
Guest
Rectangle

1

Guest
Rectangle

Guest
Rectangle

2

Guest
Rectangle

Guest
Rectangle

© 2025 AYKHAN AHMADZADA

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means—electronic, mechanical,

photocopying, recording, or otherwise—without prior written permission

from the author.

This work is a personal academic compilation created for educational

purposes as part of the COMP202 (DATA STRUCTURES & ALGORITHMS)

course at Koç University.

Compiled in Istanbul, Turkey.

Guest
Rectangle

COMP202

1. Analysis of Algorithms

2. Recursion

3. Recurrence Relations and Complexity Analysis

4. Arrays and Singly Linked Lists

5. Doubly Linked Lists

6. Lists and Iterators

7. Queues and Their Applications

8. Binary Trees and Binary Search Trees: A Structured Note

9. Binary Search Trees: Structure, Operations, and Complexity Analysis

10. Tries and Skip Lists

11. Review: Tries and Skip Lists

12. Priority Queues and Heaps

9/30/25, 7:15 PM COMP202

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4.html 1/2

3

Guest
Rectangle

13. Map ADT and Implementations (Hash Tables)

14. Map & HashMap Pseudocode and Rehashing

15. Midterm Preparation

16. Graphs — Theory, ADT & Data Structure Implementations

17. Graph Representations & Breadth-First Search

18. Graph Traversal, DFS, Structural Properties

19. Graph Algorithms: Reachability, Ordering & Shortest Paths

20. Dijkstra’s Algorithm

21. Minimum Spanning Trees

22. Priority Queues & Heap-Based Sorting

23. Heap-Based Sorting & Merge-Sort Overview

24. Sorting Algorithms

25. Sorting Lower Bounds and the Selection Problem

9/30/25, 7:15 PM COMP202

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4.html 2/2

4

Guest
Rectangle

1. Analysis of Algorithms

Introduction

This note focuses on the analysis of algorithms (Lecture 1 Slide), a fundamental topic in

data structures and algorithms. The primary goal is to understand how to estimate the

efficiency of an algorithm as the size of its input grows. We will explore both

experimental and theoretical techniques, introduce asymptotic notation (including

Big-Oh, Big-Omega, and Big-Theta), and discuss why these notations are crucial for

comparing and selecting algorithms.

Running Time and Experimental Analysis

Many algorithms transform an input into an output by performing a series of operations.

The running time typically increases with input size . To categorize an algorithm's

performance, we can consider:

Best case: The most favorable input scenario.

Average case: The “typical” or expected scenario (often difficult to analyze

rigorously).

Worst case: The most unfavorable input scenario, guaranteeing an upper bound on

running time.

n

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 1/12

5

Guest
Rectangle

RUNNING TIME: The length of time an algorithm takes to process an input. Often

measured by counting the number of basic operations rather than raw wall-clock time.

Experimental Approach

One naive way to measure performance is:

1. Implement the algorithm in a programming language.

2. Run the program on inputs of varying sizes.

3. Record the time taken (e.g., milliseconds).

4. Plot or compare the results.

Example (Pseudocode for an experimental run):

for n in [1, 10, 50, 100, 1000]:
input_data = generate_data(n)
start_time = now()
result = myAlgorithm(input_data)
end_time = now()
print("Input Size:", n, "Running Time:", end_time - start_time)

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 2/12

6

Guest
Rectangle

Limitations of Experimental Approach

While experiments can offer real performance data, they have drawbacks:

1. Implementation Overhead: Writing a correct, optimized implementation can be

difficult.

2. Coverage: Trials may not cover all possible input distributions.

3. Environment Dependence: The results rely on specific hardware and software

conditions. Comparing two algorithms requires the same environment.

4. Scalability: Testing large might be too time-consuming or resource-intensive.

Hence, experimental data alone may not provide a complete picture, prompting the need

for a more theoretical analysis.

Theoretical Analysis

n

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 3/12

7

Guest
Rectangle

Rather than coding and measuring, theoretical analysis employs a higher-level

description (often pseudocode) to estimate running time as a function of input size . It:

Considers all possible inputs (especially worst case).

Abstracts away hardware and compiler differences by counting primitive

operations.

Enables comparisons of algorithms on an equal footing.

This approach provides a machine-independent measure of an algorithm’s efficiency.

The theoretical analysis of an algorithm is the study of its efficiency and correctness

without implementing it in code. It involves evaluating the running time and space

usage as functions of the input size , typically using asymptotic notation like . Is it

just counting primitive operations? Yes, one method of theoretical analysis is counting

primitive operations, but it is not the only approach. Primitive operation counting is

useful for deriving exact complexity functions.

There are also other methods. One method is recurrence relations, which are used for

analyzing recursive algorithms like Merge Sort, where the time complexity is expressed

as and solved using techniques such as the Master

Theorem. Another method is worst, best, and average case analysis, where the worst

case represents the maximum number of operations needed, the best case

represents the minimum, and the average case gives the expected number of

operations over random inputs. Lastly, amortized analysis is useful when some

operations take significantly longer than others, such as in dynamic arrays and hash

tables, where the cost of expensive operations is averaged over multiple operations.

Common Functions in Algorithm Analysis

Certain mathematical functions appear repeatedly when describing algorithm running

times:

1. Constant –

2. Logarithmic –

3. Linear –

4. Linearithmic –

5. Quadratic –

n

n O(n)

T (n) = 2T (n/2) +O(n)

O(n) Ω(n)
Θ(n)

O(1)

O(log n)

O(n)

O(n log n)

O(n)2

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 4/12

8

Guest
Rectangle

6. Cubic –

7. Exponential –

GROWTH RATE: Describes how quickly a function (or algorithm's running time)

increases as grows.

In practice, logarithmic, linear, and n log n complexities are usually considered more

scalable than quadratic, cubic, or exponential.

Primitive Operations

PRIMITIVE OPERATION: A low-level computation assumed to take constant time in

the theoretical (RAM) model. Examples include:

Evaluating an expression (e.g., x + 1)

Assigning a value to a variable

O(n)3

O(2)n

n

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 5/12

9

Guest
Rectangle

Indexing an array element

Calling or returning from a function

Comparing two numbers

In pseudocode, counting these operations helps approximate the total running time.

Counting Operations in an Algorithm

To analyze an algorithm, we inspect its pseudocode and estimate the total number of

primitive operations as a function of . For instance, consider a pseudocode snippet:

max_value = A[0] // 2 operations (index + assign)
for i in 1 to n-1: // loop runs (n-1) times
 if A[i] > max_value: // 2 operations each time (index + c
ompare)
 max_value = A[i] // 1 operation (assign)
return max_value // 1 operation

The loop body might execute up to (n−1) times (worst case).

Summing these gives a total that typically looks like

Such a result indicates a linear time complexity, .

Growth Rate of Running Time

Once we have a function representing the count of primitive operations, we

observe:

Changing hardware or software usually multiplies by a constant factor, but

does not alter its fundamental growth pattern.

For large , the leading term of dominates.

Example:

 is effectively linear, so we might denote as .

Big-Oh Notation

n

c ⋅1 n+ c 2. (T (n) = 5n− 1)

O(n)

T (n)

T (n)

n T (n)

T (n) = 5n− 1 T (n) O(n)

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 6/12

10

Guest
Rectangle

BIG-OH (O): Formally, is if there exist constants and

such that:

In simpler terms, grows at most as fast as (up to constant multiples) for

sufficiently large .

Examples of Big-Oh

1. is . We can pick and .

2. is by ignoring constant factors and lower-order terms.

3. is .

If an algorithm’s time is , we say it is . The big-Oh focuses on dominant

terms and ignores constant coefficients.

Big-O notation represents the asymptotic upper bound (worst-case complexity) of

an algorithm.

But O(n) is not an exact count. Instead, it describes the dominant term, ignoring

constants and lower-order terms

f(n) O(g(n)) c > 0 n ≥0 1

f(n) ≤ c ⋅ g(n) for all n ≥ n . 0

f(n) g(n)
n

2n+ 10 O(n) c = 3 n =0 10

3n +3 20n +2 5 O(n)3

3 log n+ 5 O(log n)

5n+ 5 O(n)

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 7/12

11

Guest
Rectangle

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 8/12

12

Guest
Rectangle

Examples and Comparisons

Comparing Two Algorithms

If one algorithm is (insertion sort) and another is (merge sort), we

can see that for large :

 eventually outgrows .

For a million elements, an sort can be dramatically slower.

Constant factors and smaller terms do not affect which function eventually dominates.

The difference in growth rate can yield dramatic differences in execution times for large

inputs.

Big-Omega and Big-Theta

Besides big-Oh, we have two other asymptotic notations:

O(n)2 O(n log n)
n

n2 n log n

O(n)2

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a8388… 9/12

13

Guest
Rectangle

BIG-OMEGA (): is if grows at least as fast as . Formally,

there exist and such that:

BIG-THETA (): is if it is both and . In other words,

 grows on the same order as . There exist constants and and an

such that:

Intuitive Guide:

: up to

: at least

: same order

Asymptotic Algorithm Analysis

Asymptotic analysis uses big-Oh, big-Omega, and big-Theta to describe the growth

behavior for large .

1. Focus on the worst-case count of operations (or sometimes average case).

2. Simplify the resulting function to its dominant term, ignoring constants and lower-

order parts.

3. Express the final result in big-Oh (for an upper bound) or big-Theta (for a tight

bound).

Example:

If arrayMax scanning an array does about operations, then we say it runs in

 (also and).

Review of Basic Math

Analyzing algorithms often involves properties of:

Powers ()

Ω f(n) Ω(g(n)) f(n) g(n)
c > 0 n 0

f(n) ≥ c ⋅ g(n) for n ≥ n . 0

Θ f(n) Θ(g(n)) O(g(n)) Ω(g(n))
f(n) g(n) c′ c′′ n 0

c ⋅′ g(n) ≤ f(n) ≤ c ⋅′′ g(n), for n ≥ n . 0

O(⋅)

Ω(⋅)

Θ(⋅)

n

5n+ 5
Θ(n) O(n) Ω(n)

2 =a+b 2 ⋅a 2b

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a838… 10/12

14

Guest
Rectangle

Logarithms ()

Summations (arithmetic series, geometric series)

Exponential and polynomial relations

Proof techniques (induction, contradiction)

Elementary probability (expected values, distributions)

Having these fundamentals at hand helps in reasoning about algorithm complexities like

, , or .

Putting It All Together

1. Identify the algorithm’s basic operations in pseudocode.

2. Count how many times these operations execute for worst-case (or average-case).

3. Express that count as a function .

4. Simplify to its dominant terms and use big-Oh notation to summarize.

log(xy) = log x+ log y

n log n n2 2n

T (n)

T (n)

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a838… 11/12

15

Guest
Rectangle

5. (Optionally) refine using big-Omega or big-Theta to indicate lower and exact

bounds.

Example Scenario

Sorting algorithms: Compare insertion sort with merge sort. For

large , the approach is asymptotically faster, even if insertion sort might

have a smaller constant factor for small .

Self Test

Self-Test: Lecture 1

Θ(n)2 Θ(n log n)
n n log n

n

9/30/25, 7:15 PM 1. Analysis of Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/1%20Analysis%20of%20Algorithms%201a034575a838… 12/12

16

Guest
Rectangle

2. Recursion

Introduction to Recursion

Recursion is a programming technique where a method calls itself to solve a problem. It

is widely used in algorithm design to break down complex problems into simpler sub-

problems.

Key Concepts in Recursion

RECURSION: The process in which a method calls itself to solve smaller instances of

the same problem.

Essential Components of a Recursive Method

Base Case(s):

BASE CASE: The condition under which the recursion terminates. Every chain of

recursive calls must eventually reach a base case where no further recursive calls

are made.

Recursive Calls:

RECURSIVE CALL: A call within a method to itself, which must make progress

toward reaching the base case.

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 1/7

17

Guest
Rectangle

The Recursion Pattern

A classic example of recursion is the factorial function. The recursive definition of the

factorial is:

Factorial Function Example in Java

public int factorial(int n) {
 if (n == 0) {
 return 1; // Base case
 } else {
 return n * factorial(n - 1); // Recursive call
 }
}

This example demonstrates how each recursive call reduces the problem until the base

case is reached.

Visualizing Recursion

Understanding recursion can be aided by a visual recursion trace, where:

Each recursive call is represented by a box.

Arrows show the flow from the caller to the callee and the return values.

n! = {1
n× (n− 1)!

if n = 0
if n ≥ 1

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 2/7

18

Guest
Rectangle

Recursion in Binary Search

Binary search is an efficient algorithm that uses recursion to search for an integer in an

ordered list. It works by comparing the target value with the middle element of the array:

If the target equals the middle element, the search is complete.

