (target) and s

(prerequisites) simplify the build process.

Generic Makefile Template

TEMPLATE: A generic Makefile for small projects:
PROGRAMS = hello
CC = gcc
CFLAGS = -g -Wall -00 -std=gnu99

LDFLAGS = -1m

$(PROGRAMS): %: %.c
$(CC) $(CFLAGS) -0 $@ $~ $(LDFLAGS)

.PHONY: clean all
all: clean $(PROGRAMS)

clean:
rm -f $(PROGRAMS) *.o

This template can be extended to include libraries or additional targets as needed.

125

Guest
Rectangle

Final Summary & Takeaways

e The GCC compilation process involves distinct phases: preprocessing, compiling,
assembling, and linking. Each phase transforms the C source code closer to a
runnable executable.

e Make and Makefiles automate the build process by specifying dependencies and

recipes, ensuring that only the necessary components are rebuilt when changes
occur.

e Understanding these processes enhances practical skills in compiling, debugging,
and organizing larger projects.

126

Guest
Rectangle

14. Introduction to x86-64
Assembly

Learning Assembly

FOCUS AREAS:
e Moving data
e Arithmetic & logical operations

e Control flow

e Function calls

Learning Goals

LEARNING GOALS:
e Understand what assembly language is and its importance
e Recognize x86-64 assembly format

e Master the mov instruction for data movement

127

Guest
Rectangle

Learning Assembly

. Arithmetic
Moving data : .
around and IOQ’CE/ . Control flow . Function calls
operations
Lecture 14 Lecture 15 Lecture 16-17 Lecture 18
Plan

1. Overview: GCC & Assembly
2. Demo: Disassembling an executable
3. Registers & assembly-level abstraction

4. The mov instruction

Bits All the Way Down

e Data types:
o Integers (unsigned, 2's complement)
o Floating-point (IEEE single/double)
o Char (ASCII)
o Address (unsigned long)
o Aggregates (arrays, structs)

e Code: machine-encoded bits; assembly is human-readable form.

GCC and Assembly

GCC: Compiler that translates C (and other languages) to machine code.

e High-level abstractions are lowered to bits.

128

Guest
Rectangle

e Assembly is textual representation of machine code.

e One C statement can map to multiple assembly instructions.

Demo: Looking at an Executable
e Command: objdump -d <executable>
e Examine:

o Function labels & start addresses

o Instruction bytes (hex)

o Mnemonics & operands

Our First Assembly: sum_array

int sum_array(int arr[], int nelems) {
int sum = ©;
for (int 1 = @; i < nelems; i++) {
sum += arr[i];
}

return sum;

Disassembly:

00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00O mov $0x0, %edx
4005bb: b8 00 00 00 00 mov $0x0, %eax

4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslqg %edx,%rcx

4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx

4005cb: 39 f2 cmp %esi,%edx

4005cd: 7c f3 jl 4005c2 <sum_array+exc>
4005cf: f3 c3 repz retq

129

Guest
Rectangle

Explanation
e Label & Address: sum array at ex4eesbe

e Hex Bytes: Machine code (e.g., ba o eo 60 e0). This is the machine code: raw
hexadecimal instructions, representing binary as read by the computer. Different
instructions may be different byte lengths. Executed by the CPU. These machine
codes are given as hexadecimal instructions, so that when you convert hexadecimals
int binary number (1 and 0s), you will see the real machine code.

e Mnemonic: Instruction (e.g., mov $exe,%edx). This is the assembly code: “human-
readable” versions of each machine code instruction. Assembler converts those into
machine code. Each instruction has an operation name (“opcode”).

e Operands:
o ¢ - "immediate”, constant
o % - register, a storage location on the CPU

o Memory addressing forms (e.g., (%rdi,%rcx,4))

Assembly Abstraction

ABSTRACTION:
e C hides machine details; assembly exposes raw operations.

e Assembly/machine code is processor-specific, no type checking.

 Here's what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction
int sum = X + y;

1) Copy x into register 1

2) Copyy into register 2

3) Add register 2 to register 1

4) Write register 1 to memory for sum

Registers

I REGISTER: 64-bit CPU storage for fast data access, parameters, and returns.

130

Guest
Rectangle

Bottom line: Registers are the CPU'’s ultra-fast storage “slots” that your assembly
instructions use to pass data around, control program flow, and keep track of status.
Registers are not located in memory! They are fast read/write memory slot right on the
CPU that can hold variable values.

Registers

1
1
1
1

%rax %rsi %r8 %rl2

1
1
1
1

%rbx %rdi %r9 %rl3

1
1
1
1

%rcx %rbp %rie %rla

1
1
1
1

%rdx %rsp %rll %rl5

General-Purpose Registers

There are 16 general-purpose registers used in normal integer and pointer code.
® %rax, %rbx, %rcx, %rdx, %rsi, %rdi , %rbp , %rsp
® %r8 , %r9, %rle , %rll , %rl2 , %ri3 , %rld, %rils

Last 8 general-purpose registers, #rs —%r15 , are added in the 64-bit extension, used for
additional arguments, temporaries, etc.

Category Register Names Primary Use

Integer arithmetic, passing
General- RAX , RBX, RCX, RDX , RSI, RDI,

arguments, stack/frame
Purpose RBP , RSP

management

. Source/destination pointers in

Pointer/Index RSI, RDI, RBP, RSP

memory operations and stack ops

131

Guest
Rectangle

Category Register Names Primary Use

Holds the address of the next

Instruction Ptr. RIP) .
instruction to execute

Flags CELAGS Status and control flags (zero, carry,
overflow, interrupt enable, etc.)
Floating-point and 128-bit vector

SIMD/Vector XMM@ — XMM15 9-p

operations (SSE, SSE2, etc.)

Control/System Cro — R4, MSRs CPU mode, P?glng,‘ cache control,
model-specific registers

e Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on registers.

e Registers also hold parameters and return values for functions.
e Registers are extremely fast memory!

e Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be in to
execute!

Machine-Level Code vs. Assembly
e Assembly: Human-readable mnemonics.
e Machine code: Hexadecimal bytes.

e Sequential instructions occupy sequential addresses.

132

Guest
Rectangle

Computer architecture

CPU
registers accessed Register file
by na.me . ALU
ALU is main
workhorse of CPU System bus Memory bus

1/0 bus

Mouse Keyboard Display [’

Instruction Set Architecture (ISA)

ISA: A contract between program/compiler
and hardware, defining CPU operations, data
formats, and control.

Defines operations that the processor
(CPU) can execute

Data read/write/transfer operations
Control mechanisms

x86-64 evolves from Intel’s 1978 design,
retaining legacy support.

Dictates register names and sizes.

The mov Instruction

I mov src,dst: Copy data from src to dst.

Operand Types

133

Disk,

Bus interface 1o l Main | “hello, world\n”
| bridge memory hello code

U

Expansion slots for
other devices such

use Graphics Disk as network adapters
controller adapter controller
"\

hello executable disk/server stores program

memory needed

for program
execution

(stack, heap, etc.)
accessed by address

storedondisk \yhen not executing

Application program

Compiler

CPU design

OS

Circuit design

Chip layout

Guest
Rectangle

¢ Immediate: s
e Register: %reg

° Memory: Imm(base, index,scale)

Operand Forms
Immediate

I mov $0x104, %rax — load constant into %rax.

Register

I mov %rbx, %rax — copy between registers.

Absolute Address

I mov 0x104, %rax — load from memory address.

Indirect

I mov (%rbx), %rax — load from address in register.

Base + Displacement

I mov 0x10(%rax), %rdx — load from base + offset. RAX + 0x10 to RDX.

Indexed

I mov (%rax, %rdx), %rcx — load from base + index. (value in RAX) + (value in RDX)

Indexed + Displacement

mov 0x10(%rax, %rdx), %rcx. (%rcx — M[RAX + RDX + 0x10]) *M = “the memory at
address”

Scaled Indexed

I mov (, %rdx,4), %rax — load from scale*index (scale*RDX).

134

Guest
Rectangle

Scaled Indexed + Displacement

I mov 0x4(,%rdx, 4), %rax.

Base + Scaled Indexed

I mov (%rax, %rdx, 2), %rcx.

Full Form

I Imm(base,index,scale) = address Imm + R[base] + R[index]*scale.

Most General Operand Form

Imm(r,,r;,s)
IS equivalent to...

Imm + R[r,] + R[r;]*s

In the AT&T form

disp(base, index, scale)

— here:

e disp (the displacement) is the constant before the parentheses (e.g. oxio).

e ase is the first register inside the parentheses (e.g. #rax).

135

Guest
Rectangle

e index isthe second registerinside (e.g. #%rdx).
e scale (if you have one) is the third element; if you omit it, it defaults to 1.

Example:

0x10(%rax, %rdx)

e Displacement = ox10
e Base = urax
e Index = urdx

e Scale =1 (implicit)

Memory Location Syntax

Syntax Meaning

ox104 Address 0x104 (no $)

(%rax) What's in %rax

4(%rax) What's in %rax, plus 4
(%rax, %rdx) Sum of what's in %rax and %rdx
4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

What's in %rcx, times 4

[+)
(, %rex, 4) (multiplier can be 1, 2, 4, 8)

(%rax, %rcx, 2) What's in %rax, plus 2 times what's in %rcx

What's in %rax, plus 2 times what's in %rcx,

0, 0,
8(%rax, %rcx, 2) plus 8

136

Guest
Rectangle

Operand Forms

Type Form Operand Value Name
Immediate $Imm Imm Immediate
Register r, R[r,] Register
Memory Imm M[Imm] Absolute
Memory (ra) MI[R[ra]] Indirect
Memory Imm(ry) M[Imm + R[ry]] Base + displacement
Memory (ry, 15) M[R[ry] + R[r;]] Indexed
Memory Imm(ry, ry) M[Imm + R[ry] + R[r;]] Indexed
Memory (ri,s) M[R[r;] - s] Scaled indexed
Memory Imm(, rj, s) M[Imm + R[r;] - s] Scaled indexed
Memory (rp, 11, S) M[R[ry] + R[r;] - 5] Scaled indexed
Memory Imm(ry, 1y, 5) M[Imm + R[ry] + R[r;] -s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, or
values from memory. The scaling factor s must be either. 1, 2, 4, or 8" 57

Goals of Indirect Addressing

PURPOSE: Provide flexible memory references (arrays, pointers) via displacement,
base, index, and scale.

Final Summary & Takeaways

SUMMARY: Covered assembly intro: data models, GCC workflow, disassembly,
registers, ISA, mov, addressing modes, and practice.