If the target is less than the middle element, the search recurses on the first half.

If the target is greater than the middle element, the search recurses on the second

half.

Analysis of Binary Search

Time Complexity:

 Each recursive call reduces the search region by half, resulting in at

most levels of recursion.

O(log n) :
log n

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 3/7

19

Guest
Rectangle

Computing Powers Using Recursion

Naive Recursive Power Function

The power function can be computed recursively by multiplying by

itself times. This approach, however, makes recursive calls, resulting in an time

complexity.

Recursive Squaring Method

A more efficient method is to use recursive squaring. The idea is to reduce the number

of multiplications by halving the exponent at each recursive call.

Algorithm: Recursive Squaring

1. Base Case:

If , return .

p(x,n) = xn x

n n O(n)

n = 0 1

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 4/7

20

Guest
Rectangle

2. Recursive Case for Odd :

Compute

Return

3. Recursive Case for Even :

Compute

Return

Pseudocode

Algorithm Power(x, n):
 if n == 0 then
 return 1
 if n is odd then
 y = Power(x, (n - 1) / 2)
 return x * y * y
 else

n

y = Power(x,)2
n−1

x× y × y

n

y = Power(x,)2
n

y × y

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 5/7

21

Guest
Rectangle

 y = Power(x, n / 2)
 return y * y

RECURSIVE SQUARING: A method to compute powers in time by halving

the exponent with each recursive call.

Analysis of Recursive Squaring

Efficiency:

By halving the exponent at each step, the algorithm only makes recursive calls,

making it significantly faster than the naive approach.

Final Summary & Takeaways

Recursion simplifies complex problems by breaking them into smaller, manageable

sub-problems.

O(log n)

log n

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 6/7

22

Guest
Rectangle

Base cases are critical to ensure termination of recursion.

Visual aids like recursion traces can help in understanding the flow of recursive calls.

Binary search demonstrates how recursion can efficiently solve search problems in

 time.

Recursive squaring offers a powerful method for computing powers with

logarithmic time complexity.

By mastering these recursive techniques, one can design efficient algorithms for a variety

of computational problems.

O(log n)

9/30/25, 7:16 PM 2. Recursion

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/2%20Recursion%201a034575a83880ddafd1c029e2e710c… 7/7

23

Guest
Rectangle

3. Recurrence Relations and

Complexity Analysis

Objective & Scope

This note explains how to analyze the time complexity of recursive algorithms by solving

recurrence relations. We focus on two recurrences:

, which solves to

, which solves to

We also emphasize the importance of considering the input size when analyzing

algorithm complexity.

Analyzing Recurrences

The key idea behind these analyses is to understand how the recurrence expands as the

input size is reduced step by step, often until the base case is reached. In our derivations,

the number of steps (or levels of recursion) is denoted by k, which is typically log n when

the problem size is halved at each step.

Recurrence 1:

T (n) = c+ 2⋅T (n/2) O(n)

T (n) = c+ T (n/2) O(log n)

T (n) = c+ 2⋅T (n/2)

9/30/25, 7:16 PM 3. Recurrence Relations and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/3%20Recurrence%20Relations%20and%20Complexity%2… 1/4

24

Guest
Rectangle

Derivation by Iteration

1. Initial Formulation:

2. First Level of Recursion:

Substitute back:

3. Second Level of Recursion:

Substitute:

4. General Pattern:

After k levels, where (i.e.,):

Let be some constant . The summation is a geometric series:

Then:

Thus:

T (n) = c+ 2⋅T (
2
n)

T =(
2
n) c+ 2⋅T (

4
n)

T (n) = c+ 2 c+ 2⋅T =[(
4
n)] c+ 2c+ 2 ⋅T

2 (
4
n)

T =(
4
n) c+ 2⋅T (

8
n)

T (n) = c+ 2c+ 2 c+ 2⋅T =2 [(
8
n)] c+ 2c+ 2 c+2 2 ⋅T

3 (
8
n)

n/2 =k 1 k = log n2

T (n) = c+ 2c+ 2 c+2 ⋯ + 2 c+k−1 2 ⋅T (1) k

T (1) c′

c 1 + 2 + 2 + ⋯ + 2 =(2 k−1) c 2 − 1 (k)

T (n) = c 2 − 1 +(k) 2 c with 2 =k ′ k n

9/30/25, 7:16 PM 3. Recurrence Relations and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/3%20Recurrence%20Relations%20and%20Complexity%2… 2/4

25

Guest
Rectangle

KEY RESULT: resolves to an overall complexity of

Recurrence 2:

Derivation by Iteration

1. Initial Formulation:

2. First Level of Recursion:

Substitute back:

3. Second Level of Recursion:

Substitute:

4. General Pattern:

After k levels, where (i.e.,):

With being constant, we have:

T (n) = c(n− 1) + c n =′ O(n)

T (n) = c+ 2⋅T (n/2) O(n).

T (n) = c+ T (n/2)

T (n) = c+ T (
2
n)

T =(
2
n) c+ T (

4
n)

T (n) = c+ c+ T =[(
4
n)] 2c+ T (

4
n)

T =(
4
n) c+ T (

8
n)

T (n) = 2c+ c+ T =[(
8
n)] 3c+ T (

8
n)

n/2 =k 1 k = log n2

T (n) = kc+ T (1)

T (1)

T (n) = c log n+2 constant = O(log n)

9/30/25, 7:16 PM 3. Recurrence Relations and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/3%20Recurrence%20Relations%20and%20Complexity%2… 3/4

26

Guest
Rectangle

KEY RESULT: resolves to an overall complexity of

Considering Input Size in Complexity Analysis

When analyzing algorithm complexity, the input size is critical because it determines

the number of operations performed by the algorithm.

For the recurrence , each level of recursion doubles the

number of calls, leading to a total work proportional to .

For , the problem size halves with each recursive call, resulting

in logarithmically many levels, hence complexity.

INPUT SIZE: The variable represents the input size, and how is processed (e.g.,

divided in half at each step) directly impacts the total computational work required.

Final Summary & Takeaways

Recurrence Analysis:

 sums up to a geometric series leading to

complexity.

expands linearly with the number of levels ,

leading to complexity.

Input Size Impact:

The input size determines the number of recursive calls or levels in an algorithm,

which is fundamental to understanding its overall efficiency.

Visual Aids:

Recursion trees or diagrams are powerful tools for visualizing how recurrences

expand and summing the work done at each level.

By grasping these recurrence relations and the role of input size in complexity analysis,

you can better evaluate and design efficient algorithms.

T (n) = c+ T (n/2) O(log n).

T (n) = c+ 2⋅T (n/2)
n

T (n) = c+ T (n/2)
O(log n)

n n

T (n) = c+ 2⋅T (n/2) O(n)

T (n) = c+ T (n/2) k = log n
O(log n)

9/30/25, 7:16 PM 3. Recurrence Relations and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/3%20Recurrence%20Relations%20and%20Complexity%2… 4/4

27

Guest
Rectangle

4. Arrays and Singly Linked Lists

Objective & Scope

This note covers two fundamental data structures:

Arrays: Their structure, usage, and how they store primitive elements or object

references.

Singly Linked Lists: Their structure, node composition, and basic operations such as

insertion and removal.

Arrays

Arrays Overview

ARRAYS: A contiguous block of memory used to store a fixed number of elements.

Arrays can contain either primitive data types (such as characters) or references to

objects.

Key Characteristics

Storage: Elements are stored in consecutive memory locations.

Access: Fast random access using indices.

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 1/9

28

Guest
Rectangle

Fixed Size: Once created, the size of an array cannot change without creating a new

array.

Arrays of Characters or Object References

Arrays can store primitive elements like characters.

They can also store references to objects, allowing for the management of more

complex data types.

Singly Linked Lists

Singly Linked List Overview

SINGLY LINKED LIST: A dynamic data structure consisting of nodes where each node

stores an element and a reference (link) to the next node in the sequence. The list is

accessed starting from a head pointer.

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 2/9

29

Guest
Rectangle

Node Structure in a Singly Linked List

Element: The data value stored in the node.

Link to Next Node: A pointer that references the next node in the list.

Head Pointer: Points to the first node in the list.

A Nested Node Class

Typically, the node is implemented as a nested class within the linked list class.

This encapsulation helps keep the implementation details hidden from the user.

Accessor Methods

ACCESSOR METHODS: Functions that allow access to the data stored in nodes (e.g.,

retrieving the element from a node).

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 3/9

30

Guest
Rectangle

These methods are essential for traversing the list and for various operations such as

searching or displaying list contents.

Insertion Operations in Singly Linked Lists

Inserting at the Head

Procedure:

Allocate a new node.

Set the new node's element with the value to insert.

Make the new node point to the current head.

Update the head pointer to the new node.

INSERT AT HEAD: Fast operation (time complexity) because it involves updating

a few pointers.

public void insertAtHead(E element) {
 Node<E> newNode = new Node<>(element, head);
 head = newNode;

O(1)

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 4/9

31

Guest
Rectangle

 // If the list was empty, update the tail to the new node as we
ll.
 if (size == 0) {
 tail = newNode;
 }
 size++;
}

Inserting at the Tail

Procedure:

Allocate a new node.

Set the new node's element with the value to insert.

The new node’s next pointer is set to null.

The current tail’s next pointer is updated to point to the new node.

Update the tail pointer to the new node.

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 5/9

32

Guest
Rectangle

INSERT AT TAIL: May require traversing the list if no tail pointer is maintained, which

can lead to time complexity. But normally it is time complexity.

public void insertAtEnd(E element) {
 Node<E> newNode = new Node<>(element, null);
 if (size == 0) {
 head = newNode;
 } else {
 tail.next = newNode;
 }
 tail = newNode;
 size++;
}

Removal Operations in Singly Linked Lists

Removing at the Head

Procedure:

Update the head pointer to point to the next node in the list.

O(n) O(n)

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 6/9

33

Guest
Rectangle

The removed node becomes eligible for garbage collection.

REMOVE AT HEAD: Fast operation (time complexity) as it simply involves

reassigning the head pointer.

public E removeHead() {
 if (size == 0) {
 throw new NoSuchElementException("List is empty");
 }
 E removedElement = head.element;
 head = head.next;
 size--;
 // If the list becomes empty after removal, update tail to nul
l.
 if (size == 0) {
 tail = null;
 }
 return removedElement;
}

O(1)

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 7/9

34

Guest
Rectangle

Removing at the Tail

Procedure:

Removing the tail node is less efficient because it typically requires traversal

from the head to find the node immediately preceding the tail.

Once found, update its next pointer to null and update the tail pointer

accordingly.

REMOVE AT TAIL: Inefficient in singly linked lists (time complexity) due to the

need for traversal.

Final Summary & Takeaways

Arrays offer fast random access and efficient storage but are fixed in size.

Singly Linked Lists provide dynamic memory allocation, with efficient insertion and

removal at the head, though tail operations can be less efficient without additional

pointers.

Key Concepts:

Arrays: Contiguous memory, fixed size, fast indexing.

Singly Linked Lists: Dynamic nodes, head pointer, insertion/removal strategies.

O(n)

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 8/9

35

Guest
Rectangle

Visual aids, such as diagrams, can significantly enhance understanding of pointer

operations and structure.

By mastering these basic data structures, you build the groundwork necessary for

understanding more complex data handling techniques in algorithms.

9/30/25, 7:16 PM 4. Arrays and Singly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/4%20Arrays%20and%20Singly%20Linked%20Lists%201a… 9/9

36

Guest
Rectangle

5. Doubly Linked Lists

Objective & Scope

This note focuses on Doubly Linked Lists, a dynamic data structure that supports

bidirectional traversal. We cover:

The structure and key components of doubly linked lists.

Insertion and deletion operations.

Implementation considerations, particularly in Java.

This note stops before the introduction of iterators.

Doubly Linked List Overview

DOUBLY LINKED LIST: A data structure where each node maintains two pointers—

one to the previous node and one to the next node—allowing traversal in both

directions.

Key Characteristics

Bidirectional Traversal: Nodes link both forward and backward.

Sentinel Nodes: Often use special header and trailer nodes to simplify insertion and

deletion at the boundaries.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 1/10

37

Guest
Rectangle

Dynamic Nature: Supports efficient insertions and deletions anywhere in the list

without requiring a full traversal for previous-node access.

Structure of a Doubly Linked List

Node Structure

Each node in a doubly linked list contains:

Element: The data stored within the node.

Previous Pointer: A reference to the previous node in the list.

Next Pointer: A reference to the next node in the list.

NODE: The basic building block that holds the element along with pointers to both its

predecessor and successor.

Special Nodes: Header and Trailer

Header Node: A sentinel node at the beginning that does not hold user data but

simplifies operations at the front.

Trailer Node: A sentinel node at the end that similarly aids in managing edge

conditions.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 2/10

38

Guest
Rectangle

Insertion in Doubly Linked Lists

Insertion Operation

To insert a new node q between an existing node p and its successor:

1. Allocate a New Node: Create node q with the desired element.

2. Update Pointers:

Set q.prev to point to node p .

Set

q.next
 to point to

p
’s current next node.

Update p ’s next node's previous pointer to point back to q .

Update p.next to point to q .

INSERTION: Accomplished by adjusting four pointers, ensuring the new node is

seamlessly integrated into the list without the need for a full traversal.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 3/10

39

Guest
Rectangle

Example

For a list with nodes A → B → C, inserting element X between B and C results in:

A → B → X → C, with

X.prev = B
,

X.next = C
,

B.next = X
, and

C.prev = X
.

Deletion in Doubly Linked Lists

Deletion Operation

Removing a node p involves:

1. Adjusting Pointers:

Update the previous node's (

p.prev
) next pointer to point to

p
’s next node.

Update the next node's (p.next) previous pointer to point to p ’s previous node.

2. Removing the Node:

Once the pointers are reassigned, node p is effectively removed and can be

garbage collected.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 4/10

40

Guest
Rectangle

DELETION: Simplified by the fact that each node directly references both its

neighbors, allowing immediate pointer adjustments without a complete list traversal.

Example

For a list A → B → C → D, removing node C leads to:

A → B → D, where

B.next
 is updated to D and

D.prev
 is updated to B.

Implementation Considerations in Java

Nested Node Class:

Typically, the node is implemented as a private inner class within the doubly linked

list class to encapsulate its structure.

Pointer Management:

Ensuring both prev and next pointers are correctly updated during insertion and

deletion is crucial to maintain list integrity.

Boundary Operations:

The use of header and trailer nodes minimizes edge-case errors when performing

operations at the beginning or end of the list.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 5/10

41

Guest
Rectangle

public class DoublyLinkedList<E> {

 // Nested Node class representing each node in the doubly linke
d list
 private static class Node<E> {
 E element; // The data stored in the node
 Node<E> prev; // Pointer to the previous node
 Node<E> next; // Pointer to the next node

 public Node(E element, Node<E> prev, Node<E> next) {
 this.element = element;
 this.prev = prev;
 this.next = next;
 }
 }

 private Node<E> head; // Points to the first node in the list
 private Node<E> tail; // Points to the last node in the list
 private int size; // Number of elements in the list

 // Constructor: Initializes an empty doubly linked list
 public DoublyLinkedList() {
 head = null;
 tail = null;
 size = 0;
 }

 // Insert a new element at the head of the list
 public void insertAtHead(E element) {
 Node<E> newNode = new Node<>(element, null, head);
 if (head != null) {
 head.prev = newNode;
 } else {
 // List was empty, so newNode becomes both head and tai
l

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 6/10

42

Guest
Rectangle

 tail = newNode;
 }
 head = newNode;
 size++;
 }

 // Insert a new element at the tail of the list
 public void insertAtTail(E element) {
 Node<E> newNode = new Node<>(element, tail, null);
 if (tail != null) {
 tail.next = newNode;
 } else {
 // List was empty, so newNode becomes both head and tai
l
 head = newNode;
 }
 tail = newNode;
 size++;
 }

 // Insert a new element immediately after a given node 'p'
 public void insertAfter(Node<E> p, E element) {
 if (p == null) {
 throw new IllegalArgumentException("Given node cannot b
e null");
 }
 Node<E> newNode = new Node<>(element, p, p.next);
 if (p.next != null) {
 p.next.prev = newNode;
 } else {
 // p is the tail, so update tail to newNode
 tail = newNode;
 }
 p.next = newNode;
 size++;
 }

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 7/10

43

Guest
Rectangle

 // Remove a given node 'p' from the list and return its element
 public E remove(Node<E> p) {
 if (p == null) {
 throw new IllegalArgumentException("Given node cannot b
e null");
 }
 if (p.prev != null) {
 p.prev.next = p.next;
 } else {
 // p is the head
 head = p.next;
 }
 if (p.next != null) {
 p.next.prev = p.prev;
 } else {
 // p is the tail
 tail = p.prev;
 }
 size--;
 return p.element;
 }

 // Return the current size of the list
 public int getSize() {
 return size;
 }

 // Check if the list is empty
 public boolean isEmpty() {
 return size == 0;
 }

 // Utility method to print the list elements in forward and bac
kward order
 public void printList() {

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 8/10

44

Guest
Rectangle

 Node<E> current = head;
 System.out.print("Forward: ");
 while (current != null) {
 System.out.print(current.element + " ");
 current = current.next;
 }
 System.out.println();
 current = tail;
 System.out.print("Backward: ");
 while (current != null) {
 System.out.print(current.element + " ");
 current = current.prev;
 }
 System.out.println();
 }

 // Getter for the head node (useful for operations like insertA
fter)
 public Node<E> getHead() {
 return head;
 }
}

Final Summary & Takeaways

Bidirectional Traversal:

Doubly linked lists enable efficient traversal in both directions due to nodes having

pointers to both previous and next nodes.

Efficient Updates:

Insertion and deletion operations are streamlined with direct pointer manipulations,

eliminating the need for full traversals.

Simplified Boundaries:

The use of header and trailer sentinel nodes simplifies operations at the boundaries

of the list.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880d… 9/10

45

Guest
Rectangle

Java Implementation:

Implementing doubly linked lists in Java typically involves a nested node class and

careful pointer management to maintain structural integrity.

Understanding these principles is essential for effectively implementing and

manipulating doubly linked lists in various applications.

9/30/25, 7:16 PM 5. Doubly Linked Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/5%20Doubly%20Linked%20Lists%201b034575a83880… 10/10

46

Guest
Rectangle

6. Lists and Iterators

Lists are abstract data types (ADTs) that represent ordered sequences of elements. Java

provides a robust interface for lists and iterators.

java.util.List ADT:

The List interface in Java defines methods for managing ordered collections, such as:

Methods for retrieving an element (get(i)) or modifying an element (set(i, e)).

Methods for inserting an element at a specific index and removing an element

from the list.

Array Lists:

An obvious choice for implementing a list ADT is to use an array:

Each element is stored in an array slot (e.g.,

A[i]
 holds the element at index

i
).

The get(i) and set(i, e) operations are straightforward, as they directly access

the array element at index i .

Insertion:

In an operation like add(i, o) , you must shift all elements from index i to the

end of the array forward by one. In the worst case (inserting at index 0), this takes

 time.O(n)

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 1/17

47

Guest
Rectangle

Removal:

Removing an element at index i requires shifting all elements from index i+1 to

the end backward by one to fill the gap, again taking time in the worst

case.

Performance Considerations:

In an array-based dynamic list:

Space used is

Indexing is time.

Add and remove operations can take time due to shifting elements.

O(n)

O(n).

O(1)

O(n)

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 2/17

48

Guest
Rectangle

When the underlying array is full, it can be replaced with a larger array to

accommodate new elements.

Growable Array-Based Array List:

When implementing a dynamic array (or growable array-based list), a common

challenge is what to do when the underlying array becomes full. Two strategies are

commonly used: the Incremental Strategy and the Doubling Strategy. The

performance of these strategies can be analyzed by examining the total time spent

on all push operations, especially the cost of copying elements when resizing.

Incremental Strategy

In the incremental strategy, when the array is full, you increase its size by a constant

amount, say c . For each push operation that requires resizing, you perform the

following steps:

1. Allocate a new array with size equal to (current size + c).

2. Copy all the elements from the old array to the new array.

3. Insert the new element.

Assume you start with an initial array size of s . Every time the array fills up, you need

to copy all its elements. If you perform a total of n push operations, then the number

of times you need to resize is roughly proportional to n / c . For the k-th resize, the

array size is approximately s + k * c , and copying these elements takes O(s + k * c)

time.

The total time spent on copying over all resizes is approximately:

where . This sum is an arithmetic series whose total is proportional to:

If we assume that the initial size and constant are fixed, then the dominant term

becomes:

T ≈copy (s+
k=1

∑
m

k ⋅ c)

m ≈

c
n

m ⋅ s+ c ⋅ =
2

m(m+ 1)
O ⋅ s+ c ⋅ (

c

n (
c

n)2)
s c

2

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 3/17

49

Guest
Rectangle

Thus, the incremental strategy results in an overall worst-case time of for

performing push operations, meaning that the amortized cost per operation is

 in the worst-case scenario when many resizes occur.

Doubling Strategy

In the doubling strategy, when the array becomes full, its size is doubled. This means

that the sizes grow exponentially: Each resize operation involves

copying all elements from the old array to the new array.

If the array is doubled each time, the total cost of copying can be analyzed as follows:

When the array first resizes from size to , you copy elements.

The next resize copies elements.

Then elements, and so on.

If push operations are performed, the total number of elements ever copied is:

This is a geometric series that sums up to approximately:

which is .

Because the total extra cost of all resizing operations is and these resizes

happen infrequently (only logarithmically many times), the amortized cost per push

operation is:

Thus, the doubling strategy is much more efficient in practice, with an amortized

time of per operation and an overall time of for operations.

O (
c

n2)
O(n)2

n

O(n)

s, 2s, 4s, 8s, …

s 2s s

2s

4s

n

s+ 2s+ 4s+ ⋯ + (largest power of 2 less than or equal to n)

2n− s

O(n)

O(n)

 =
n

O(n)
O(1)

O(1) O(n) n

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 4/17

50

Guest
Rectangle

Amortized Analysis:

The incremental strategy incurs a higher cost because the array is replaced many

times, while the doubling strategy minimizes the number of times the array is

reallocated. The amortized time for the doubling strategy is per operation. We

call amortized time of a push operation the average time taken by a push operation

over the series of operations, i.e.

Positional Lists

A positional list ADT provides an abstraction for a sequence of elements with the

additional ability to identify each element’s location (or position) within the list.

Concept of Position:

A position is a marker or token that represents a location in the list. A position

remains valid until it is explicitly deleted.

It supports a method like P.getElement() to retrieve the element at that position.

Implementation:

The most natural way to implement a positional list is with a doubly linked list, as it

naturally supports insertions and deletions at arbitrary positions without needing to

traverse the entire list.

Methods:

The positional list ADT includes accessor methods for retrieving elements and

update methods for inserting, replacing, or removing elements.

O(1)

T (n)/n

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 5/17

51

Guest
Rectangle

Iterators and the Iterable Interface

Iterators provide a standardized way to traverse through elements in a collection without

exposing the underlying representation. An iterator is a software design pattern that

abstracts the process of scanning through a sequence of elements, one element at a

time.

Iterator Concept:

An iterator abstracts the process of scanning through a sequence of elements one at

a time.

The Iterable Interface:

In Java, the Iterable interface is parameterized and includes a single method:

iterator() : Returns an iterator over the collection’s elements.

Each call to

iterator()
 returns a new iterator, allowing multiple or simultaneous

traversals.

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 6/17

52

Guest
Rectangle

For-each Loop:

The for-each loop syntax in Java leverages the Iterable interface to simplify iteration

over collections. This loop internally calls the iterator to process each element.

Abstract Data Types (ADTs)

Definition: An abstract data type (ADT) is a conceptual model for a data structure

that specifies:

Data Stored: The type of data maintained.

Operations: The functions or methods provided (e.g., insertion, deletion).

Error Conditions: How error situations are handled (e.g., attempting an invalid

operation).

Example:

An ADT for a simple stock trading system might include:

Data: Buy/sell orders.

Operations: orderBuy(stock, shares, price) , orderSell(stock, shares, price) ,

cancel(order) .

Errors: Handling cases such as non-existent stocks or orders.

The Stack ADT

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 7/17

53

Guest
Rectangle

Definition: A stack is an ADT that stores a collection of objects, supporting

operations based on the Last-In, First-Out (LIFO) principle.

Think of a spring-loaded plate dispenser: the last plate placed on top is the first one

removed.

Primary Operations:

push(object): Inserts an element onto the top of the stack.

pop(): Removes and returns the element most recently added.

Auxiliary Operations:

top(): Returns the top element without removing it.

size(): Returns the number of elements in the stack.

isEmpty(): Checks if the stack is empty.

Stack Interface in Java

The following Java interface outlines the Stack ADT. Note that it is different from Java's

built-in java.util.Stack .

public interface Stack<E> {
 int size();
 boolean isEmpty();
 E top();
 void push(E element);
 E pop();
}

Key Point:

In this implementation, methods

top()
 and

pop()
 return

null
 if the stack is empty

instead of throwing exceptions.