KEY TAKEAWAYS:
e Assembly maps high-level constructs to CPU ops
e Registers are fast, limited storage
e Addressing modes enable complex memory access

e Mastery of nov and addressing is foundational

137

Guest
Rectangle

15. Arithmetic and Logic
Operations

Plan
e Data and Register Sizes
e The 1ea Instruction

e Logical and Arithmetic Operations

Data Sizes

DATA SIZE: Assembly terminology for data units.
e Byte:1byte
e Word: 2 bytes
e Double word: 4 bytes

e Quad word: 8 bytes

SUFFIXES: Instruction suffix indicates data size.

e b — byte (8-bit)

138

Guest
Rectangle

e w — word (16-bit)
e | —double word (long) (32-bit)
e g — quad word (64-bit)

C Type < Suffix < Intel Data Type

C Type Suffix Size (bytes) Intel Data Type
char b 1 Byte

short w 2 Word

int | 4 Double word
long q 8 Quad word

char * q 8 Quad word
float s 4 Single precision
double | 8 Double precision

Register Sizes

I REGISTER SUBREGISTERS: Each 64-bit register has smaller aliases.

General-Purpose Registers

64-bit 32-bit 16-bit 8-bit
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %CX %cl
%rdx %edx %dx %d1
%rsi %esi %si %sil
%rdi %edi %di %dil
%rbp %ebp %bp %bpl
%»rsp %»esp %sp %spl
%r8 %r8d %r8w %r8b
%r9 %rod %row %r9b

139

Guest
Rectangle

64-bit 32-bit 16-bit 8-bit

%rle %rled %rlow %rleb
%rll %rlld %rllw %rllb
%rl2 %rl2d %rl2w %rl2b
%rl3 %rl3d %rl3w %rl3b
%rld %rlad %rlaw %rlab
%rl5 %r15d %r15w %r15b

Register Responsibilities

COMMON USAGE:
® rax — returnvalue
e yrai — first function argument
e ursi — second function argument
e rdx — third function argument

e rip — instruction pointer (address of next instruction)

e rsp — stack pointer (top of stack)

mov Variants

MOV SIZES: mov may be suffixed to specify operand size:
e ovb — byte
® ow — word
e movl — double word

® ovg — quad word

NOTE: movl to a register zero-extends the upper 32 bits.

Practice #1: mov and Data Sizes

For each, choose the correct suffix (v, w, L,0r q):

140

Guest
Rectangle

1. mov__ %eax, (%rsp)
2. mov__ (%rax), %dx

3. mov__ $oxff, %bl

4. mov_ (%rsp,%rdx,4), %dl
5. mov__ (%rdx), %rax

6. mov__ %dx, (%rax)

Answers:

movl %eax, (%rsp)

movw (%rax), %dx

movb $Oxff, %bl

movb (%rsp,%rdx,4), %dl
movq (%rdx), %rax

movw %dx, (%rax)

movabsq Instruction

movabsq: Load a 64-bit immediate into a register.
e novg supports only 32-bit immediates as source.

e Use movabsq $IMM64, %reg .

Example:

movabsq $0x0011223344556677, %rax

Practice #2: mov and Upper Bytes
Determine how each modifies the upper bytes of urax (initial #rax - o):
1. movabs $0x0011223344556677, %rax —> %rax = 0x0011223344556677

2. movb $-1, %al — %rax = 0x00112233445566FF

3, movw $-1, %ax — %rax = 0x001122334455FFFF

141

Guest
Rectangle

4. movl $-1, %eax — %rax = OxP0OOGROOFFFFFFFF

L. movq $-1, %rax — %rax = OXFFFFFFFFFFFFFFFF

movz and movs

ZERO-EXTEND (movz): Fills upper bytes with zeros
SIGN-EXTEND (novs): Fills upper bytes by sign-extending the source’s MSB

Zero-Extend Variants

Instruction Description

movzbw byte — word (zero-extend)
movzbl byte — double word
movzwl word — double word
movzbgq byte — quad word

movzwq word - quad word

I Operation: R «— ZeroExtend(S)

Sign-Extend Variants

Instruction Description

movsbw byte — word (sign-extend)
movsbl byte — double word

movswl word — double word

movsbq byte — quad word

movswg word — quad word

movslq double word — quad word
cltq %eax — sign-extend in %rax

Operation: R < SignExtend(S)

142

Guest
Rectangle

Code Reference: full_divide

// Returns x/y, stores remainder in location stored in remainder ptr
long *remainder_ptr) {

long full divide(long x, long vy,

long quotient =
long remainder = x % y;

*remainder_ptr = remainder;
return quotient;

full divide:
movq %rdx,
movq %rdi,
cqto
idivqg %rsi
movq %rdx,
ret

%rcx
%rax

(%rcx)

X/ y;

63

31

15 7 o

=

Tax Retur value

Yrbx

b bl ||| Callee saved

threx

Yhex el W 4th argument

lhrdx

Hedx

Hdx sdl 3rd argument

i

Hesi

Ysi Heil] 2nd argument

frdi

Yedi

(s [e]| tstarument

Instruction Effect Description

idivg S R[%rdx] « R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] « R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] « R[%rdx]:R[%rax] = S

cqto R[%rdx]:R[%rax] « SignExtend(R[%rax]) Convertto oct word

143

Guest
Rectangle

63 3 15 7 0
hrax Wemx Wax %al I Return value
Yrbx Yiebx [m:.z Calles saved
trex tecx 4th argument
Ardx Hedx Ydx rd angument
Hrei Hesi Yed feil 2nd argument
Hrdi Hedi Hdi Hdil 1st argument
Arbp Hebp .i'bp Hbpl Calles saved
Yrep Yemp [‘Isp [Tpl“” Stack pointer
YrE YrBd m Sth argurmant
hcD Heod Yo %e0b Bth angumant
Yrio %riod Yriow Caller saved
%ri1 frild Yrite Caller saved
12 %r12d Urize [%r12v ||| Calles saved
Yr13 %ri13d %ridw %ri3b (|| Callee saved
frld Kridd Uridu Arldb Callea saved
Hris ¥ritd WriSw Arish Callee saved

The 1ea Instruction

lea src, dst: Load Effective Address.

e Copies the address computed by <rc into dst, instead of dereferencing.

e Same operand forms as rmov .

Example:

lea 6(%rax), %rdx

%rdx <« 6 + R[%rax]

144

Guest
Rectangle

mov 6(%rax), %rdx # %rdx <« M[6 + R[%rax]]

lea vs. mov Examples

Operands mov Interpretation lea Interpretation
6(%rax), %rdx Load M[6 + R[%rax]] into %rdx %rdx « 6 + R[%rax]
(%rax,%rcx), %rdx Load M[R[%rax] + R[%rcx]] into %rdx %rdx < R[%rax] + R[%rcx]
(Brax,%rex,4), %rdx Load M[R[%rax] + 4-R[%rcx]] into %rdx %rdx < R[%rax] + 4-R[%rcX]
7(%rax,%rax,8), Load M[7 + R[%rax] + 8R[%rax]] into %rdx < 7+ R[%rax] +

%rdx %rdx 8-R[%rax]

A Note About Operand Forms

« Many instructions share the same address operand forms that mov uses.
-Eg. 7(%rax, %rcx, 2).

* These forms work the same way for other instructions, e.g. sub:

—sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what's there from
%rcx

 The exception is lea:
— It interprets this form as just the calculation, not the dereferencing
—lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Unary Instructions

I Unary Instructions: Operate on single operand (register or memory).

Instruction Effect Description
inc D DeD+1 Increment
dec D DeD-1 Decrement
neg D D« -D Negate

not D D «~D Bitwise NOT

145

Guest
Rectangle

Examples: incq 16(%rax) , dec %rdx , not %rcx .

Binary Instructions

Binary Instructions: Operate on two operands (register/memory, immediate).
Destination cannot be memory if source is memory.

Instruction Effect Description
add S, D DeD+S Add

sub S, D De«D-S Subtract

imul s, D DeD*S Multiply (trunc.)
xor S, D DeDA”S Exclusive OR
or S, D De«D|S OR

and S, D D«<D&S AND

Examples: addq %rcx, (%rax) , xorq $16, (%rax,%rdx,8) .

Large Multiplication

Full 128-bit product:
® imulqg s — signed full multiply — R[%rdx]:R[%rax] « R[%rax] * S

e g s — unsigned full multiply

Two-operand imul S, D: truncated result in D.

146

Guest
Rectangle

Large Multiplication

» Multiplying 64-bit numbers can produce a 128-bit result. How does
x86-64 support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and
truncates until it fits in a 64-bit register.

imul S, D D«<D?%*S
« If you specify one operand, it multiplies that by %rax, and splits the

product across 2 registers. It puts the high-order 64 bits in %rdx and
the low-order 64 bits in %rax.

Instruction Effect Description
imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

To summarize:
e inu1: Truncates the result to fit in a 64-bit register.

® wulg:Produces a128-bit result, storing it across two registers (%rdx and %rax).

Division & Remainder

Dividend / Divisor = Quotient + Remainder
e Dividend high 64 bits in #%-dx , low 64 bits in %rax .

e Divisor = operand.

e Quotient — %rax, Remainder = %rdx .

Instruction Effect
idivg S Signed divide:

R[%rax] < (R[%rdx]:R[%rax]) + S; R[%rdx] « (R[%rdx]:R[%rax]) mod S
divg S Unsigned divide (same mapping).

cqto Sign-extend %rax into %rdx for a128-bit dividend.

147

Guest
Rectangle

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] « R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] « R[%rdx]:R[%rax] = S

 Terminology: dividend / divisor = quotient + remainder
* X86-64 supports dividing up to a 128-bit value by a 64-bit value.

» The high-order 64 bits of the dividend are in %rdx, and the low-order
64 bits are in %rax. The divisor is the operand to the instruction.

 The quotient is stored in %rax, and the remainder in %rdx.

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] « R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] « R[%rdx]:R[%rax] = S

cgto R[%rdx]:R[%rax] <« SignExtend(R[%rax]) Convertto oct word

* Most division uses only 64-bit dividends. The cqto instruction
sign-extends the 64-bit value in %rax into %rdx to fill both registers
with the dividend, as the division instruction expects.

To summarize:

e Division and Remainder Terminology: The dividend divided by the divisor equals
the quotient plus the remainder.

¢ Registers for Division:

148

Guest
Rectangle

o The dividend's high-order 64 bits are stored in %rdx, and the low-order 64 bits
arein %rax.

o The quotient is placed in #rax, and the remainder is in #%rdx .
¢ Division Instructions:
o idivq is for signed division.
O divg is for unsigned division.
0 cqto sign-extends the 64-bit value in %rax to fill both %rax and %rdx .

e x86-64 Limitations: Most divisions use only 64-bit divisors, with up to 128-bit
dividend support using the two registers.

Shift Instructions

I Syntax: sal/shl/sar/shr k, D where k = immediate or %cl.

Instruction Effect Description
sal k, D D «D <<k Left shift

sar k, D D «D >?2 Kk Arithmetic right
shr k, D D «D >* k Logical right

Shift Amount (%cl): Only low-order log,(width) bits of %cl are used.

149

Guest
Rectangle

16. x86-64 Condition Codes &
Control Flow

Lecture Plan
e Practice: Reverse Engineering
e Assembly Execution and #rip

e Control Flow Mechanics

Reverse Engineering Practices
Follow along at: https://godbolt.org/z/QQj77g

Reverse Engineering Example

int add_to(int x, int arr[], int i) {
int sum = __ ? ;

sum += arr[?