Handling Error Conditions

Exceptions vs. Returning Null:

Instead of using exceptions for error conditions (such as performing pop or top on

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 8/17

54

Guest
Rectangle

an empty stack), the design here chooses to return null . This simplifies error

handling in many scenarios, though it requires the user to check for null values.

Applications of Stacks

Direct Applications:

Web Browsers: Storing page-visited history.

Text Editors: Implementing undo operations.

JVM: Maintaining the chain of active method calls (call stack).

Indirect Applications:

Serving as auxiliary structures in various algorithms.

Acting as components within more complex data structures.

Method Stack in the JVM

Purpose:

The JVM uses a stack to keep track of active method calls.

Mechanism:

Method Invocation: When a method is called, a frame containing local variables,

the return address, and a program counter is pushed onto the stack.

Method Return: Upon completion, the frame is popped, and control is returned

to the previous method.

Supports Recursion:

Each recursive call creates a new frame, allowing the method to call itself multiple

times while preserving state.

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a83880789… 9/17

55

Guest
Rectangle

Array-Based Stack Implementation

Concept:

One common way to implement a stack is by using an array. Elements are stored

from left to right with a variable tracking the index of the top element.

Pseudocode Examples:

Size Operation:

algorithm size():
 return t + 1

Pop Operation:

algorithm pop():
 if isEmpty() then
 return null

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 10/17

56

Guest
Rectangle

 else:
 t = t - 1
 return S[t + 1]

Push Operation:

algorithm push(o):
 if t == S.length - 1 then
 throw IllegalStateException // Stack is full
 else:
 t = t + 1
 S[t] = o

Limitation:

The array-based implementation has a fixed maximum size, meaning it cannot

expand dynamically without additional logic.

Performance and Limitations

Performance:

Space Complexity: , where is the number of elements.

Time Complexity: for each operation (push, pop, top).

Limitations:

A fixed-size array means the maximum size must be predetermined.

Pushing an element on a full stack will result in an exception (or error condition).

Parentheses Matching

Problem Statement:

Check whether every opening delimiter (i.e., (, { , [) in an expression has a

corresponding matching closing delimiter (i.e.,) , } ,]).

Examples:

Correct: ()(()){([()])}

O(n) n

O(1)

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 11/17

57

Guest
Rectangle

Incorrect:)(()){([()])} , ({[])} , (

Java Implementation:

public static boolean isMatched(String expression) {
 final String opening = "({["; // opening delimiters
 final String closing = ")}]"; // respective closing delimiters
 Stack<Character> buffer = new LinkedStack<>();
 for (char c : expression.toCharArray()) {
 if (opening.indexOf(c) != -1) // left delimiter
 buffer.push(c);
 else if (closing.indexOf(c) != -1) { // right delimiter
 if (buffer.isEmpty()) // nothing to match with
 return false;
 if (closing.indexOf(c) != opening.indexOf(buffer.pop
()))
 return false; // mismatched delimiter
 }
 }
 return buffer.isEmpty(); // check if all delimiters matched
}

HTML Tag Matching

Objective:

Validate that every HTML opening tag has a corresponding closing tag.

Example HTML:

<body>
 <center>
 <h1>The Little Boat</h1>
 </center>
 <p>The storm tossed the little boat...</p>

 Will the salesman die?

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 12/17

58

Guest
Rectangle

 What color is the boat?
 And what about Naomi?

</body>

Java Implementation:

public static boolean isHTMLMatched(String html) {
 Stack<String> buffer = new LinkedStack<>();
 int j = html.indexOf('<'); // find first '<' character
 while (j != -1) {
 int k = html.indexOf('>', j + 1); // find next '>' characte
r
 if (k == -1)
 return false; // invalid tag
 String tag = html.substring(j + 1, k); // extract tag
 if (!tag.startsWith("/")) { // opening tag
 buffer.push(tag);
 } else { // closing tag
 if (buffer.isEmpty())
 return false; // no tag to match
 if (!tag.substring(1).equals(buffer.pop()))
 return false; // mismatched tag
 }
 j = html.indexOf('<', k + 1); // find next '<'
 }
 return buffer.isEmpty(); // check if all tags matched
}

Evaluating Arithmetic Expressions

Overview:

Use stacks to evaluate arithmetic expressions that respect operator precedence and

associativity.

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 13/17

59

Guest
Rectangle

Key Concepts:

Operator Precedence: Multiplication and division have higher precedence than

addition and subtraction.

Associativity: Operators with the same precedence are evaluated from left to

right.

Algorithm Outline Using Two Stacks:

Stacks Used:

opStk: Holds operators.

valStk: Holds numerical values.

Core Functions:

doOp(): Pops the top two values and one operator, performs the operation,

and pushes the result.

repeatOps(refOp): While the operator on the top of the operator stack has

higher or equal precedence to the current token (refOp), perform the

operation.

EvalExp(): Processes the stream of tokens, pushing numbers onto valStk

and handling operators via repeatOps , finally returning the final value.

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 14/17

60

Guest
Rectangle

Example Expression:

For the expression:

14 – 3 * 2 + 7

The algorithm ensures that multiplication is performed before addition and

subtraction, following the correct order of operations.

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 15/17

61

Guest
Rectangle

Summary of Key Concepts

Singly linked lists are efficient for head insertions but inefficient for tail removals due

to traversal requirements.

Doubly linked lists support bidirectional traversal, enabling efficient insertions and

deletions anywhere in the list.

Array-based list implementations provide fast random access but may require

shifting elements for insertions and removals.

Dynamic array lists can be implemented using incremental or doubling strategies,

with the doubling strategy being more efficient in terms of amortized cost.

Positional lists add a layer of abstraction by providing explicit positions for elements,

naturally implemented via doubly linked lists.

Iterators and the Iterable interface enable clean and abstracted traversal of

collections, supporting the for-each loop syntax in Java.

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 16/17

62

Guest
Rectangle

Stack ADT: A stack is a LIFO data structure supporting push, pop, and auxiliary

operations like top, size, and isEmpty.

Implementation Approaches: Can be implemented using arrays (with fixed

capacity) or linked structures. Array-based implementations are efficient but limited

by size.

Practical Applications: Stacks are used in method call management, expression

evaluation, and various algorithms including delimiter matching.

Error Handling: Instead of exceptions, returning null is one strategy for handling

operations on empty stacks.

Enjoy your review and happy coding!

9/30/25, 7:16 PM 6. Lists and Iterators

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/6%20Lists%20and%20Iterators%201b334575a8388078… 17/17

63

Guest
Rectangle

7. Queues and Their Applications

The Queue ADT

Definition: A queue is an abstract data type that stores elements in a First-In, First-

Out (FIFO) order.

Main Operations:

enqueue(object): Inserts an element at the rear (end) of the queue.

dequeue(): Removes and returns the element at the front of the queue.

Auxiliary Operations:

first(): Returns (without removing) the element at the front.

size(): Returns the number of elements currently stored.

isEmpty(): Checks whether the queue is empty.

Boundary Condition:

When performing dequeue() or first() on an empty queue, the operations return

null .

Queue Operations and Examples

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 1/10

64

Guest
Rectangle

Example Sequence:

Consider the following sequence of operations on a queue:

1.

enqueue(5)
 → Queue becomes: (5)

2. enqueue(3) → Queue becomes: (5, 3)

3. dequeue() → Returns 5; Queue becomes: (3)

4. enqueue(7) → Queue becomes: (3, 7)

5. dequeue() → Returns 3; Queue becomes: (7)

6.

first()
 → Returns 7; Queue remains: (7)

7. dequeue() → Returns 7; Queue becomes: ()

8. dequeue() → Returns null (queue is empty)

9. isEmpty() → Returns true

10. Further operations (e.g., enqueues and size checks) follow similarly.

Array-Based Queue Implementation

Concept:

A common implementation of a queue is to use an array in a circular manner. This

allows efficient use of storage when elements are enqueued and dequeued

repeatedly.

Key Variables:

f: Index of the front element.

sz: Number of stored elements.

r: Computed as (f + sz) mod N , representing the index of the first empty slot (i.e.,

the rear of the queue).

Operations with Modulo Arithmetic:

size():

algorithm size():
 return sz

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 2/10

65

Guest
Rectangle

isEmpty():

algorithm isEmpty():
 return (sz == 0)

enqueue(o):

algorithm enqueue(o):
 if size() == N - 1 then
 throw IllegalStateException // The array is full
 else
 r = (f + sz) mod N
 Q[r] = o
 sz = sz + 1

dequeue():

algorithm dequeue():
 if isEmpty() then
 return null
 else:
 o = Q[f]
 f = (f + 1) mod N
 sz = sz - 1
 return o

Note:

The enqueue operation throws an exception if the underlying array is full. This is an

implementation-specific behavior.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 3/10

66

Guest
Rectangle

Queue Interface in Java

The following Java interface defines the Queue ADT in a manner consistent with the

described operations:

public interface Queue<E> {
 int size();
 boolean isEmpty();
 E first();
 void enqueue(E e);
 E dequeue();
}

Assumptions:

Methods first() and dequeue() return null when the queue is empty.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 4/10

67

Guest
Rectangle

The interface supports generic types for flexibility.

Applications of Queues

Direct Applications:

Waiting Lists and Bureaucracy:

Managing tasks or clients in the order of arrival.

Access to Shared Resources:

Examples include printer queues.

Multiprogramming:

Managing processes in an operating system.

Indirect Applications:

Auxiliary Data Structure:

Queues are used within algorithms for breadth-first search (BFS) and other

operations.

Component in Other Data Structures:

Serving as the backbone for complex structures or systems.

Application Example: Round Robin Scheduling

Method:

1. Dequeue: Remove the first element.

2. Service: Process the dequeued element.

3. Enqueue: Place the serviced element at the end of the queue.

Purpose:

This scheduling technique is used to ensure fairness in process scheduling by

cyclically rotating tasks.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 5/10

68

Guest
Rectangle

Trees

A tree is an abstract data structure used to represent hierarchical relationships. It is

composed of nodes connected by parent-child links. Trees are widely used in areas such

as:

Organization charts

File systems

Programming environments

Key Terminology

Root: The unique node with no parent.

Internal Node: A node with at least one child.

External Node (Leaf): A node without any children.

Ancestors: The sequence of nodes from a given node up to the root.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 6/10

69

Guest
Rectangle

Depth: The number of ancestors of a node.

Height: The maximum depth among all nodes in the tree.

Descendant: Any node that is below another node in the hierarchy.

Subtree: A portion of a tree consisting of a node and all its descendants.

Tree ADT (Abstract Data Type)

The Tree ADT defines a set of operations to interact with tree structures:

Generic Methods:

size() – returns the number of nodes

isEmpty() – checks if the tree is empty

iterator() – provides an iterator over nodes

positions()
 – returns an iterable collection of node positions

Accessor Methods:

root() – returns the root node

parent(p) – returns the parent of node p

children(p) – returns the children of node p

numChildren(p)
 – returns the number of children of node p

Query Methods:

isInternal(p) – checks if node p is internal

isExternal(p) – checks if node p is a leaf

isRoot(p) – checks if node p is the root

Tree Traversals

Preorder Traversal

Preorder traversal visits a node before its descendants:

1. Visit the node.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 7/10

70

Guest
Rectangle

2. Recursively perform a preorder traversal on each child.

Use Case: Printing or serializing the tree structure.

Postorder Traversal

Postorder traversal visits a node after its descendants:

1. Recursively perform a postorder traversal on each child.

2. Visit the node.

Use Case: Evaluating or aggregating data where child results are needed before

processing the parent.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 8/10

71

Guest
Rectangle

Summary and Takeaways

Queue ADT Overview: Queues operate on a FIFO basis and support primary

operations like enqueue and dequeue , along with useful auxiliary operations.

Implementation Insights:

The circular array approach uses modulo arithmetic to efficiently manage the

queue.

The array-based queue has limitations in size, which must be managed via

exception handling or by dynamic resizing.

Real-World Relevance: Queues are fundamental to many systems, from process

scheduling in operating systems to managing resources in everyday applications.

Java Interface: A clear interface helps encapsulate queue operations, ensuring

consistency and flexibility for implementation.

Trees represent hierarchical relationships with nodes and parent-child connections.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b5… 9/10

72

Guest
Rectangle

Fundamental terms include root, internal/external nodes, depth, height, and

subtrees.

The Tree ADT provides a standard interface for tree operations.

Preorder and postorder traversals are essential techniques, each suited for different

applications.

9/30/25, 7:16 PM 7. Queues and Their Applications

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/7%20Queues%20and%20Their%20Applications%201b… 10/10

73

Guest
Rectangle

8. Binary Trees and Binary Search

Trees: A Structured Note

Objective & Scope

This note summarizes key concepts from the lecture on binary trees and binary search

trees. It covers definitions, traversal methods, properties, and implementation strategies,

supporting applications like arithmetic expression evaluation and decision-making

processes.