1K

return ? ;

150

Guest
Rectangle

add_to:
movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret

® Jedi = x, %rsi = arr, %edx = i
® movslg %edx, %rdx =>sign-extend i
® ovl %edi, %eax = sum = X

® addl (%rsi,%rdx,4), %eax = sum += arr[i]

® ret = return sum

Learning Assembly
e Moving data around
e Arithmetic & logical operations
e Control flow

e Function calls

Executing Instructions

Execution:
e |Instructions & data reside in memory.
e CPU fetches bytes, decodes, executes.

e y-ip holds the address of the next instruction.

Register Responsibilities

Special Registers:
® yrax — returnvalue

e ydi —Istargument

151

Guest
Rectangle

e i —2ndargument
e urdx — 3rd argument

e rip — program counter (next instruction address)

e rsp — stack pointer

Instructions Are Just Bytes!

I Machine code is stored as raw bytes; assembly is a mnemonic overlay.

CPU

Register file

ALU

System bus Memory bus

Bus interface [[o] l . Main | “hello, world\n”
| bridge memory| | 1. code
1/0 bus I |:| D D

Expansion slots for

other devices such

‘ Graphics Disk as network adapters
adapter controller

use
controller

r 1

Mouse Keyboard Display

"-'_—"" hello executable
DISk} stored on disk

%rip —Program Counter

%rip: Program counter holding the address of next instruction.
e Automatically advances by instruction length.

e Can be changed by jump instructions.

152

Guest
Rectangle

%rip

00e0PeeRER4RR4ed <loop>:

4004ed: 55 push
4004f1: c7 45 fc 00 €6 6@ 00 movl
400418: 83 45 fc @1 addl
4004fc: eb fa jmp

%rip

0000000eee4004ed <loop>:

®) 4004ed: 55

4004f1: c7 45 fc 00 00 00 B movl

4004f8: 83 45 fc @1
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores

the address in memory of the
next instruction to be executed.

—
4004fd |fa
4004fc eb
4004fb o1
4004fa fc
%rbp 40049 |45 Main Memory
$0x0, -0x4 (%rbp) 4004f8 |83
$0x1,-0x4(%rbp) 2004f7 |00 Stack
400418 <loop+xb>
4004f6 |00
4004f5 |00
40044 |00
4004f3 |fc
4004F2 |45 Heap
4004f1 |c7
Data
== Text (code)
4004ed |55
[
4004fd | fa
4ee4fc eb
4004fb o1
4004fa fc
push %r\bp 400419 45
40048 | 83
$0x0, -ex4(%rbp) 4004f7 |@0
addl $ex1 » —0x4(%r‘bp) A004f6 o0
jmp 40048 <loop+0xb> 4004€5 |0
4004f4 | @0
40043 | fc
4004f2 |45
4004f1 | c7
Ox4004ed
= 1004ed |55
%rip

153

Guest
Rectangle

%rip

000000eeeR40R4ed <loop>:
4004ed: 55 push

4004f1: c7 45 fc 00 00 00 00 movl
4004f8: 83 45 fc @1 addl
) 4004fc: eb fa jmp

Special hardware sets the program
counter to the next instruction:

%rip += size of bytes of current

%rbp

$0x0, -0x4(%rbp
$0x1, -0x4(%rbg)
400418 <loopfoxb>

instruction

Ox4004fc

%rip

Going In Circles

4004fd fa
4004fc eb
4004fb e1
4004 fa fc
400419 45
400418 83
400417 0o
4004f6 0o
40045 eo
40044 =1]
40043 fc
40042 45
40041 c7
4004ed 55

I Loops are implemented by “interfering” with %rip via jump instructions.

Jump!

jmp target — unconditional jump to target.

jmp *%rax — indirect jump to address in %-

jmp
e Direct: jmp Label

¢ Indirect: jmp *Operand

“Interfering” with %rip

I Unconditional jumps allow repetition or ski

Control

154

ax .

ps, forming loops.

4z

Guest
Rectangle

I Control Flow: C's if/else/while/for — assembly’'s cmp + conditional jumps.

Control

. In Assembly:
1-F (X) y) { 1. Calculate the condition result

// 3 2. Based ontheresult,gotoaorb

} else {
// b

}

Control

* In assembily, it takes more than one instruction to do these two steps.
» Most often: 1 instruction to calculate the condition, 1to conditionally jump

Common Pattern:

1. cmp S1, S2 // compare two values

2. je [target] or jne [target] or jl [target] or .. // conditionally
// jump

“jump if

less than”

Conditional Jumps

There are also variants of jmp that jump only if certain conditions are true ("“Conditional
Jump”). The jump location for these must be hardcoded into the instruction.

155

Guest
Rectangle

Instruction Synonym Condition

Jje jz Equal / zero (ZF=1)

Jjne jnz Not equal / not zero (ZF=0)
s Negative (SF=1)

jns Nonnegative (SF=0)

jg jnle Signed > (ZF=0 A SF=OF)
jge jnl Signed > (SF=OF)

jl jnge Signed < (SF#£OF)

jle jng Signed < (ZF=1 v SF#OF)
ja Jjnbe Unsigned > (CF=0 A ZF=0)
jae jnb Unsigned > (CF=0)

jb jnae Unsigned < (CF=1)

jbe Jjna Unsigned < (CF=1v ZF=1)
Control

Read cmp S1,S2 as ‘compare S2 to ST1*

// Jump if %edi > 2 // Jump if %edi ==
cmp $2, %edi cmp $4, %edi
jg [target] je [target]

// Jump if %edi <=1
cmp $1, %edi
jle [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

Condition Codes

Wait a minute — how does the jump instruction know anything about the compared
values in the earlier instruction? The CPU has special registers called condition codes
that are like "global variables”. They automatically keep track of information about the

156

Guest
Rectangle

most recent arithmetic or logical operation. Alongside normal registers, the CPU also has
single-bit condition code registers. They store the results of the most recent arithmetic
or logical operation. Here are the most common condition codes:

Flags register bits:

e CF: Carry flag (unsigned overflow, The most recent operation generated a carry
out of the
most significant bit. Used to detect overflow for unsigned operations)

e ZF: Zero flag (result == 0, The most recent operation yielded zero)
e SF: Sign flag (result < 0, The most recent operation yielded a negative value.)

e OF: Overflow flag (signed overflow, The most recent operation caused a two's-
complement

overflow-either negative or positive)

Example: if we calculate t = a + b, condition codes are set according to:
 CF: Carry flag (Unsigned Overflow). (unsigned) t < (unsigned) a
 ZF: Zero flag (Zero). (t == 9)

* SF: Sign flag (Negative). (t < 9)

 OF: Overflow flag (Signed Overflow). (a<@ == b<@) && (t<@ != a<e8)

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store
the result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 52 - S1

cmp S1, S2 - computes S2 - S1, sets flags, discards result.

Instruction Description

cmpb Compare byte

157

Guest
Rectangle

Instruction Description

cmpw Compare word
cmpl Compare double word
cmpq Compare quad word

TEST Instruction
e Syntax: test s1, 52
e Operation: Computes s1 & s2, sets flags, and discards the result.

e Use case: Often used to check the sign or zero of a value, for example:

O test %reg, %reg

Setting Condition Codes

The test instruction is like emp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1
testb Test byte
testw Test word
testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the
sign of that value using the Sign Flag and Zero Flag condition codes!

Flags Behavior
e Arithmetic/Logical Instructions: Update CF, ZF, SF, and OF.

e 1ea:Does not modify any flags.
¢ Logical Operations (e.g., xor): Clear CF and OF (CF = OF = 0).

o Shifts:

158

Guest
Rectangle

o Set CF to the last bit shifted out.
o Clear OF (OF = 0).
® inc / dec : Update OF and ZF, but leave CF unchanged.

Final Recap

Topics:
e Reverse Engineering C—assembly
e Execution model & #%rip

e Control flow via condition codes & jumps

Next Time: Conditional branches in depth

159

Guest
Rectangle

17. More Control Flow

Lecture Plan
o If statements (cont’'d.)
e Loops

o While loops

o Forloops

e Other Instructions That Depend On Condition Codes

Loops and Control Flow
Example: while (i < 100)

void loop() {
int i = 0;
while (i < 100) {
i++;

¥

160

Guest
Rectangle

400570 mov $0x0, %eax #i=20

400575 jmp 40057a # jump to test

400577 add $0x1, %eax # i++

40057a: cmp $0x63, %eax # compare i to 99

40057d: jle 400577 # if i £ 99, jump back to add
40057f: repz retq # return

e eax holds i.

® oy $0x0, %eax initializes i to 0.

e jup unconditionally jumps to the comparison.

® add gex1, %eax Increments i.

® np sox63, %eax computes i - 99, setting flags (e.g., SF=1while i<99).

e ile ("jump ifless or equal”) tests ZF or SF£OF and loops if i < 99,

When i becomes 100, the loop exits and the function returns.

Common While Loop Construction

Pattern:
1. Init
2. jmp to test
3. Body
4. Test (cnp + conditional jump)

5. Loop back if condition holds

Pseudocode:

while (test) {
body

Assembly Skeleton:

161

Guest
Rectangle

init

jmp test
body:

<body instructions>
test:

cmp <>

jl body

ret

Common For Loop Construction

C Syntax:

for (init; test; update) {
body

Assembly AS While-Loop:

init

jmp test
body:

<body>

<update>
test:

cmp <>

jl body

ret

For compilation, for islowered to a while(test)(body; update; } form.

Back to Our First Assembly (sum_array)

162

Guest
Rectangle

int sum_array(int arr[], int nelems) {

int sum = ©;

for (int 1 = @; i < nelems; i++) {

sum += arr[i];

}

return sum;
}
4005b6: mov
4005bb: mov
4005c0: jmp
4005c2: movslq
4005c5: add
4005c8: add
4005cb: cmp
4005cd: jl
4005cf: repz

1. sum isin %eax .

2. i isin %edx.

$0x0, %edx
$0x0, %eax
4005cb

%edx, %rcx

(%rdi,%rcx,4), %eax

$0x1, %edx
%»esi, %edx
4005c2
retq

HOoH OH OH OH OH OH OH OH

i=20

sum = 0

jump to test
sign-extend 1

sum += arr[i]

i++

compare i to nelems
if i < nelems, loop
return

3. The instruction add (%rdi,%rcx,4), %eax implements sum += arr[i] .

4. cnp %esi, %edx tests i < nelems,and i1 jumps when true (signed).

Condition Code-Dependent Instructions

Three instruction classes read CPU flags set by arithmetic/logical ops:

1. Conditional jumps (ic, i1, etc.)

2. set instructions (set a byte register to 0/1)

3. Conditional moves (new versions of mov) (cnov..)

set : Read Condition Codes

163

Guest
Rectangle

movzbl .

Example:

int small(int x) {
return x < 16;

cmp $oxf, %edi
setl %al
movzbl %al, %eax

ret
Instr Synonym
sete setz
setne setnz
sets

setns

setg setnle
setge setnl
setl setnge
setle setng
seta setnbe
setae setnb
setb setnae
setbe setna

Purpose: Write 1 or 0 into a byte register (e.g., %al) based on flags.
e Destination: single-byte register or memory.

e Does not alter other bytes of the register—commonly zero-extended after via

compare x to 15
%al = 1 if x<16 else ©
zero-extend into %eax

Condition

Equal / zero (ZF=1)

Not equal / non-zero (ZF=0)
Negative (SF=1)

Nonnegative (SF=0)

Greater (signed >) (ZF=0 A SF=OF)
> (signed) (SF=OF)

< (signed <) (SF£OF)

< (signed <) (ZF=1 v SF#OF)
Above (unsigned >) (CF=0 A ZF=0)
> (unsigned =) (CF=0)

Below (unsigned <) (CF=1)

< (unsigned <) (CF=1v ZF=1)

cmov : Conditional Move

164

Guest
Rectangle

Purpose: Move src—dst if a condition holds, without branching.
e dst must be a register.

e Often used for C's ternary operator.

Example:

int max(int x, int y) {
return x >y ? x : vy;

}

cmp %edi, %esi # compare x to y

mov %»edi, %eax # assume X

cmovle %esi, %eax # if x<y, move y

ret
Instr Synonym Condition

cmove S,R cmovz Equal / zero (ZF=1)

cmovne cmovnz Not equal / non-zero (ZF=0)
cmovs Negative (SF=1)

cmovns Nonnegative (SF=0)

cmovg cmovnle > (signed >) (ZF=0 A SF=OF)
cmovge cmovnl > (signed >) (SF=OF)

cmovl cmovnge < (signed <) (SF£OF)

cmovle cmovng < (signed <) (ZF=1 v SF£OF)
cmova cmovnbe Above (unsigned >) (CF=0 A ZF=0)
cmovae cmovnb > (unsigned =) (CF=0)

cmovb cmovnae Below (unsigned <) (CF=1)
cmovbe cmovna < (unsigned <) (CF=1v ZF=1)

Ternary Operator

I Syntax: condition ? (expression If True) : (expression If False)

165

Guest
Rectangle

Semantics: Evaluates one of two expressions based on a test—often lowered to cp +
cmov in assembly.

Practice: Conditional Move

int signed_division(int x) {
return x / 4;

}

leal 3(%rdi), %eax # bias for signed division
testl %edi, %edi # set flags based on x
cmovns %edi, %eax # if x 2 0, restore x

sarl $2, %eax # arithmetic divide by 4
ret

Biasing ensures that -14/4 rounds toward zero (result -z).

Practice: Fill In The Blank

long loop(long a, long b) {
long result = 5
while () {
result = ;

a=__ 5

}

return result;

loop:
movl $1, %eax
jmp .L2
.L3:
leaq (%rdi,%rsi), %rdx
imulq %rdx, %rax

166

Guest
Rectangle

addg $1, %rdi

.L2:
cmpq %rsi, %rdi
jl .L3
rep; ret
Answers:

[] result = 1;
® 3 < b;
® result = result * (a + b);

® 3 =2a+1;

Recap

Assembly Execution & #rip

Control Flow Mechanics

o Condition Codes
o Conditional Jumps, set, cmov
e Loops: While & For
e |[f statements (cont'd.)
e Other instructions depending on flags

e Next Time: Function calls in assembly

167

Guest
Rectangle

18. x86-64 Procedures

Plan
e Revisiting #rip
e Calling Functions
o The Stack
o Passing Control
o Passing Data
o Local Storage
e Register Restrictions

e Recursion Example

%rip
%rip is the instruction pointer, holding the address of the next instruction.

o Offsets (<+n>) are relative to function start.

e Unconditional jumps (jmp) use a signed byte to adjust %rip .

o Instructions are variable-length bytes.

168

Guest
Rectangle

e Without jumps, hardware adds the instruction’s byte size to %rip .

Loop Example:

0x400570 <+0>: mov $0x0,%eax
@x400575 <+5>: jmp ©x40057a <loop+10>
Ox400577 <+7>: add $0x1,%eax
Ox40057a <+10>: cmp $0x63,%eax
0x40057d <+13>: jle 0x400577 <loop+7>
0x40057f <+15>: repz retq

How do we call functions in assembly?

Requirements:
1. Pass Control: Transfer %rip to callee, then resume.

2. Pass Data: Place parameters, retrieve return value.

3. Manage Memory: Allocate/deallocate stack space.

Yorsp
I %rsp IS the stack pointer, pointing to the top of the stack (stack grows downward).
Main Memory
main() |

myfunction()

%rsp | =

Heap

Text (code)

0x0

push

169

Guest
Rectangle

pushq S:

® Jrsp -

® M[%rsp] = S

® Equivalent tO subq $8,%rsp + movq S, (%rsp) .

pop

popq D:

® D = M[%rsp]

® J%rsp += 8

Stack Example

Initial: %rsp

pushq %rax
popq %rdx

0x108 , %rax = 0x123

L Equivalent tO movq (%rsp),D + addq $8,%rsp .

%rsp » 0x100; [0x100] = 0x123

%rdx = 0x123; %rsp - 0x10

Initially pushqg %rax popq %rdx
%rax 0x123 %rax ox123 %rax 0x123
%rdx %] %rdx 2} %rdx 0x123
%rsp 0x108 %rsp ox100 %rsp @x108
Stack "bottom” Stack "bottom” Stack "bottom”
A A A
Increasing Increasing Increasing
addresses addresses addresses
0x108 . 0x108 0x108
Stack "top X ax123 ax123
0x100 0x100
Stack "top” Stack “top’;

Calling Functions In Assembly

170

Guest
Rectangle

I Caller invokes callee, handling #-ip , parameters, and stack frame.

Remembering Where We Left Off

callq Label pushes return address (next %-ip) onto stack, jumps to Label. retq pops

that address into #rip , resuming caller.

Example: Remembering Where We Left Off

400544: callq
400549: mov
L]

400550 <mult2>
%rax, (%rbx)

|

408550:

mowv

480557: retq

000000LRAV400550 <mult2>:
%rdi,%rax

171

void multstore 0000000000400540 <multstore>:

(long x, long y, long *dest) { 490540: push %rbx # Save %rbx
long t = mult2(x, y); 480541: mov %rdx,%rbx # Save dest
*dest = t; 490544: callg 400550 <mult2> # mult2(x,y)

} 490549: mov %rax, (%rbx) # Save at dest
49@54c: pop %rbx # Restore %rbx
40054d: retqg # Return

long mult2 00PP0POBRB40B550 <mult2>:

(long a, long b) 408556: mov %rdi,%rax # a

408553: imul %rsi,%rax #a*b
long s = a * b; 400557: retqg # Return
return s;

}

L]
0000000P0400548 <multstore>: ox13e '
- ex128 .

* ex120

Guest
Rectangle

000PPRPLLL4RR5408 <multstore>:
L
L
400544: callqg 400550 <mult2>
400549: mov %rax, (%rbx) <——
-

exi3e
ox128
ex12e
| ex118 -

%rsp ox118

@x400549

0000PPPRRV400550 <mult2>:
400558: mov %rdi,%rax

t””

400557: retq

/

0000000000 400540 <multstore>:
L]
-
400544: callq 400550 <mult2>
400549: mov %rax, (%rbx) —e—
-

0000000060400550 <mult2>:
49@550: mov %rdi, %rax

498557

retq

172

ox13e
0x128
ex120e
0x118

0x400549

/

Guest
Rectangle

0000000000400540 <multstore>: ox130 .
* ox128 .

* ox120
400544: callqg 468558 <mult2>
400549: mov %rax, (%rbx) “\H\\

. \%PSP ox120

%rip 8x4008549

P0000PREB400B550 <mult2>:
488550: mov %rdi, %rax

480557: retq

Parameters and Return

Argument Registers:

. . Registers Stack
%rdi,%rsi,%rdx,%rcx,%r8,%9 for first six args.

%rdi "

ege . N += e & @
Additional args: pushed onto stack in %rsi 2
%rd S

reverse order. x 15 Arg n
%rcx g

. = LI I]
Return value: in %rax . %r8 £

%ro Arg 8

Return value Only allocate stack

space when needed

173

Guest
Rectangle

Example 2: Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,

i1, i2, i3, i4);

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

main()

0x400596 <+71>:
0x400859b <+76>:

callg ox4ee546 <func>
add $6x10,%rsp

%rsi

Pxffedfc

Bxffeofs

Oxffeof4

exffeofe

Bxffede8

Bxffe9eb

‘exffegfs

Local Storage

Locals live on stack if:
e Out of registers

e Address-of operator used

e Arrays/structs

// Assume swap_add is defined elsewhere:

long swap_add(long *pl, long *p2);

long caller(void) {

long argl = 534;
long arg2 = 1057;
long sum =

return sum;

swap_add(&argl, &arg2);

174

Blw| N

0x40059b

v

%rdx
‘6xFFe9F4‘

%rcx
‘6x€¥e9?6‘

%r8d
E
~ %rad
ER

%rsp
Bxffe9ds8

%rip
‘Bx466596

—

Guest
Rectangle

subg $0x10,%rsp

movq $534, (%rsp) # argl
movq $1057, 8(%rsp) # arg2
leaq 8(%rsp),%rsi # &arg2
movq %rsp, %rdi # &argl
call swap_add

Register Restrictions

Caller-saved (volatile): %rax, %rcx, %rdx, %rsi, %rdi, %re-%ril

Callee-saved (non-volatile): %rox, %rbp, %r12-%r15

e Caller saves volatile if needed across calls.

e Callee saves non-volatile if it uses them.

83 31 15 7 0

Caller-Owned (Callee Saved) i b O |
L by | etix [10x Callee saved
+ Callee must save the existing value and = O
restore it when done. = TR .
%rsi l'/.-n |7f.=-. Hsil ‘ 2nd argument

» Caller can store values and assume they . , | =
. . sdi l‘/.=|h Wi tdil ||| 19t argument
will be preserved across function calls. = M Camn— [
Callee-Owned (Caller Saved) = N o T
ies [reon T [teos] st orument
» Callee does not need to save the existing [R [
Value. %r11 IY.th] [erw hrito || Calles saved
. .'Arli I'/.x.?d | ¥rizw):rl;!t- -.‘. Callos savad
» Caller's values could be overwritten by a = -~ e
callee! The caller may consider saving B = TR [
values elsewhere before calling functions. s [e L come e

Figure 3.2 Integer registers. The low-order portions of all 16 registers can be accessed
as byte, word (16-bit), double word (32-bit), and quad word (64-bit) quantities.

Caller/Callee

I A function may be both caller and callee in nested calls.