Binary Trees

A binary tree is a tree structure where each internal node has at most two children,

designated as the left and right child.

BINARY TREE: A tree in which each internal node has at most two children (exactly

two in a proper binary tree). A binary tree is either a single node or a root whose

children (an ordered pair) are each the root of a binary tree.

Applications: Arithmetic expressions, decision processes, and searching.

Inorder Traversal

9/30/25, 7:15 PM 8. Binary Trees and Binary Search Trees: A Structured Note

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/8%20Binary%20Trees%20and%20Binary%20Search%20… 1/6

74

Guest
Rectangle

In an inorder traversal, the process visits the left subtree, then the node, and finally the

right subtree.

INORDER TRAVERSAL: Visit left subtree → Node → Right subtree.

Pseudocode:

if left(v) ≠ null:
inOrder(left(v))

visit(v)
if right(v) ≠ null:

inOrder(right(v))

Use Case: Often used to draw or represent binary trees in a sorted order.

Properties of Proper Binary Trees

Proper binary trees satisfy specific numerical relationships among their nodes.

Key Relationships:

, and

 and

e = i + 1

n = 2e − 1

h ≤ i h ≤ (n − 1)/2

e ≤ 2h

h ≥ log e2 h ≥ log (n +2 1) − 1

9/30/25, 7:15 PM 8. Binary Trees and Binary Search Trees: A Structured Note

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/8%20Binary%20Trees%20and%20Binary%20Search%20… 2/6

75

Guest
Rectangle

BinaryTree ADT

The BinaryTree ADT extends the general Tree ADT with methods specific to binary trees.

Additional Methods:

left(p) : Returns the left child of position p.

right(p)
: Returns the right child of position p.

sibling(p) : Returns the sibling of position p (if it exists).

It inherits methods such as size() , isEmpty() , iterator() , and positions() .

Decision Trees

Decision trees model decisions as a binary structure.

DECISION TREE: A binary tree where internal nodes represent yes/no questions and

external nodes represent decisions.

9/30/25, 7:15 PM 8. Binary Trees and Binary Search Trees: A Structured Note

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/8%20Binary%20Trees%20and%20Binary%20Search%20… 3/6

76

Guest
Rectangle

Example: A dining decision tree guiding choices based on questions like "Want a fast

meal?" leading to options such as fast food or sit-down restaurants.

Arithmetic Expression Trees

Arithmetic expression trees represent mathematical expressions where operators are

internal nodes and operands are external nodes.

ARITHMETIC EXPRESSION TREE: A binary tree with operators at internal nodes and

operands at the leaves.

Printing Expressions:

Use a specialized inorder traversal that prints "(" before the left subtree and ")" after

the right subtree.

Pseudocode Outline:

printExpression(v):
 if left(v) ≠ null:
 print("(")
 printExpression(left(v))
 print(v.element)
 if right(v) ≠ null:
 printExpression(right(v))
 print(")")

Evaluating Expressions:

A postorder traversal computes the value by combining the results of the left and

right subtrees using the operator at the node.

Pseudocode Outline:

evalExpr(v):
 if isExternal(v):
 return v.element
 else:
 x = evalExpr(left(v))

9/30/25, 7:15 PM 8. Binary Trees and Binary Search Trees: A Structured Note

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/8%20Binary%20Trees%20and%20Binary%20Search%20… 4/6

77

Guest
Rectangle

 y = evalExpr(right(v))
 return x (operator) y

Linked Structures for Trees

Trees can be implemented using linked structures:

General Trees: Nodes store an element, a reference to the parent, and a list of

children.

Binary Trees: Nodes store an element, a parent reference, and pointers to left and

right children.

Array-Based Representation of Binary Trees

Binary trees may also be represented in an array where each node’s position (or rank) is

calculated as follows:

Rank Formula:

rank(root) = 0

For a left child: rank = 2 * rank(parent) + 1

For a right child: rank = 2 * rank(parent) + 2

Binary Search Trees

Binary Search Trees (BSTs) are binary trees structured to facilitate efficient searching.

BINARY SEARCH TREE: A binary tree in which, for every node, all elements in the left

subtree are less than the node’s element, and all elements in the right subtree are

greater.

Applications: Fast searching, sorting, and dynamic data management.

Final Summary & Takeaways

Binary Trees: Provide a hierarchical structure with at most two children per node,

used in diverse applications.

9/30/25, 7:15 PM 8. Binary Trees and Binary Search Trees: A Structured Note

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/8%20Binary%20Trees%20and%20Binary%20Search%20… 5/6

78

Guest
Rectangle

Traversals: Inorder traversal is key for representing sorted order, while postorder is

useful for evaluation tasks.

Properties: Proper binary trees adhere to specific relationships between nodes,

height, and structure.

Implementations: Can be built using linked structures or array-based

representations.

BSTs: Leverage ordered structures to enable efficient search operations.

9/30/25, 7:15 PM 8. Binary Trees and Binary Search Trees: A Structured Note

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/8%20Binary%20Trees%20and%20Binary%20Search%20… 6/6

79

Guest
Rectangle

9. Binary Search Trees: Structure,

Operations, and Complexity

Analysis

Overview

This note explains the fundamentals of Binary Search Trees (BSTs), including their

representations, defining properties, search operations, complexities, and other self-

balancing tree variants (AVL, 2-4, Red-Black, and Splay Trees).

Linked Structure for Binary Trees

LINKED REPRESENTATION: Each node contains its element (key), a pointer to its

parent, and pointers to its left and right children. This design allows dynamic insertion,

deletion, and reorganization of the tree by manipulating pointers.

Array-Based Representation of Binary Trees

ARRAY REPRESENTATION: Nodes are stored in an array A using a rank-based

scheme:

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 1/7

80

Guest
Rectangle

The root is at index 0.

For a node at index , its left child is at and its right child at .

This approach is efficient for complete or nearly complete binary trees but can be

less flexible if the tree frequently changes shape.

Binary Search Trees Overview

BINARY SEARCH TREE (BST): A BST is a binary tree where each internal node has all

keys in the left subtree , and all keys in the right subtree . External

nodes (leaves) do not store data, and an inorder traversal of a BST visits the keys in

increasing (sorted) order.

BSTs are commonly used for fast searching, insertion, and deletion, forming the basis of

many ordered data structures.

BST Search Operation

SEARCH PROCEDURE: To locate a key , begin at the root and compare with the

current node’s key:

If is less, go left.

If is greater, go right.

If a leaf is reached without finding , the key is absent.

Pseudocode:

TreeSearch(k, v):
 if v is external:

 return v

 if k < key(v):
 return TreeSearch(k, left(v))
 else if k == key(v):
 return v

i 2i+ 1 2i+ 2

v

≤ key(v) ≥ key(v)

k k

k

k

k

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 2/7

81

Guest
Rectangle

 else:
 return TreeSearch(k, right(v))

Complexity and Performance

TIME COMPLEXITY:

Best case (balanced BST): Height leads to O() operations

for search, insertion, and deletion.

Worst case (unbalanced BST): Height can degrade operations to O(

) time.

SPACE COMPLEXITY:

Overall storage is O() for nodes.

Recursive algorithms for search or insertion require up to O() auxiliary space.

Further Insights on BST Methods

Insertion:

Follows the search path to a leaf where the key should reside, then replaces that leaf

with an internal node containing the new key. Time is O().

Deletion:

If the node has zero or one child, it can be removed directly. If it has two children,

typically replace its key with that of its inorder successor and remove the successor.

Time is also O().

Inorder Traversal:

Yields sorted keys, confirming the BST property.

Balanced vs. Unbalanced Trees:

In practice, self-balancing BSTs are preferred to avoid O() height in worst-case

scenarios.

Other Search Tree Variants

h = O(log n) log n

h = O(n)
n

n n

h

h

h

n

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 3/7

82

Guest
Rectangle

AVL Tree: Maintains strict balance by ensuring that the heights of the left and right

subtrees of any node differ by at most 1. This guarantees O() time for search,

insertion, and deletion in the worst case.

2-4 Tree: A type of B-tree where each internal node can have between 2 and 4

children. It enforces balance by keeping all leaves at the same level. Search, insertion,

and deletion remain O() in the worst case.

log n

log n

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 4/7

83

Guest
Rectangle

Red-Black Tree: A balanced BST that uses color properties (red or black) on nodes to

enforce balance criteria. Ensures worst-case time for search, insertion, and

deletion. Often used in standard libraries (e.g., C++ std::map).

O(log(n))

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 5/7

84

Guest
Rectangle

Splay Tree: Uses a splaying operation (moving a node to the root via tree rotations)

on every access. While any single operation can be O() in the worst case, the

amortized time for search, insertion, and deletion is O().

Final Summary & Takeaways

Key Points:

A BST orders keys so that an inorder traversal lists them in sorted order.

Search, insertion, and deletion in a BST take O() time, where is the tree’s height.

n

log n

h h

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 6/7

85

Guest
Rectangle

Without balancing, the height can degrade to O(). Self-balancing BSTs (AVL, 2-4,

Red-Black, and Splay Trees) maintain O() complexity for these operations.

Balanced BSTs are crucial for robust performance in applications requiring frequent

insertions and lookups.

Use these principles to implement or analyze BST-based data structures effectively.

n

log n

9/30/25, 7:16 PM 9. Binary Search Trees: Structure, Operations, and Complexity Analysis

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/9%20Binary%20Search%20Trees%20Structure,%20Oper… 7/7

86

Guest
Rectangle

10. Tries and Skip Lists

Tries

Definition and Purpose

TRIE: A trie is a tree-based data structure used to store a dynamic set of strings where

each node represents a character. The paths from the root to the leaves represent the

keys (strings) in the set.

Purpose: Tries are particularly useful for efficient pattern matching and retrieval

operations, especially when dealing with large texts or dictionaries.

Standard Tries

Structure:

Each non-root node is labeled with a character.

The children of a node are maintained in alphabetical (or defined) order.

Each external node (leaf) corresponds to a complete string from the set.

Example:

For a set S =

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 1/7

87

Guest
Rectangle

, a standard

trie is constructed so that each path from a leaf to the root spells out a word.

Operations:

Insertion: Insert a word character by character, creating new nodes as needed.

Search: Traverse the trie following the characters of the query string.

Complexity:

Time Complexity: for search, insertion, and deletion, where is the

length of the word.

Search, Insertion, and Deletion:

Worst Case: , where:

 is the length of the string.

 is the size of the alphabet.

Optimized Case: when child pointers are accessed in constant

time.

Why

O(dm)
 in Worst Case:

Traversing the string takes .

Checking child pointers may take at each level.

Total time: .

Optimized Case:

Using an array or hash map for child pointers reduces lookup to .

Final time becomes for most practical implementations.

Final Complexity Recap:

Worst Case:

Optimized Case:

Space Complexity: where is the total number of characters in all stored

strings, though this can be improved with compression.

{"bear", "bell", "bid", "bull", "buy", "sell", "stock", "stop"}

O(m) m

O(dm)

m

d

O(m)

O(m)

O(d)

O(dm)

O(1)

O(m)

O(dm)

O(m)

O(n) n

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 2/7

88

Guest
Rectangle

Compressed Tries

COMPRESSED TRIE: A compressed trie reduces space by merging chains of single-

child nodes into one edge labeled with the concatenated characters.

Advantage: Reduces redundant nodes in cases where many words share common

prefixes.

Example: In a standard trie, the nodes for the letters "i" and "d" in the word "bid"

might be merged into a single edge labeled "id" if they do not branch.

Additional Note: Compressed tries often require more complex algorithms for

insertion and deletion due to the variable-length edge labels.

Applications of Tries

Pattern Matching:

By preprocessing a set of strings into a trie, pattern matching queries (such as

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 3/7

89

Guest
Rectangle

autocomplete or spell checking) can be performed in time proportional to the query

string’s length.

Dictionary Storage:

Tries are used to store large dictionaries where quick lookup and prefix searches are

essential.

Further Insights and Complexity for Tries

Space Usage:

A standard trie uses space in terms of the total number of characters stored.

In practice, the space can be high if many nodes are sparse; compressed tries help

alleviate this.

Operation Complexity:

All basic operations (search, insert, delete) work in time where is the length

of the input string, independent of the number of stored words.

Trade-offs:

Tries are excellent for fast prefix searches but may consume more memory compared

to other data structures (like hash tables) unless compressed.

Skip Lists

Definition and Structure

SKIP LIST: A skip list is a probabilistic data structure that allows fast search, insertion,

and deletion operations. It consists of a hierarchy of linked lists, where the bottom

level is an ordered list of all elements, and each higher level is a subset of the lower

level.