Caller-Owned (Calle Saved) Registers

175

Guest
Rectangle

Callee must preserve these (push/pop around use).

push %rbp
push %rbx
pop %rbx
pop %rbp

Callee-Owned (Caller Saved) Registers

I Caller must preserve these if it needs their values after a call.

push %rile
push %rill

call func
pop %rill
pop %rle

x86-64 Procedure Summary

* Important Points
— Stack is the right data structure for procedure
call/return
« If P calls Q, then Q returns before P
« Recursion (& mutual recursion) handled by
normal calling conventions

— Can safely store values in local stack frame and in
callee-saved registers

— Put function arguments at top of stack
— Result return in $rax

» Pointers are addresses of values
— On stack or global

176

Caller
Frame <

\
%rbp—

(Optional)

%rsp—

Arguments
7+

Return Addr

Old %rbp

Saved
Registers
+

Local
Variables

Argument
Build

Guest
Rectangle

Example of Everything Learned about Assembly

Recap
o revisited
e Function calls: stack, control, data, locals
e Register conventions

e Recursion example

177

Guest
Rectangle

19. Data and Stack Frames

Arrays

Array: A contiguous block of memory holding elements of the same type. Access via
base address plus offset.

Allocation
e Declaration 1 a[L] reserves | * sizeof(1) bytes contiguously.

e Multi-dimensional arrays use row-major order:
Address(A[i][j]) = A+ (i x C + j) x sizeof(T).

Access
e One-dimensional: afi] at A + i*k where « = sizeof (1) .

e Two-dimensional:
Alillj] — A+ (ixC+j)K.

e Multi-level (pointer arrays): load pointer then apply offset.

178

Guest
Rectangle

Pointer Arithmetic: In assembly, index scaling uses the addressing mode (%base,
%index, scale).

Example: 1D Array Access

int get_digit(int *z, int idx) { return z[idx]; }

%rdi = z, %rsi = idx
mov1 (%rdi,%rsi,4), %eax # load z[idx]

ret

Structures & Alignment

Structure: Memory layout of fields in declaration order, with padding to satisfy each
field's alignment.

Layout Rules

e Fields placed in order; compiler inserts padding so each field's offset is a multiple of
its alignment.

e Overall size of the struct is padded to a multiple of the largest field alignment.

Common Types & Alignments (x86-64)
e 1byte: char (align?)

e 2 bytes: short (align 2)

e 4bytes: int, float (align4)

e 8 bytes: pointers, dounie (align 8)

Accessing Members

e Compute member address: base + offset .

e For array-in-struct: combine array indexing and struct offset.

Example:

179

Guest
Rectangle

struct rec {
int a[4];
int i;
struct rec *next;
}s
int *get_ap(struct rec *r, size_t idx) {
return &r->a[idx];

%rdi = r, %rsi = idx
leaq (%rdi,%rsi,4), %rax # address of r->a[idx]
ret

Floating-Point Operations

I XMM Registers: 16 registers (%xmm0-%xmm?15), each 128 bits, used for SIMD FP.

Calling Convention

® Arguments: %xmmo , %xmmil , ...
e Return: zmme

e Caller-saved: all XMM registers.

Scalar & SIMD Instructions
e Single-precision:

o Scalar add: addss %xmm1, %xmme

o SIMD add (4 floats): zddps %xmm1, %xmme
¢ Double-precision:

o Scalar add: addsd %xmm1, %xmme

o SIMD add (2 doubles): addpd %xmml, %xmm@

Memory Referencing

180

Guest
Rectangle

e Load/store between memory and XMM: novss / movsd (scalar), movaps / movapd (aligned
SIMD).

Example: Double Increment

double dincr(double *p, double v) {
double x = *p;
*P = X + V;

return Xx;

%rdi = p, %xmm@ = v

movapd %xmm@, %xmml # copy v
movsd (%rdi), %xmme # x = *p
addsd %xmmo, %xmml #t=x+v
movsd %xmml, (%rdi) # *p = t
ret

* General-purpose registers (GPRs):

* 064 bits wide

» Used for addresses, loop counters, function arguments (on x86-64), integer arithmetic, etc.
* XMM registers:

* 128 bits wide

* Designed for data-parallel (SIMD) operations on multiple floats or integers at once

181

Guest
Rectangle

Each SSE instruction has two letters after the mnemonic to tell you:

1. Packed vs. Scalar

e p = Packed (operate on all lanes in parallel)

¢ s = Scalar (operate on just the lowest lane, leave the rest untouched)
2. Precision

¢ s = Single-precision (32-bit floats)

¢ d = Double-precision (64-bit floats)

addss Xxmmé, Zxmml

* add scalar single-precision: adds the low-32-bit float in %xmm@ to the low-32-bit float in *xmm1 and

writes the result back into the low lane of %xmm1 .

addps %xmm@, Xmml

* add packed single-precision: adds all four 32-bit floats in %xmme to the four in ¥%mm1 element-
wise.

addsd %xmmé, Zxmml

* add scalar double-precision: same idea, but for just one 64-bit float.

addpd would be add packed double (two 64-bit floats in parallel).

182

Guest
Rectangle

FP Basics

» Arguments passed in %xmm@, %xmm1, ..
* Result returned in %xmm@

* All XMM registers caller-saved

float fadd(float x, float y) { # x in %xmm@, y in Z%xmml
return x + y; addss %xmml, %xmm@

} ret

double dadd(double x, double y) { # x in %xmm@, y in %xmml
return x + y; addsd %xmml, %xmm@

} ret

Final Takeaways
e Arrays: contiguous, row-major, address = base + indexxsizeof(type).

e Structures: ordered fields with padding for alignment; total size padded to largest
alignment.

¢ Floating-Point: use XMM regs, follow calling convention, choose scalar vs. SIMD
instructions appropriately.

183

Guest
Rectangle

20. Security Vulnerabilities

Floating-Point Operations & SIMD

XMM Registers: Sixteen 128-bit registers (%xmm0-%xmm15) used for floating-point
and SIMD.

SSE vs AVX:

e SSE3: Handles scalar and packed single-precision floats (4 lanes) or doubles (2
lanes).

e AVX: Extends SIMD width and instruction set (not detailed here).

Calling Convention: FP args in %xmm0, %xmmf, ...; result in %xmm0; all XMM are
caller-saved.

Scalar & SIMD Instructions

e Single-precision scalar: -ddss %, %mme
¢ Single-precision SIMD: :ddps %1, %xmne
e Double-precision scalar: addsd %1, %o

e Packed double: :ddpd %1, %xmme

184

Guest
Rectangle

I Zeroing XMM: xorpd %xmmO0, %xmm0 sets %xmm0 to 0.
Example: Simple FP Routines

float fadd(float x, float y) { return x + y; }
double dadd(double x, double y) { return x + y; }

%xmm@ = x, %xmml =y
addss %xmml, %xmm@ # for fadd
ret

addsd %xmml, %xmm@ # for dadd
ret

Linux Memory Layout

Memory Segments:
e Text: executable code (read-only)
e Data: global/static variables, constants

e Heap: dynamic allocations (malioc)

e Stack: function frames, grows downward (8 MB limit)

Stack Frame Structure

¢ Prologue:

push %rbp

mov %rsp, %rbp

sub $N, %rsp # reserve locals/spills
e Epilogue:

mov %rbp, %rsp

pop %rbp

185

Guest
Rectangle

ret

e Layout: return address @[#-bp+2], saved regs, local buffers @[#rop-... 1.

x86-64 Linux Memory Layout

@00O7FFFFFFFFFFF

» Stack
— Runtime stack (8MB limit)
- E.g., local variables

* Heap
— Dynamically allocated as needed
—When callmalloc(), calloc(), new()

* Data
— Statically allocated data
- E.g., global variables, static variables, string constants

» Text / Shared Libraries

— Executable machine instructions

_ Read—only Hex Address

Buffer-Overflow Vulnerabilities

400000
000000

not drawn to scale

Stack

!

Shared
Libraries

Heap

Data

Text

8MB

27

Buffer Overflow: Writing beyond an array’s bounds, corrupting adjacent stack data

(return addresses, canaries).
Out-of-Bounds Struct Write

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
struct_t s;
s.d
s.a[i]

3.14;
1073741824; // no bounds check

186

Guest
Rectangle

return s.d;

e Behavior: Writing s.a[2] or beyond corrupts s.d or stack metadata, altering

returned value or crashing.
Classic gets Based Overflow

void echo() {
char buf[4];
gets(buf); // reads unlimited bytes

puts(buf);

e Attack: An input longer than 4 bytes overwrites the saved #rbp and return address,

enabling control-flow hijack.

Exploitation & Mitigations

Code-Injection & ROP

Code Injection: Embedding machine code in input and redirecting execution to it.

Return-Oriented Programming (ROP): Chaining short instruction sequences
("gadgets”) ending in ret to perform complex actions without injecting new code.

Common Protections
e Safe APIs:
o fgets instead of gets
O strncpy / snprintf instead of strcpy / sprintf
e Address Space Layout Randomization (ASLR): Randomizes stack, heap, libraries.
e Non-Executable Stack (NX bit): Prevents execution in writable segments.

e Stack Canaries:

o Compiler (fstack-protector) inserts a known value before return address

187

Guest
Rectangle

o \Verified before function return; crash on mismatch

Final Takeaways

e Floating-point and SIMD require correct use of XMM regs and instructions.

e Understanding memory segments and stack frames is essential to identify overflow
risks.

e Buffer overflows remain critical vulnerabilities but can be mitigated by safe coding,
hardware and OS defenses, and compiler features.

188

Guest
Rectangle

21. Cache Memories

The Memory Abstraction

Writing & Reading Memory

I LOAD (Read): Transfer a word from memory to a register, e.g.

movq A(%rsp), %rax # Read the 8-byte value at address %rsp + A in
to %rax

I STORE (Write): Transfer a register’s value to memory, e.g.

movq %rax, A(%rsp) # Write %rax into memory at address %rsp + A

Traditional Bus Structure & Transactions

A bus carries address, data, and control signals between CPU and memory:
1. Address Phase: CPU places address A on the bus.

2. Memory Access: Memory reads A and drives the data word onto the bus.

189

Guest
Rectangle

3. Data Phase: CPU reads the data word into the register.

Storage Technologies & Trends

SRAM vs DRAM

SRAM (Static RAM): Fast (~4 ns), expensive, no refresh needed, used for caches.

DRAM (Dynamic RAM): Slower (~60 ns), cheaper, requires periodic refresh, used for
main memory.

Enhanced DRAMs

SDRAM: Synchronous control via clock.

DDR SDRAM (DDR, DDR2, DDR3, DDR4): Double-data-rate transfers; distinguished
by prefetch buffer width.

Nonvolatile Memories

Flash Memory: Electrically erasable, block-level erase, wears out after ~10° cycles;
used in SSDs.

3D XPoint & Emerging NVMs: Higher endurance, persistent storage.

Magnetic Disks

Magnetic Disk: Electromechanical access, nonvolatile, high capacity, slower (seek = 9
ms + rotational latency).

e Access Time Formula:
Taccess — Lgeek + Trotation + Tluransfer
e Example:

1 60 ~ ~
Toeek = 9 ms, Trotation = 5 X 7200 x 1000 ~ 4 ms, Tiranster ~ 0.02 ms.