Special Keys:

Each level includes special keys and to denote boundaries.

Layered Structure:

Level contains all the keys.

Each higher level is a subsequence of .

The top level contains only the two special keys.

O(n)

O(m) m

+∞ −∞

S 0

S i S i−1

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 4/7

90

Guest
Rectangle

Operations in Skip Lists

Search

SEARCH IN A SKIP LIST: Start at the top-left (smallest key at the highest level) and

move forward until the next key exceeds the target. Then, drop down a level and

continue.

Process:

Scan-forward: Move right until the next node's key is greater than or equal to

the target.

Drop-down: When no more nodes can be traversed at the current level, drop to

the next lower level.

Complexity:

Expected Time:

The number of drop-down steps is bounded by the height (which is

with high probability), and each level requires a constant expected number of

scan-forward steps (fact: expected coin tosses for tails is 2).

Insertion

INSERTION: To insert a key :

Toss a coin repeatedly until a tail is observed. Let be the number of heads.

If exceeds the current height of the skip list, add new levels.

Find the insertion point at each level to and insert the key accordingly.

Randomized Nature:

The level at which an element is inserted is determined randomly, ensuring that the

height of the skip list remains with high probability.

Deletion

DELETION: To remove a key :

Search for and find its occurrence in every level.

O(log n)
h O(log n)

x

i

i

0 i

O(log n)

x

x

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 5/7

91

Guest
Rectangle

Remove from each level.

If a level becomes empty (except for the special keys), it is removed.

Complexity:

Deletion operations also take expected time.

Skip List Performance and Complexity

Space Complexity:

The expected space usage is because each element appears in each level with

probability . Thus, the total expected number of nodes is proportional to .

Height:

With high probability, the height of a skip list is .

Probabilistic Analysis:

Fact 1: The probability of obtaining consecutive heads is .

Fact 2: The expected number of nodes at level is .

By choosing , the probability of having a node at that level is at

most .

Search, Insertion, Deletion:

All these operations have an expected time complexity of due to the

logarithmic height and constant expected scan-forward steps per level.

Additional Insights on Skip Lists

Randomized Algorithms:

Skip lists rely on coin tosses to determine the level of each inserted element.

Although the worst-case time can be high, the probability of such cases is very low.

Comparison to BSTs:

Skip lists offer comparable expected performance to balanced BSTs but are often

simpler to implement.

Use Cases:

Skip lists are used for implementing ordered maps and sets, and they are a practical

x

O(log n)

O(n)
1/2i n

h O(log n)

i 1/2i

i n/2i

i ≈ 3 log n
1/n2

O(log n)

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 6/7

92

Guest
Rectangle

alternative to balanced trees in many applications.

Final Summary & Takeaways

Key Takeaways:

Tries are specialized trees for storing and searching strings efficiently with

operations proportional to the length of the string (). Compressed tries

optimize space by collapsing chains of single-child nodes.

Skip Lists are randomized data structures that maintain multiple levels of linked

lists. They support fast search, insertion, and deletion with expected time

complexity and use linear space.

Complexity Analysis:

Tries: per operation, with space usage where is the total

number of characters.

Skip Lists: Expected search, insertion, and deletion in ; height is

 with high probability.

Both data structures are powerful for applications in string matching, dictionary

storage, and ordered maps, each with unique trade-offs in terms of

implementation complexity and performance guarantees.

O(m)

O(log n)

O(m) O(n) n

O(log n)
O(log n)

9/30/25, 7:15 PM 10. Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/10%20Tries%20and%20Skip%20Lists%201c234575a838… 7/7

93

Guest
Rectangle

11. Review: Tries and Skip Lists

Overview

This review summarizes key concepts from the extensive note on two advanced data

structures—tries and skip lists. Both structures are used to support efficient searching

and dynamic data storage, with tries focusing on strings and skip lists offering a

probabilistic alternative to balanced trees.

Tries

TRIE: A tree-like data structure where each node represents a character. Paths from

the root to leaves represent stored strings.

Standard Trie:

Each non-root node holds a character.

Children are ordered (e.g., alphabetically).

Inorder traversal yields strings in sorted order.

Compressed Trie:

Collapses chains of single-child nodes.

Reduces space by storing concatenated labels on edges.

9/30/25, 7:15 PM 11. Review: Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/11%20Review%20Tries%20and%20Skip%20Lists%201c3… 1/3

94

Guest
Rectangle

Operations Complexity:

Search, Insert, Delete: O(m), where m is the length of the string.

Space Usage: O(n) where n is the total number of characters stored.

Skip Lists

SKIP LIST: A randomized layered linked-list structure that supports fast search,

insertion, and deletion.

Structure:

Multiple levels: the bottom level contains all keys; higher levels are increasingly

sparse.

Special boundary keys (and) are present in each level.

Search Process:

Start at the top level and scan right.

Drop down a level when the next key exceeds the target.

Expected time complexity is O(log n).

Insertion and Deletion:

Use coin tosses to decide the level for each new element.

Expected operations take O(log n) time.

Space Usage:

Expected space is O(n) since each element appears with a decreasing probability

at higher levels.

Complexity Analysis

Tries:

Operations run in O(m) time (m = length of the key).

Skip Lists:

Expected operation time is O(log n) for search, insertion, and deletion.

−∞ +∞

9/30/25, 7:15 PM 11. Review: Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/11%20Review%20Tries%20and%20Skip%20Lists%201c3… 2/3

95

Guest
Rectangle

Height is O(log n) with high probability due to the randomized level assignment.

Final Takeaways

Tries are ideal for string storage and prefix matching, offering linear-time operations

relative to the key length.

Skip Lists provide a simple, randomized alternative to balanced trees with

comparable expected performance.

Both data structures are efficient for dynamic data operations and are chosen based

on the specific application requirements.

9/30/25, 7:15 PM 11. Review: Tries and Skip Lists

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/11%20Review%20Tries%20and%20Skip%20Lists%201c3… 3/3

96

Guest
Rectangle

12. Priority Queues and Heaps

Priority Queues

Overview of Priority Queue ADT

PRIORITY QUEUE ADT: A priority queue stores a collection of entries, where each

entry is a key–value pair. The key is used to determine the order among entries.

Main Methods:

insert(k, v): Inserts an entry with key k and value v.

Worst-case complexity: O(1) if using a sequence-based unsorted list; O(n) if using a

sorted list (for locating insertion point).

removeMin(): Removes and returns the entry with the smallest key, or returns null

if empty.

Worst-case complexity: O(n) for an unsorted list; O(1) for a sorted list.

Additional Methods:

min(): Returns (but does not remove) the entry with the smallest key, or returns

null if empty.

Worst-case complexity: O(n) for an unsorted list; O(1) for a sorted list.

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 1/9

97

Guest
Rectangle

size(), isEmpty(): Return the number of entries and whether the queue is empty,

respectively (typically O(1)).

Total Order Relations

TOTAL ORDER RELATION: For keys in a priority queue, a total order relation (≤) is

defined such that for any two keys x and y:

Comparability: Either x ≤ y or y ≤ x.

Antisymmetry: If x ≤ y and y ≤ x, then x = y.

Transitivity: If x ≤ y and y ≤ z, then x ≤ z.

Entry ADT

ENTRY ADT: An entry encapsulates a key–value pair and provides methods:

getKey() – returns the key.

getValue() – returns the value.

In Java, it is often specified as an interface.

public interface Entry<K,V>
{

K getKey();
V getValue();

}

Comparator ADT

COMPARATOR ADT: A comparator defines an external mechanism for comparing two

objects according to a total order.

Primary Method: compare(x, y) returns:

A negative number if x < y,

Zero if x = y,

A positive number if x > y.

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 2/9

98

Guest
Rectangle

Example: A lexicographic comparator for 2-D points compares x-coordinates first and

then y-coordinates.

import java.util.Comparator;

/**
 * Represents a point in the 2D plane with integer coordinates.
 */
public class Point2D {
 private int x;
 private int y;

 /**
 * Constructs a Point2D with the specified (x, y) coordinate
s.
 */
 public Point2D(int x, int y) {
 this.x = x;
 this.y = y;
 }

 /**
 * Returns the x-coordinate of this point.
 */
 public int getX() {
 return x;
 }

 /**
 * Returns the y-coordinate of this point.
 */
 public int getY() {
 return y;
 }

 @Override

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 3/9

99

Guest
Rectangle

 public String toString() {
 return "(" + x + ", " + y + ")";
 }
}

/**
 * A comparator for Point2D objects that performs a lexicographic
ordering:
 * 1) Compare the x-coordinates.
 * 2) If x-coordinates are equal, compare the y-coordinates.
 */
class LexicographicComparator implements Comparator<Point2D> {
 @Override
 public int compare(Point2D a, Point2D b) {
 if (a.getX() < b.getX()) {
 return -1;
 } else if (a.getX() > b.getX()) {
 return 1;
 } else {
 // x-coordinates are equal, compare y
 return Integer.compare(a.getY(), b.getY());
 }
 }
}

Sequence-based Priority Queue Implementations

Unsorted List Implementation

UNSORTED LIST: The data is stored in an unsorted sequence (e.g., a linked list).

insert: Simply add the new entry at the beginning or end of the list.

Worst-case complexity: O(1).

removeMin / min: Must traverse the entire list to locate the smallest key.

Worst-case complexity: O(n).

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 4/9

100

Guest
Rectangle

Sorted List Implementation

SORTED LIST: The entries are kept in order based on their keys.

insert: Requires locating the correct position in the list, which may take traversing

the list. Worst-case complexity: O(n).

removeMin / min: The smallest key is located at the beginning of the list. Worst-

case complexity: O(1).

Heaps

Heap Definition and Properties

HEAP: A heap is a binary tree data structure that stores keys and satisfies two main

properties:

Heap-Order Property: For every internal node (other than the root), the key at

the node is greater than or equal to the key at its parent.

Complete Binary Tree: All levels are completely filled, except possibly the last

one which is filled from left to right.

The worst-case height of a heap storing n keys is O(log n).

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 5/9

101

Guest
Rectangle

Heap as a Priority Queue

A heap can be used to implement a priority queue where each internal node holds an

entry (key, element). The position of the last node is tracked to facilitate insertions and

removals.

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 6/9

102

Guest
Rectangle

Insertion into a Heap

Insertion Algorithm:

Step 1: Find the insertion node (new last node).

Step 2: Store the new key at this node.

Step 3: Restore the heap-order property via upheap.

Upheap Operation:

The new key is compared with its parent, and if it violates the heap-order property, it is

swapped upward until the proper order is restored.

Worst-case complexity: O(log n).

Removal from a Heap

Removal (removeMin):

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 7/9

103

Guest
Rectangle

Step 1: Remove the root key, which holds the minimum.

Step 2: Replace the root with the key from the last node.

Step 3: Restore the heap-order property via downheap.

Downheap Operation:

The key is swapped downward along a path until it is placed at a node with children

that are both greater than or equal to it.

Worst-case complexity: O(log n).

Updating the Last Node

Updating the Last Node: To find the new last node (after an insertion or removal), the

algorithm traverses a path of O(log n) nodes.

Updating the last node means that after you add or remove an element in a heap, you

may need to reposition your pointer (or index) that identifies the last node in the

complete binary tree. Since the tree’s height is O(log n), finding the new last node

involves walking down (or up) a path that is at most log₂(n) nodes long. In other words,

even in the worst case, you'll only examine O(log n) nodes to update this pointer.

Worst-case complexity: O(log n).

Array-based Heap Implementation

ARRAY-BASED REPRESENTATION: A heap can be efficiently represented as an array

without explicit links:

For a node at index i:

Left child is at index 2i + 1.

Right child is at index 2i + 2.

Insertion corresponds to adding at the next available position (at the end of the

array), followed by upheap.

Removal (removeMin) corresponds to replacing the root with the last element and

then performing downheap.

This representation leads directly to the in-place heapsort algorithm.

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 8/9

104

Guest
Rectangle

Worst-case complexity:

Insertion: O(log n)

Removal: O(log n)

9/30/25, 7:15 PM 12. Priority Queues and Heaps

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/12%20Priority%20Queues%20and%20Heaps%201cf3457… 9/9

105

Guest
Rectangle

13. Map ADT and

Implementations (Hash Tables)

Objective & Scope

This note reviews the Map (associative array) Abstract Data Type, explores several

elementary implementations (linked lists and arrays, both sorted and unsorted), and then

introduces hash tables. We’ll cover collision-handling strategies—linear and quadratic

probing, open vs. closed hashing, and separate chaining—as well as insertion behavior

and time complexities.