Solid State Disks (SSDs)

Page/Block Structure: Pages (4 KB-512 KB), Blocks (32-128 pages).

190

Guest
Rectangle

Erase-before-Write Constraint: Must erase an entire block before writing.

Wear Leveling: Controller distributes writes evenly to extend endurance.

The CPU-Memory Performance Gap

Trend: CPU speed doubles roughly every 18 months, while DRAM latency improves
only ~7 % per year, widening the gap.

1. Diverging Speeds

* Over the past few decades, CPU cycle times (and effective execution rates) have dropped into the

sub-nanosecond range.

Meanwhile, DRAM access latencies sit in the tens of nanoseconds, SSDs in the tens of

microseconds, and spinning disks in the milliseconds.
2. Resulting Bottleneck

* A CPU can execute hundreds of instructions in the time it takes just to fetch a single word from

main memory.
» This means CPUs spend a lot of time stalled, waiting for data, rather than doing useful work.

3. Why It's a Problem

* Even though raw compute has gotten dramatically faster, applications are often memory-bound—

their performance is limited by how quickly they can get data, not by how fast they can process it.

* Without addressing this gap, you can't fully utilize modemn CPUs.

Locality of Reference

Principle of Locality: Programs tend to reuse data/instructions near in time
(temporal) or address (spatial).

e Temporal Locality: Recently accessed items likely reused soon.

e Spatial Locality: Nearby addresses likely accessed together.

Example:

int sum = 0;
for (1 = 0; i < n; i++)

191

Guest
Rectangle

sum += a[i]; // stride-1 = good spatial locality

1. Temporal Locality

This is the idea that if you use a piece of data (or execute a given instruction) right now, you're very likely to
use it again in the near future. Hardware takes advantage of this by keeping recently accessed cache lines in
fast on-chip SRAM. On the next access, the CPU can hit the L1 or L2 cache rather than waiting tens of

nanoseconds for DRAM.

2. Spatial Locality

This means that if you access an address in memory, you're likely to access nearby addresses soon afterward.

Caches exploit this by fetching not just the single word you asked for but an entire “cache line” (e.g. 64

bytes) around it. Prefetchers also detect sequential patterns—like scanning through an array—and start

loading future cache lines ahead of time.

The Memory Hierarchy

Memory Hierarchy: Storage levels from fastest/smallest to slowest/largest; each
upper level acts as a cache for the next.
Levels:

1. CPU Registers
2. L1 Cache (SRAM)

w

. L2/L3 Cache (SRAM)
. Main Memory (DRAM)
. Local Secondary Storage (SSD/HDD)

() N @2 BER N

. Remote Storage (Network)

192

Guest
Rectangle

Example

retrieved from L3 cache
L3 cache holds cache lines

retrieved from main memory.

Main memory holds

disk blocks retrieved
from local disks.

Local disks hold files
retrieved from disks

on remote servers

i Smaller, CPU registers hold words

M.em()ry faster, L_Itrieved from the L1 cache.
Hlerarchy and . /" (SRAM L1 cache holds cache lines

costlier retrieved from the L2 cache.

(per byte) L2: L2 cache

storage (SRAM) L2 cache holds cache lines

devices L3: L3 cache

(SRAM)

Larger,

Z'r?(‘j”er' L4: Main memory

cheaper (DRAM)

(per byte)

Stor.ageL5. Local secondary storage

devices (local disks)

L6: Remote secondary storage

(e.g., Web servers)

Cache Basics

Cache: Small, fast memory holding a subset of blocks from a larger device to provide

low-latency access.

e Hit: Data found in cache — low latency.

e Miss: Data not in cache — fetch from lower level.

Miss Types:
Cold (Compulsory): First reference to a block.
Conflict: Multiple blocks map to the same cache location.

Capacity: Working set exceeds cache size.

Cache Use Cases
Hardware MMU/TLB for address translation

e Web browser cache (pages)

e OS buffer cache (disk blocks)

193

Guest
Rectangle

Cache Organization

Address Breakdown & Block Size

I Block Size (B): Bytes transferred per cache fill (power of 2).

o Offset (b bits = log. B): Byte index within the block.
¢ Index (s bits = log, (number of sets)): Cache set selector.
e Tag (t bits = m — s — b): Remaining high-order bits.
Practice Example (6-bit address, B = 4):
Address 0x15 (0b010101) = offset = 01, = 1, block number = 5.

Mapping & Replacement

Direct-Mapped: One location per block.
Set-Associative: Blocks map to a set; replacement policy selects victim.

Fully-Associative: Any block can go anywhere; high hardware cost.

Replacement Policies: LRU, FIFO, Random.

Multi-Level Cache Example

Example (Intel Core i7):
e Lli-cache/d-cache: 32 KB, 8-way, ~4 cycles
e L2 unified: 256 KB, 8-way, ~10 cycles
e L3 unified: 8 MB, 16-way, ~40-75 cycles

e Block size: 64 bytes

Performance Metrics

Miss Rate (MR): misses + accesses
Hit Time (HT): time to access cache + tag check

Miss Penalty (MP): extra time on miss

194

Guest
Rectangle

Typical Values: L1 MR = 3-10 %, L2 MR < 1%, L1 HT = 4 cycles, L2 HT = 10 cycles, MP =
50-200 cycles.

Final Summary & Takeaways
e Locality underpins cache effectiveness.
¢ Hierarchy balances speed, capacity, and cost across levels.

e Cache parameters (block size, capacity, associativity) and policies (placement,
replacement) determine performance.

e Key metrics (MR, HT, MP) guide design and tuning.

e Common pitfalls: Poor data layout (high stride), conflict misses, suboptimal block
sizes.

195

Guest
Rectangle

22. More Cache Memories

Cache Organization and Mapping
Block Size (B)
I BLOCK SIZE: Number of bytes transferred per cache fill (power of 2, e.g., 64 bytes).

e Offset bits (b): log. B = number of low-order bits used to select a byte within a
block.

Cache Size (C) and Sets (S)

CACHE SIZE (C): Total capacity in bytes (e.g., 32KiB).
NUMBER OF SETS (S): C / (B x E), where E is associativity (ways).

¢ Index bits (s): log, S = bits used to select the cache set.

e Tag bits (t): Remaining bits t = m — s — b (m = address width).

Replacement Policies

I REPLACEMENT POLICY: Determines which block to evict on a miss when a set is full.

196

Guest
Rectangle

¢ LRU (Least Recently Used)
e FIFO (First-In, First-Out)

¢ Random

Performance Metrics

MISS RATE (MR): misses / total accesses
HIT TIME (HT): time to access cache and perform tag check
MISS PENALTY (MP): additional time on a miss to fetch from lower level

e Typical Values:
o L1:MR =3-10%, HT = 4cycles
o L2:MR < 1%, HT = 10cycles

o MP = 50-200cycles

Multi-Level Caches

I MULTI-LEVEL CACHE: Multiple cache levels (L1, L2, L3) balance hit time vs. miss rate.

e Example (Intel Corei7):
o Lli-cache/d-cache: 32KB, 8-way, 4 cycles
o L2 unified: 256 KB, 8-way, 10 cycles
o L3 unified: 8 MB, 16-way, 40-75cycles

o Block size: 64 bytes for all levels.

Write Policies

WRITE-THROUGH: Writes update lower level immediately (consistent but higher
latency).

WRITE-BACK: Defers write to lower level until eviction; uses dirty bit to track
modified blocks.

WRITE-ALLOCATE: On write miss, fetches block into cache before writing.

197

Guest
Rectangle

NO-WRITE-ALLOCATE: On write miss, writes directly to lower memory without
caching.

Write Hit

— What it means: The CPU wants to store (wnite) to an address, and that address’s block is already in the
cache.

—What happens:
. You update the byte(s) right there in the cache.
. If it's a write-back cache, you just mark that cache line dirty (meaning “this line has changed”).

. If it's a write-through cache, you also send the same update down to main memory immediately.

— Why it's fast: You never had to go fetch anything—you just changed data in the fast on-chip cache.

Write Miss

— What it means: The CPU wants to store to an address, but that block isn't in the cache yet.

— Two main options (depending on your cache policy):
1. Write-Allocate (a.k.a. fetch-on-write)

. Fetch the entire block from memory into the cache (just like a read-miss).

. Update the desired byte in that newly fetched cache line.

. If write-back, mark it dirty; if write-through, also push the write to memory.

— Why use it? If you're going to touch (read or write) that block again soon, having it in cache pays off.
2. No-Write-Allocate (a.k.a. write-around)
1. Skip loading the block into cache.

2. Send the write straight to main memory.

3. The cache remains unchanged for that address.

— Why use it? If you're only writing once and unlikely to reuse that data, you save cache space.

Guest
Rectangle

1. Write-Allocate (Fetch-on-Write)

s What happens:
1. On a write-miss you load the entire block into the cache {just like you would on a read-miss).
2. You then update that block in cache at the comect offset and (if it's write-back) mark it dirty.
Why:

s [fyou're likely to touch that blodk again soon—either reading or writing—having it in cache pays
off.

Commonly paired with write-back: you fetch once, do many updates in cache, then write back on

eviction.

Analogy:
You walk to the filing cabinet to pull the folder onto your desk before you modify it, because you know

you'll need to refer to it again.

. No-Write-Allocate (Write-Around)

What happens:
1. On a write-miss you do not load the block into cache.
2. You send the write straight to the next level (L2 or DRAM).
3. The cache remains unchanged for that address.
Why:
= [fyou're only going to write once and never read it soon, there's no point filling your cache wath it.

* (Often paired with write-through: you update memory immediately amyway, so skipping cache on a

Mmiss saves space.

Analogy:
You simply walk to the cabinet, jot down your note in the folder nght there, and leave it — you don't
bother bringing it back to your desk.

Guest
Rectangle

1. Write-through

Every store you do in the cache immediately goes down to memory as well.

* This keeps RAM perfectly up to date but can still be slow if you do lots of writes.
2. Write-back

On a store (write hit), the cache marks that line dirty and only updates the on-chip copy.

The CPU continues working fast.

Later, when that cache line gets evicted (kicked out to make room for something else), the cache

notices the dirty bit and then writes it to main memory.

This batches up multiple writes into one DRAM transaction, which is more efficient.

The Memory Mountain

MEMORY MOUNTAIN: A 3D surface plotting read throughput (MB/s) vs. working set
size and stride to quantify spatial and temporal locality.