Map ADT

MAP (Associative Array): A collection of key–value pairs supporting operations to

insert a pair, find the value for a given key, and remove a key–value pair.

Primary operations:

put(key, value) — insert or update

get(key) — retrieve

remove(key) — delete

9/30/25, 7:15 PM 13. Map ADT and Implementations (Hash Tables)

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/13%20Map%20ADT%20and%20Implementations%20(Ha… 1/4

106

Guest
Rectangle

size() , isEmpty()

Elementary Implementations

We compare four simple implementations:

Implementation

put get remove
Notes

Unsorted Linked

List

O(1) (at head) O(n) O(n)

Easy insert, slow

searches

Sorted Linked

List

O(n) O(n) O(n)

Can stop early in

search, still linear

time

Unsorted Array O(1) (append) O(n) O(n)

Simple, but

removal requires

shift

Sorted Array O(n) (shift)

O(log n) via

binary search

O(n)

Fast search,

expensive

insert/remove

Sorted vs. Unsorted: Sorting speeds up get (binary search) but makes put / remove

pay the cost of shifting elements or relinking nodes.

Hash Tables

HASH TABLE: A data structure that uses a hash function to map keys to bucket

indices, aiming for average‑case O(1) time for

put
,

get
, and

remove
.

Hash Function & Load Factor

Hash function h(key) → integer in [0, m−1] , where m is table size.

Load factor α = (number of entries) / (number of buckets).

Impacts performance: keep α < 1 (usually α ≤ 0.7).

Collision Handling

When two keys map to the same bucket, we must resolve collisions.

9/30/25, 7:15 PM 13. Map ADT and Implementations (Hash Tables)

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/13%20Map%20ADT%20and%20Implementations%20(Ha… 2/4

107

Guest
Rectangle

1. Open Addressing (Closed Hashing)

All entries reside in the table itself; collisions trigger a probe sequence to find another

slot.

Linear Probing

Probe sequence:

Primary clustering: long runs of occupied slots slow performance when α grows.

Quadratic Probing

Probe sequence:

Reduces primary clustering but can suffer secondary clustering (same initial hash).

Insertion (Open Addressing)

1. Compute h = h(key) .

2. For i = 0,1,2,… :

Compute probe index h_i .

If slot h_i is empty or marked deleted, insert there and stop.

3. If table is full or too many probes, resize (rehash) to a larger table.

2. Separate Chaining (Open Hashing)

Each bucket holds a pointer to a secondary data structure (e.g., a linked list) of all entries

hashing to that bucket.

put / get / remove :

1. Compute h = h(key) .

2. In the list at bucket h , search/update/delete the key.

Performance:

h =i (h +0 i) mod m, i = 0, 1, 2, …

h =i (h +0 c i +1 c i) mod2
2 m.

9/30/25, 7:15 PM 13. Map ADT and Implementations (Hash Tables)

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/13%20Map%20ADT%20and%20Implementations%20(Ha… 3/4

108

Guest
Rectangle

Average cost O(1 + α), where α = load factor (entries per bucket).

No clustering in table slots; chains grow instead.

Open vs. Closed Hashing

Feature Open Addressing Separate Chaining

Storage Table only Table + external chains

Load factor α limit α < 1 α can exceed 1

Memory overhead Low (table array) Higher (extra pointers/nodes)

Clustering issues Primary/secondary clustering No clustering in table slots

Deletion Requires tombstones or rehash Simple list removal

Cache performance Excellent (contiguous memory) Lower (pointer chasing in chains)

Summary of Complexities

Unsorted linked list: put O(1), get / remove O(n)

Sorted linked list: put / remove O(n), get O(n)

Unsorted array: put O(1), get / remove O(n)

Sorted array:

put
/

remove
 O(n),

get
 O(log n)

Hash table (open addressing): put / get / remove O(1) expected, O(n) worst

Hash table (chaining): put / get / remove O(1 + α) expected

9/30/25, 7:15 PM 13. Map ADT and Implementations (Hash Tables)

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/13%20Map%20ADT%20and%20Implementations%20(Ha… 4/4

109

Guest
Rectangle

14. Map & HashMap Pseudocode

and Rehashing

1. Map ADT Pseudocode (Unsorted List Implementation)

For a simple Map (aka Dictionary) implemented with an unsorted list of entries

:

// Assume map.entries is a list of (key, value) pairs

function Map_Put(map, key, value):
 // If key already exists, update its value
 for each entry in map.entries:
 if entry.key == key:
 entry.value = value
 return
 // Otherwise, append a new entry
 append map.entries, (key, value)

function Map_Get(map, key):
 for each entry in map.entries:
 if entry.key == key:

(key, value)

9/30/25, 7:16 PM 14. Map & HashMap Pseudocode and Rehashing

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/14%20Map%20&%20HashMap%20Pseudocode%20and… 1/6

110

Guest
Rectangle

 return entry.value
 return null // or raise KeyError

function Map_Remove(map, key):
 for i from 0 to length(map.entries) - 1:
 if map.entries[i].key == key:
 remove map.entries[i]
 return true
 return false // key not found

Complexities:

put – O(n) worst (search for existing key)

get – O(n)

remove – O(n)

2. HashMap Pseudocode (Separate Chaining)

A HashMap using separate chaining stores an array of buckets, each bucket is a list of

entries.

// map.buckets is an array of lists; map.capacity = number of bucke
ts
// map.size = number of stored entries
// map.loadFactorThreshold e.g. 0.75

function HashMap_Put(map, key, value):
 if (map.size + 1) / map.capacity > map.loadFactorThreshold:
 HashMap_Rehash(map)

 index = Hash(key) mod map.capacity
 bucket = map.buckets[index]

 // Update existing key?
 for each entry in bucket:
 if entry.key == key:

9/30/25, 7:16 PM 14. Map & HashMap Pseudocode and Rehashing

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/14%20Map%20&%20HashMap%20Pseudocode%20and… 2/6

111

Guest
Rectangle

 entry.value = value
 return

 // Otherwise insert new entry
 append bucket, (key, value)
 map.size += 1

function HashMap_Get(map, key):
 index = Hash(key) mod map.capacity
 for each entry in map.buckets[index]:
 if entry.key == key:
 return entry.value
 return null // or raise KeyError

function HashMap_Remove(map, key):
 index = Hash(key) mod map.capacity
 bucket = map.buckets[index]
 for i from 0 to length(bucket)-1:
 if bucket[i].key == key:
 remove bucket[i]
 map.size -= 1
 return true
 return false // key not found

Rehashing

function HashMap_Rehash(map):
 oldBuckets = map.buckets
 oldCapacity = map.capacity

 // Typically double capacity and choose next prime
 map.capacity = NextPrime(2 * oldCapacity)
 map.buckets = new array of lists of size map.capacity
 map.size = 0

9/30/25, 7:16 PM 14. Map & HashMap Pseudocode and Rehashing

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/14%20Map%20&%20HashMap%20Pseudocode%20and… 3/6

112

Guest
Rectangle

 // Reinsert all entries
 for each bucket in oldBuckets:
 for each entry in bucket:
 HashMap_Put(map, entry.key, entry.value)

When to rehash?

Whenever the load factor exceeds the chosen threshold (e.g. 0.75).

Rehashing keeps average-case operations O(1).

3. HashMap Pseudocode (Open Addressing)

An alternative HashMap uses open addressing (e.g. linear or quadratic probing) with a

single array of slots.

// map.table is an array of slots; each slot holds either: EMPTY, T
OMBSTONE, or (key, value)
// map.capacity, map.size, map.loadFactorThreshold

function OpenAddress_Put(map, key, value):
 if (map.size + 1) / map.capacity > map.loadFactorThreshold:
 OpenAddress_Rehash(map)

 base = Hash(key) mod map.capacity
 for i from 0 to map.capacity - 1:
 index = (base + i) mod map.capacity // linear probi
ng
 // index = (base + c1*i + c2*i^2) mod capacity // quadrati
c probing variant

 slot = map.table[index]
 if slot is EMPTY or slot is TOMBSTONE:
 map.table[index] = (key, value)
 map.size += 1
 return
 else if slot.key == key:

α = capacity
size

9/30/25, 7:16 PM 14. Map & HashMap Pseudocode and Rehashing

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/14%20Map%20&%20HashMap%20Pseudocode%20and… 4/6

113

Guest
Rectangle

 slot.value = value
 return
 // If we exit loop, the table is full (shouldn't happen if reha
shing correctly)

function OpenAddress_Get(map, key):
 base = Hash(key) mod map.capacity
 for i from 0 to map.capacity - 1:
 index = (base + i) mod map.capacity
 slot = map.table[index]
 if slot is EMPTY:
 return null // key not in table
 else if slot is TOMBSTONE:
 continue // skip removed slot
 else if slot.key == key:
 return slot.value
 return null

function OpenAddress_Remove(map, key):
 base = Hash(key) mod map.capacity
 for i from 0 to map.capacity - 1:
 index = (base + i) mod map.capacity
 slot = map.table[index]
 if slot is EMPTY:
 return false // key not found
 else if slot is TOMBSTONE:
 continue
 else if slot.key == key:
 map.table[index] = TOMBSTONE
 map.size -= 1
 return true
 return false

Rehashing (Open Addressing)

9/30/25, 7:16 PM 14. Map & HashMap Pseudocode and Rehashing

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/14%20Map%20&%20HashMap%20Pseudocode%20and… 5/6

114

Guest
Rectangle

function OpenAddress_Rehash(map):
 oldTable = map.table
 oldCapacity = map.capacity

 map.capacity = NextPrime(2 * oldCapacity)
 map.table = new array of slots of size map.capacity
 map.size = 0

 for each slot in oldTable:
 if slot is (key, value):
 OpenAddress_Put(map, slot.key, slot.value)

Tombstones allow iteration to continue past removed slots but are cleared during

rehash.

4. Summary

Map ADT can be implemented simply with lists or arrays (sorted/unsorted) but these

cost O(n) in at least one operation.

HashMaps achieve average‑case O(1) by using a hash function and handling

collisions via:

Separate chaining (external lists per bucket).

Open addressing (probe sequences within the array).

Rehashing is triggered when load factor exceeds a threshold to maintain

performance, by allocating a larger table and reinserting all entries.

This pseudocode provides a blueprint for implementing Map and HashMap data

structures along with their key behaviors and rehashing strategies.

9/30/25, 7:16 PM 14. Map & HashMap Pseudocode and Rehashing

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/14%20Map%20&%20HashMap%20Pseudocode%20and… 6/6

115

Guest
Rectangle

15. Midterm Preparation

1. Arrays

Access:

Time Complexity: — Direct access by index.

Limitation: Fixed size; resizing is costly.

Space Complexity: , where n is the number of elements.

Use Cases:

Fast lookups with known indices.

Storing data that does not change in size (static datasets).

Drawbacks:

Insertion/Deletion: Costly in the middle; requires shifting elements.

Fixed size (unless dynamic resizing is implemented).

Insert at index i:

function insert(arr, index, value):
 if index >= length(arr):

O(1)

O(n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 1/15

116

Guest
Rectangle

 print("Index out of bounds")
 return
 for j = length(arr) - 1 down to index:
 arr[j + 1] = arr[j]
 arr[index] = value
 return arr

Get at index i:

function get(arr, index):
 if index < 0 or index >= length(arr):
 print("Index out of bounds")
 return null
 return arr[index]

Remove at index i:

function remove(arr, index):
 if index < 0 or index >= length(arr):
 print("Index out of bounds")
 return null
 for j = index to length(arr) - 2:
 arr[j] = arr[j + 1]
 arr[length(arr) - 1] = null
 return arr

2. Linked Lists

Singly Linked List:

Insertions/Deletions: at the head or tail (if tail reference is maintained).

Traversal: because of the need to visit each node.

Space Complexity: for storing references in addition to data.

Doubly Linked List:

O(1)

O(n)

O(n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 2/15

117

Guest
Rectangle

Insertions/Deletions: for any node (if node is known).

Traversal: Can go both forward and backward with a tail reference.

Space Complexity: (more overhead due to extra pointers).

Use Cases: Dynamic data structures, when frequent insertions/deletions are

required.

Drawbacks: Extra memory usage per node, slower access compared to arrays.

Insert at head:

function insertHead(list, value):
 newNode = new Node(value)
 newNode.next = list.head
 list.head = newNode

Get at index i:

function get(list, index):
 current = list.head
 count = 0
 while current is not null:
 if count == index:
 return current.value
 count += 1
 current = current.next
 return null // If index is out of bounds

Remove at index i:

function remove(list, index):
 if index == 0:
 list.head = list.head.next
 return
 current = list.head
 count = 0

O(1)

O(n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 3/15

118

Guest
Rectangle

 while current is not null:
 if count == index - 1:
 current.next = current.next.next
 return
 count += 1
 current = current.next

3. Stacks

LIFO (Last In, First Out): Elements are processed in reverse order of their insertion.