Test Function (C pseudocode):

long data[MAXELEMS];
int test(int elems, int stride) {
long acce=0, accl=0, acc2=0, acc3=0;
long 1limit = elems - 4*stride;
for (long i = @; i < limit; i += 4*stride) {

acco += data[i];

accl += data[i+stride];
acc2 += data[i+2*stride];
acc3 += data[i+3*stride];

}
for (long i = limit; i < elems; i++) {
acco += data[i];

}
return acc@® + accl + acc2 + acc3;
}
Methodology:

200

Guest
Rectangle

1. Call test() once to warm caches.

2. Call test() again and measure read throughput.

Final Summary & Takeaways

Cache parameters (B, C, E) and bit fields (b, s, t) define mapping behavior.
Replacement policies (LRU, FIFO, Random) affect conflict miss rates.
Performance metrics (MR, HT, MP) guide design and tuning.

Write policies trade consistency vs. performance.

Memory Mountain visualizes how working set size and stride impact throughput.

201

Guest
Rectangle

23. Optimization

Plan
e Writing Cache-Friendly Code

e Compiler Optimization Techniques

Writing Cache-Friendly Code

Loop Interchange for Spatial Locality

I SPATIAL LOCALITY: Accessing memory addresses that are contiguous.

/* ijk order */
for (i =0; 1 < n; i++) {
for (3 =0; j < n; j++) {
double sum = 0.0;
for (k = @; k < n; k++)
sum += a[i][k] * b[k][]];

c[i][J] = sum;

202

Guest
Rectangle

e Poor locality on bik](i] (column-wise).

e Interchangeto «ij or ikj to traverse contiguous rows of o .

Summary of Matrix Multiplication

for (i=0@; i<n; i++) { for (k=@; k<n; k++) { for (j=0; j<n; j++) {
for (j=@; j<n; j++) { for (i=0; i<n; i++) { for (k=0; k<n; k++) {
Sum & 9.9; r = ali][k]; r = b[k][];
for (k=@; k<n; k++) for (j=8; j<n; j++) for (i=@; i<n; i++)
sum += a[i][k] * b[k][]]; c[il[3] += r * b[KI[i]; c[i][j] += a[il[k] * r;
c[1][3] = sum; } }
¥ } }
}
ijk (& jik): kij (& ikj): Jki (8 Kji):
« 2 loads, 0 stores « 2 loads, 1 store - 2 loads, 1 store

. misses/iter = 1.25 . misses/iter = 0.5 - misses/iter = 2.0

Blocking (Tiling) for Temporal Locality

I BLOCKING: Partition loops into smaller tiles that fit in cache to maximize data reuse.

for (int 1 = 0; 1 < n; 1 += B)
for (int j = 9; j < n; j += B)
for (int k = @; k < n; k += B)
/* BxB mini-block multiply */
for (int ii = i; ii < i+B; ii++)
for (int jj = j; 3j < J+B; jj++) {
double sum = 0.0;
for (int kk = k; kk < k+B; kk++)
sum += a[ii][kk] * b[kk][jj]1;

203

Guest
Rectangle

c[ii][jj] += sum;

e Choose & sothat 3-82 < cachesize .

e Reduces miss rate from O(n3) to O(n3/(4B)).

Compiler Optimization Techniques

What Is Optimization

OPTIMIZATION: The process of improving program efficiency in time or space, often
aided by compiler transformations.

GCC Optimization Levels
e 00 — No optimization (baseline).
e 0> — Enable most safe, standard optimizations.
e 03 — Aggressive optimizations (may increase code size).
e o5 — Optimize for code size.
e ofast — Disregard some language standards for speed.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Common GCC Optimizations

CONSTANT FOLDING: Compute constant expressions at compile time.

COMMON SUB-EXPRESSION ELIMINATION: Reuse previously computed
expressions.

DEAD CODE ELIMINATION: Remove code with no effect on program output.

STRENGTH REDUCTION: Replace expensive operations (e.g., multiply/divide) with
cheaper ones (add/shift).

CODE MOTION: Hoist invariant code out of loops.
TAIL RECURSION: Convert tail-recursive calls into loops.

LOOP UNROLLING: Expand loop bodies to reduce control overhead.

204

Guest
Rectangle

Limitations of GCC Optimization

e Cannot optimize across unknown function calls (e.g., repeated strien() inside loops).

e May not hoist calls when data-dependence is unclear.

Algorithmic improvements often yield greater gains than micro-optimizations.

Final Summary & Takeaways

Cache-Friendly Coding: Loop interchange and blocking dramatically improve
memory reuse.

Compiler Flags: Use o2 as a default; higher levels (e.g., 03) for performance-critical
code.

Profile First: Identify hotspots with tools like ca11grind before manual tuning.

Balance Effort: Prioritize algorithmic complexity before low-level optimizations.

205

Guest
Rectangle

24. Linking

Linking Overview

What Is Linking?

LINKING: The process of taking one or more relocatable object files and combining
them into a single executable or shared library by resolving symbol references and
adjusting addresses.

e Enables modular development: compile each source file independently.

e Produces final binaries containing only the code and data needed at run time.

Linker Role in Toolchain
1. Compilation & Assembly:

e Source files (.c) = Compiler frontend (preprocessing — parsing — codegen) —
Compiler backend (assembly) — Assembler — Produces relocatable object files

(.0).
2. Linking:
e Linker (14)takes .o files (and static libraries) to produce:

o Executable Object File (e.g., =.0ut, prog), Or

206

Guest
Rectangle

o Shared Object File (dynamically loadable .<o).

main.c sum.c Source files
Translators Translators
(cpp, ccl, as) (cpp, cc1, as)
main.o sulr'n 0 Separately compiled
l l relocatable object files
Linker (1d)

!

prog Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

Step 1: Symbol Resolution

Symbol Concepts

SYMBOL: A name that identifies a function or global variable in code.

DEFINITION (Definition Site): The object file section where a symbol’s storage or
code is allocated (e.g., int foo = 5;, void bar() { ... }).

REFERENCE (Reference Site): A use of a symbol declared externally (e.g., calling an
external function or accessing a global variable).

Symbol Tables in Object Files
e Each relocatable object file (.o) contains a symbol table listing:

o Name: ASCIl identifier (foo, sum, array).

207

Guest
Rectangle

o Section & Offset: Where the symbol resides (e.g., .text, .data, .bss).

o Size & Visibility: Size in bytes, and whether the symbol is global (external) or
local (static).

SYMBOL RESOLUTION: The linker's process of matching each undefined (external)
symbol reference to exactly one definition across all input object files and libraries.

e If areference has no matching definition - undefined symbol error.
e If multiple strong definitions exist — duplicate symbol error.

e Weak vs. strong symbols: uninitialized globals are “weak,"” initialized globals and
functions are “strong.”

o Rule: one strong definition allowed; linking picks the one strong symbol, ignoring
weak duplicates.

Example: Resolving sum and array

// main.c
int sum(int *a, int n); // reference to sum
int array[2] = {1, 2}; // definition of array

int main() {
int val = sum(array, 2); // sum: reference; array: reference

return val;

}

// sum.c

int sum(int *a, int n) { // definition of sum
int i, s = 9;
for (i =0; i < n; i++) s += a[i];
return s;

}

e Linker Behavior:
1. In nain.o, sees reference to sunm and to array .

2. In sum.o, sees definition of sum .

208

Guest
Rectangle

3. In main.o, sees definition of array .

4. Linker resolves:

e .un reference —» sun definitionin sun.o.

e .-ray reference - array definitionin main.o.

Step 2: Relocation

What Is Relocation?

RELOCATION: Adjusting symbol addresses and placeholder references in object code
so that instructions and data pointers refer to the correct absolute memory locations

in the final executable.
e Each .o file's sections (.text, .data, .bss) begin at offset O relative to that file.

e The linker concatenates sections from multiple .o files, computing final base

addresses for each section.

e Every instruction or data reference with a relocation entry is updated to reflect the

final address of the target symbol.

Relocation Entries
e Relocation Record: Inthe .re1.text or .rei.data section of a relocatable file,
containing:
o Offset: Byte offset within the section where adjustment is needed.
o Type: Type of relocation (e.g., absolute, PC-relative).

o Symbol: Name/index of the symbol whose final address is used.

e During linking, the linker reads these records, computes each symbol’s final address,
and patches the instruction operand or data word at the given offset.

Object File Types

Relocatable Object File (.0)

209

Guest
Rectangle

RELOCATABLE (.0): Contains code and data in sections that can be combined with
other relocatable files.

e Sections:
o .text (machine code)
O .rodata (read-only constants)
O .data (initialized globals)
o .bss (uninitialized globals; allocated at load time)
o .symtab (Symbol table)
O .rel.text, .rel.data (relocation info)

e Produced by the assembler (=5) from a single translated source file.

Executable Object File (e.g., a.out, prog)

EXECUTABLE: Contains code and data with all symbols resolved and addresses fixed;
ready to be loaded by the OS loader.

e Sections:
o ELF header, Program header table (for runtime loader)
O .text, .rodata, .data, .bss (merged across modules)

o Optional debug sections (.debug , .syntab) if compiled with ¢ .

Shared Object File (.so0)

SHARED OBJECT (.so0): A special relocatable file intended for dynamic linking at load
or run time.

e Contains exportable symbols and relocation entries that the dynamic loader (14-
linux.so) processes when an executable is run.

e Can be loaded by multiple processes simultaneously, saving memory.

e ABI versioning and SONAME used to manage compatibility.

210

Guest
Rectangle

The ELF Format

ELF Basics

ELF (Executable and Linkable Format): Standard binary format on Linux for all object
files.

e Unified format for .o, executables, and .so.
e Consists of:

1. ELF Header: Magic number, bit-width (32/64), endianness, file type, target
architecture.

2. Program Header Table (executables only): Information for runtime loader:
segment addresses, sizes, permissions.

3. Section Header Table: Describes each section’s name, type, offset, size (e.g.,

.text , .data, .symtab, .rel.text)
4. Sections:
e _oxt — machine code
® _rodata — read-only constants
e .data —initialized globals
e bss — uninitialized globals (occupies no file space)
e _syntab — symbol table entries
® _rcl.text, .rel.data — relocation entries

e _debugr — debug information (optional)

Static Libraries

What Is a Static Library?

STATIC LIBRARY (.a): An archive of multiple relocatable object files packaged
together, used to resolve external references at link time.

e Common usage: grouping related functions (e.g., 1ibc.a, libn.a, libvector.a).

211

Guest
Rectangle

e The linker searches archives in command-line order and extracts only those object
files that satisfy currently unresolved symbols.

Creating and Using Static Libraries
1. Compile Modules Individually:

gcc -c addvec.c # produces addvec.o
gcc -c multvec.c # produces multvec.o

2. Archive into Library:

ar rcs libvector.a addvec.o multvec.o

3. Link with Library:
gcc -o prog main.o -L. -lvector -1m

e Order matters: unresolved references from nzin.o must come before 1vector .

e The linker only pulls object files from 1ibvector.a that define needed symbols.

Advantages & Limitations
e Advantages:
o Space efficiency: executables include only used functions.
o Convenience: group related modules.
e Limitations:

o Duplicate code across different executables (each static binary has its own
copy).

o Cannot update library code without relinking executables.

212

Guest
Rectangle

Linking with Static Libraries

addvec.o multvec.o

||

main2.c vector.h Archiver
(ar)
Translators o _
(cpp, ccl, as) libvector.a libc.a Static libraries
Re-locat.able main2.o e printf.o and any ot_her
object files modules called by printf.o
| Linker (1d) |
prog2c Fully linked

executable object file

“c" for "compile-time”

Shared (Dynamic) Libraries

What Is a Shared Library?

SHARED LIBRARY (.s0): A relocatable object file that is loaded and linked at load time
or run time, allowing code sharing across multiple processes.

e Dynamically linked by the loader (1d-1inux.s0) when the executable starts, or by

explicit calls to diopen() at run time.

Building and Linking Shared Libraries
1. Compile with Position-Independent Code (PIC):

gcc -fPIC -c addvec.c # addvec.o contains PIC
gcc -fPIC -c multvec.c # multvec.o contains PIC

2. Create Shared Object:

gcc -shared -o libvector.so addvec.o multvec.o

213

Guest
Rectangle

3. Link Executable Dynamically:

gcc -o prog main.o -L. -lvector

e At load time, the dynamic linker searches for 1ibvector.so in library paths, loads it,
resolves symbols, and performs necessary relocations.

Load-Time vs. Run-Time Dynamic Linking
¢ Load-Time Linking:
o Occurs when the program is started (via execve).

o The dynamic linker resolves undefined symbols against loaded shared libraries,
relocates code for position differences, and then transfers control to main .

¢ Run-Time Linking (dlopen):
o Arunning program can load a shared library with diopen("libvector.so”, RTLD_LAZY) .

o Retrieve function pointers with d1syn() , call routines, then unload with diciose() .

Advantages & Trade-offs
e Advantages:
o Single copy of library code in memory shared by all processes.

o Easier library updates: fix a bug in 1ibfe0.s0 and all executables using it benefit
without relinking.

¢ Trade-offs:
o Slight load-time overhead for dynamic symbol resolution.

o Potential for "dependency hell” if incompatible versions are loaded at run time.

214

Guest
Rectangle

Dynamic Linking at Load-time

main2.c VEthP-h unix> gcc -shared -o libvector.so \

| addvec.c multvec.c

Translators
(cpp, ccl, as) libc.so
l libvector.so
Relopataple main2.o Relocation and symbol
object file table info
| Linker (1d) |
Partiallg.f Iinkc_-;-d pro,lg21
executable object file
Loader libc.so
(execve) libvector.so

Code and data

Fully linked L
executable | Dynamic linker (1d-1inux.sao) |

in memory

Dynamic Linking at Run-time

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};

int y[2] = {3, 4};

int z[2];

int main()

{
void *handle;
void (*addvec)(int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);
if (!handle) {

fprintf(stderr, "%s\n", dlerror());

exit(1);

} dli.c

215

Guest
Rectangle

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {
fprintf(stderr, "%s\n", error);
exit(1l);
}

/* Now we can call addvec() just like any other function */
addvec(x, vy, z, 2);
printf(“"z = [%d %d]\n", z[@], z[1]);

/* Unload the shared library */

if (dlclose(handle) < @) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

}

return 9;
} dli.c

Common Linking Errors & Puzzles

Duplicate Symbol Definitions

Occurs when two or more object files (or libraries) each provide a strong definition of
the same symbol.

e Example:

// In a.c
int x; // weak (uninitialized) definition of x
void p1() { }

// In b.c
int x; // weak definition of x

void p2() { }

o Linking succeeds, both x definitions are identical weak symbols — one is
chosen arbitrarily.

216

Guest
Rectangle

o Ifonewere int x - 7; (strong) and the other int x; (weak), the strong definition
is chosen.

o Two strong definitions (e.g., int x = 7; in both) — linker error: duplicate

symbol.

Undefined References
I Occurs when a symbol is referenced but not defined in any input file or library.

¢ Fixes:
1. Add the missing object file or library to the link line.
2. Ensure correct order: object files referencing library symbols must appear before

1<1ib> on the linker command line.

Relocation Errors

Occurs when a relocation entry cannot be processed because the target symbol is
missing or incompatible.

e Common Causes:
o Mixing position-dependent and position-independent code incorrectly.
o Attempting to statically link PIC objects without +ric .

o Mismatched architectures (e.g., compiling for x86_64 but linking with i386
libraries).

Final Summary & Takeaways
¢ Linking Stages:

1. Symbol Resolution: Match symbol references to definitions, enforce one strong
definition, handle weak symbols.

2. Relocation: Adjust addresses in code and data based on final section
placements.

e Object File Categories:

o Relocatable (.o): Input to linker; contains symbol tables and relocation entries.

217

Guest
Rectangle

o Executable: Fully linked binary ready for loading.

o Shared Object (.s0): Dynamically linked library loaded at run time or load time.
e Static vs. Dynamic Libraries:

o Static (.2): Linked at compile/link time, duplicate code in each executable.

o Shared (.s0): Loaded by dynamic linker, one copy of code shared by multiple
processes, can be updated independently.

e Link-Time Errors:
o Duplicate strong symbols = linker error.
o Undefined references — missing input file or library.
o Relocation failures — architecture or PIC mismatches.

e Good Practices:

o Use static keyword for internal-linkage variables/functions to avoid unintended

symbol exports.

o Organize libraries: put frequently used functions in shared libraries when

appropriate.
o Always place libraries (1) after object files in link command.

o Use versioned SONAMEs for shared libraries to manage compatibility.

218

Guest
Rectangle

25. Wrap-Up

Recap: Core Topics Covered

1. Bits and Bytes

Representation: How integers and floating-point values are encoded in binary.

¢ Integers: Signed (two's complement) and unsigned representations; overflow and
bitwise operations.

¢ Floats: IEEE-754 format for single and double precision; rounding, precision limits,
and pitfalls (e.g., floating-point comparisons).

2. Characters and C Strings

C Strings: Arrays of char terminated by a null byte (\\0).
° Operations: strlen, strcpy, strcmp, pointer manipulation.

¢ Implications: Memory safety (buffer overflows), efficient string traversal, and the
importance of the null terminator.

3. Pointers, Stack, and Heap

219

Guest
Rectangle

Pointers: Variables that store memory addresses; dereferencing and pointer
arithmetic.

Stack Allocation: Automatic (local) variables, function call frames, cleanup on return.

Heap Allocation: Dynamic memory via nalioc / free ; fragmentation and manual
management.

e Trade-Offs: Stack is fast and auto-managed; heap is flexible but requires careful

allocation and deallocation.

4. GenericsinC

Void Pointers (void *): Type-agnostic pointers for data abstraction.

Memcpy & Function Pointers: Copying arbitrary data blocks; passing behavior via
function pointers.

e Use Cases: Implementing generic data structures (e.g., linked lists, dynamic
arrays) without compile-time type information.

5. Assembly Language

Compilation Workflow: C source — assembly (.s) — object (.0) — executable.

Registers & Instructions: nov, 2dd, call, ret;calling conventions and RTL (Register
Transfer Language).

e Stack Frames: Layout of saved registers, return addresses, and local variables;

understanding push / pop and frame pointers.

6. Cache Memories

Memory Hierarchy: Registers — L1/L2/L3 cache - DRAM — secondary storage.
Locality of Reference:
e Temporal: Reuse recently accessed data.

e Spatial: Access contiguous addresses.

Cache Parameters: Block size, associativity, hit/miss rates, write policies.

220

Guest
Rectangle

e Strategies: Loop restructuring (interchange, blocking) to improve cache
performance.

7. Optimization Techniques

Loop Transformations:
¢ Loop Interchange: Reorder nested loops to access data in cache-friendly order.

e Blocking/Tiling: Break large loops into cache-sized chunks to maximize data
reuse.

Compiler Optimizations:

¢ Constant Folding, Dead Code Elimination, Common Subexpression
Elimination, Strength Reduction, Loop Unrolling, Code Motion.

e GCC Flags: o> (standard optimizations), oz (aggressive), os (size-optimized),
ofast (unsafe but fast).

. Linking

Separate Compilation: Source files -— compiled object files.

Static Linking: Combine .o files (and .. archives) into a single executable; symbols
resolved at link time.

Dynamic Linking (Shared Libraries):

e <o Files: Position-Independent Code (PIC), loaded at run time by the dynamic
loader ((1d-1inux.so).

e Advantages: Single shared copy in memory, easier updates, reduced executable
size.

Relocation & Symbol Resolution: Adjust addresses and resolve external references;
handle weak vs. strong symbols, duplicate definitions, and undefined references.

COMP201 Tools and Techniques

Unix and the Command Line

221

Guest
Rectangle

Shell Proficiency: Navigating directories (cd), listing files (Is), file permissions
(chmod/chown), process management (ps/kill).

Text Processing: grep, auk, sed, sort, uniq for filtering and transforming text.
Build Systems:
o Makefiles: Define targets, dependencies, and build commands.

e :cc Invocation: Common flags for compilation (02, ¢, wa11, library linking

1<name>)

Coding Style
Code Readability: Consistent indentation, meaningful variable/function names,
modular functions.

Commenting Practices: Brief, descriptive comments for non-obvious logic; header
comments for file/module purpose.

Error Handling: Check return values from system/library calls, handle crrno, use

assertions (assert) for invariants.

Debugging with GDB

Breakpoints & Watchpoints:

® break <location>, watch <expression> tO halt execution on conditions.

Stepping: step (into function calls), next (over calls), continue (resume).
Inspecting State:

® print <variable>, info registers, backtrace for call stacks.

Core Dumps:

e Enable corefiles via uiinit -c unlinited ; @analyze with gdb <execs core .

Memory Checking with Valgrind

valgrind --leak-check=full <executable>: Detects memory leaks, unreachable
blocks, and improper frees.

¢ Invalid Reads/Writes, Use-after-free, Double Free.

222

Guest
Rectangle

Memory Errors:

Massif Tool: valgrind --tool=massif for heap profiling; visualize allocation over time.

Profiling with Callgrind

Fi

valgrind --tool=callgrind <executable>: Records function call counts and
instruction counts.

Analysis:
e Use kcachegrind OF qeachegrind to visualize hotspots and call graphs.

Optimization Guidance: Focus on “expensive” functions or loops consuming the
most instructions or cache misses.

nal Takeaways

Foundation in C and Systems: Grasp of low-level data representation, memory
hierarchy, and linking processes empowers you to write efficient, safe, and portable
code.

Toolchain Mastery: Proficiency with Unix/CLI, Makefiles, GDB, Valgrind, and profilers
is essential for debugging, analyzing, and optimizing real-world applications.

Performance Mindset: Understanding how code maps to hardware (caches,
pipelines) guides algorithmic and code-level optimizations.

Lifelong Learning Path: The concepts and skills from COMP201 serve as a
springboard into specialized areas—embedded systems, operating systems,
compilers, networking, databases, security, HPC, and beyond.

Practice and Exploration: Continuously apply these tools and techniques in
projects, open-source contributions, and research to deepen your expertise and
adapt to evolving technologies.

223

Guest
Rectangle