Operations:

Push/Pop: Both take time.

Auxiliary Operations: Peek is , checking if empty is .

Applications:

Undo mechanisms, recursion, expression evaluation (postfix notation).

Evaluating expressions (using operator precedence).

Drawbacks:

Stack overflow in array-based implementation if the stack size is not managed

dynamically.

Push:

function push(stack, element):
 stack.top = new Node(element, stack.top)

Pop:

function pop(stack):
 if stack.isEmpty():
 return null
 value = stack.top.value

O(1)

O(1) O(1)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 4/15

119

Guest
Rectangle

 stack.top = stack.top.next
 return value

Peek:

function peek(stack):
 if stack.isEmpty():
 return null
 return stack.top.value

4. Queues

FIFO (First In, First Out): The first inserted element is the first to be removed.

Operations:

Enqueue: — Insertion at the rear.

Dequeue: — Removal from the front.

Peek: — View front element.

Applications:

Task scheduling (e.g., print jobs, CPU scheduling).

Breadth-First Search (BFS) in graph traversal.

Drawbacks:

Fixed size in array implementation (may cause overflow).

Circular Queue: Can solve space inefficiency in a static array-based queue.

Enqueue:

function enqueue(queue, element):
 newNode = new Node(element)
 if queue.isEmpty():
 queue.front = queue.rear = newNode
 return

O(1)

O(1)

O(1)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 5/15

120

Guest
Rectangle

 queue.rear.next = newNode
 queue.rear = newNode

Dequeue:

function dequeue(queue):
 if queue.isEmpty():
 return null
 value = queue.front.value
 queue.front = queue.front.next
 if queue.front is null:
 queue.rear = null // If the queue is now empty
 return value

Peek:

function peek(queue):
 if queue.isEmpty():
 return null
 return queue.front.value

5. Trees

Binary Tree:

Height: The height is the longest path from the root to a leaf.

Balanced vs. Unbalanced:

Balanced: operations.

Unbalanced: operations (degenerates to a linked list).

Binary Search Tree (BST):

Operations: Insertion, deletion, and search all take in a balanced BST.

Balancing: Use AVL or Red-Black trees to ensure balanced structure.

O(log n)

O(n)

O(log n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 6/15

121

Guest
Rectangle

AVL Tree: Self-balancing binary search tree, ensures time for all

operations.

Red-Black Tree: A type of self-balancing BST with slightly relaxed balance rules for

efficiency in insertion and deletion.

Applications: Sorting, searching, storing hierarchical data.

Drawbacks: Complex implementation, need to maintain balancing properties.

Insert in BST:

function insertBST(root, value):
 if root is null:
 return new Node(value)
 if value < root.value:
 root.left = insertBST(root.left, value)
 else:
 root.right = insertBST(root.right, value)
 return root

Get in BST:

function getBST(root, value):
 if root is null or root.value == value:
 return root
 if value < root.value:
 return getBST(root.left, value)
 return getBST(root.right, value)

Remove in BST:

function removeBST(root, value):
 if root is null:
 return root
 if value < root.value:
 root.left = removeBST(root.left, value)
 else if value > root.value:

O(log n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 7/15

122

Guest
Rectangle

 root.right = removeBST(root.right, value)
 else:
 if root.left is null:
 return root.right
 if root.right is null:
 return root.left
 minNode = findMin(root.right)
 root.value = minNode.value
 root.right = removeBST(root.right, minNode.value)
 return root

Find Minimum:

function findMin(root):
 while root.left is not null:
 root = root.left
 return root

6. Heaps

Max Heap: Parent node is always greater than or equal to its children.

Min Heap: Parent node is always smaller than or equal to its children.

Operations:

Insert: — Bubble up the new element.

Remove Max/Min: — Swap root with last node and heapify.

Peek: — Always access the root.

Applications:

Priority queues, heap sort, graph algorithms (e.g., Dijkstra's algorithm).

Drawbacks: Requires additional space, more complex than regular trees.

Insert:

O(log n)

O(log n)

O(1)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 8/15

123

Guest
Rectangle

function insertHeap(heap, value):
 heap.add(value) // Add to the end of the array
 index = heap.size - 1
 while index > 0 and heap[parent(index)] < heap[index]:
 swap(heap, index, parent(index))
 index = parent(index)

Remove Max (for Max Heap):

function removeMax(heap):
 if heap.isEmpty():
 return null
 max = heap[0]
 heap[0] = heap[heap.size - 1]
 heap.size -= 1
 heapifyDown(0)
 return max

Heapify Down:

function heapifyDown(index):
 largest = index
 left = leftChild(index)
 right = rightChild(index)
 if left < heap.size and heap[left] > heap[largest]:
 largest = left
 if right < heap.size and heap[right] > heap[largest]:
 largest = right
 if largest != index:
 swap(heap, index, largest)
 heapifyDown(largest)

7. Hash Tables

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034b… 9/15

124

Guest
Rectangle

Operations:

Insert/Search/Delete: on average (depends on hash function).

Worst Case: if all keys hash to the same index (collision).

Collision Handling:

Separate Chaining: Store colliding elements in a linked list or other structures.

Open Addressing: Linear probing, quadratic probing, or double hashing to find

the next available slot.

Use Cases:

Fast lookups, implementing associative arrays, caching.

Drawbacks: Collisions reduce performance; requires a good hash function.

Insert:

function insertHashTable(table, key, value):
 index = hash(key)
 if table[index] is empty:
 table[index] = new LinkedList()
 table[index].add((key, value))

Get:

function getHashTable(table, key):
 index = hash(key)
 if table[index] is not empty:
 for each (k, v) in table[index]:
 if k == key:
 return v
 return null

Remove:

O(1)

O(n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034… 10/15

125

Guest
Rectangle

function removeHashTable(table, key):
 index = hash(key)
 if table[index] is not empty:
 for each (k, v) in table[index]:
 if k == key:
 table[index].remove((k, v))
 return v
 return null

8. Tries

Definition: A tree-like structure that stores strings by breaking them into characters.

Operations:

Search: — Where is the length of the string.

Insert:

Space Complexity: , where is the number of characters in all strings.

Compressed Trie: Merges chains of nodes to reduce memory usage.

Applications:

Dictionary implementation, autocomplete systems.

Drawbacks: Can use a lot of memory when storing a large number of strings with

common prefixes.

Insert:

function insertTrie(root, word):
 currentNode = root
 for each character in word:
 if character not in currentNode.children:
 currentNode.children[character] = new TrieNode()
 currentNode = currentNode.children[character]
 currentNode.isEndOfWord = true

O(m) m

O(m)

O(n) n

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034… 11/15

126

Guest
Rectangle

Get:

function getTrie(root, word):
 currentNode = root
 for each character in word:
 if character not in currentNode.children:
 return null
 currentNode = currentNode.children[character]
 return currentNode if currentNode.isEndOfWord else null

Remove:

function removeTrie(root, word, index=0):
 if index == length(word):
 root.isEndOfWord = false
 return isEmpty(root)
 char = word[index]
 if char in root.children:
 if removeTrie(root.children[char], word, index + 1):
 del root.children[char]
 return isEmpty(root)
 return false

Check if Empty:

function isEmpty(node):
 return len(node.children) == 0

9. Skip Lists

Definition: A probabilistic data structure for fast search, insertion, and deletion.

Operations:

Insert/Search/Delete: on average due to multiple levels of linked

lists.

O(log n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034… 12/15

127

Guest
Rectangle

Space Complexity: .

Applications:

As an alternative to balanced trees, in applications requiring fast search with

simpler implementation.

Drawbacks: Randomized structure may not always guarantee perfect balancing.

Insert:

function insertSkipList(skipList, value):
 level = randomLevel()
 update = array of skipList.levels
 node = new Node(value, level)
 for i from 0 to level:
 update[i].next[i] = node
 skipList.size += 1

Search:

function searchSkipList(skipList, value):
 current = skipList.head
 for i from highest level down to 0:
 while current.next[i] is not null and current.next[i].value
< value:
 current = current.next[i]
 current = current.next[0]
 return current if current.value == value else null

Delete:

function deleteSkipList(skipList, value):
 update = array of skipList.levels
 current = skipList.head
 for i from highest level down to 0:
 while current.next[i] is not null and current.next[i].value
< value:

O(n)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034… 13/15

128

Guest
Rectangle

 current = current.next[i]
 current = current.next[0]
 if current is not null and current.value == value:
 for i from 0 to current.level:
 update[i].next[i] = current.next[i]
 skipList.size -= 1

10. Maps

Definition: A collection of key-value pairs.

Operations:

get(k): Retrieve the value associated with the key.

put(k, v): Insert a new key-value pair or update the value of an existing key.

remove(k): Delete the entry with the key.

Hash Maps:

Operations: on average.

Handling Collisions: Separate chaining or open addressing.

Applications: Storing and retrieving data with unique keys (e.g., address book,

database indexing).

Drawbacks: Collisions reduce efficiency; keys need to be hashable.

Put (Insert or Update):

function putMap(map, key, value):
 index = hash(key)
 if map[index] is empty:
 map[index] = new LinkedList()
 for each (k, v) in map[index]:
 if k == key:
 v = value // Update value

O(1)

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034… 14/15

129

Guest
Rectangle

 return
 map[index].add((key, value))

Get:

function getMap(map, key):
 index = hash(key)
 if map[index] is not empty:
 for each (k, v) in map[index]:
 if k == key:
 return v
 return null

Remove:

function removeMap(map, key):
 index = hash(key)
 if map[index] is not empty:
 for each (k, v) in map[index]:
 if k == key:
 map[index].remove((k, v))
 return v
 return null

9/30/25, 7:15 PM 15. Midterm Preparation

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/15%20Midterm%20Preparation%201d834575a8388034… 15/15

130

Guest
Rectangle

16. Graphs — Theory, ADT & Data

Structure Implementations

Graph Basics

Definition

GRAPH: A pair (V, E) where

 is a set of vertices (nodes),

 is a collection of edges (pairs of vertices).

Vertices and edges are positions that store user-provided elements.

Example:

A vertex stores a three-letter airport code; an edge stores the mileage between two

airports.

V

E

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 1/8

131

Guest
Rectangle

Edge Types

DIRECTED EDGE: An ordered pair with origin and destination .

UNDIRECTED EDGE: An unordered pair .

DIRECTED GRAPH: All edges are directed (e.g., one-way flight network).

UNDIRECTED GRAPH: All edges are undirected (e.g., bidirectional flight network).

Applications

Electronic circuits (PCBs, integrated circuits)

Transportation networks (highways, flight routes)

Computer networks (LAN, Internet, Web)

Databases (Entity–Relationship diagrams)

Terminology

Endpoints & Incidence

ENDPOINTS: For edge , the vertices and are its endpoints.

INCIDENT EDGES: Edges that have a given vertex as one of their endpoints.

Adjacency & Degree

ADJACENT VERTICES: Two vertices are adjacent if they are connected by an edge.

(u, v) u v

{u, v}

e = (u, v) u v

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 2/8

132

Guest
Rectangle

DEGREE (): Number of edges incident on vertex .

PARALLEL EDGES: Multiple edges connecting the same pair of vertices.

SELF-LOOP: An edge connecting a vertex to itself.

Paths & Cycles

Paths

PATH: A sequence of alternating vertices and edges, beginning and ending with

vertices.

SIMPLE PATH: A path with all distinct vertices and edges.

Examples:

 is simple.

 is not simple.

deg(v) v

P =1 (V , b,X,h,Z)

P =2 (U , c,W , e,X, g,Y , f ,W , d,V)

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 3/8

133

Guest
Rectangle

Cycles

CYCLE: A circular sequence of alternating vertices and edges.

SIMPLE CYCLE: A cycle with all distinct vertices and edges.

Examples:

 is simple.

 is not simple.

C =1 (V , b,X, g,Y , f ,W , c,U , a,⟳)

C =2 (U , c,W , e,X, g,Y , f ,W , d,V , a,⟳)

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 4/8

134

Guest
Rectangle

Graph Properties

NOTATION:

 = number of vertices,

 = number of edges,

 = degree of vertex .

Property 1: Sum of Vertex Degrees

Property 1:

Proof: Each undirected edge contributes 1 to the degree of each endpoint.

Property 2: Maximum Number of Edges in an Undirected Graph

Property 2: In an undirected graph with no self-loops or parallel edges,

Proof: Each of the vertices can connect to at most others; dividing by 2

avoids double-counting.

n

m

deg(v) v

 deg(v) =
v∈V

∑ 2m.

m ≤ .
2

n(n− 1)

n (n− 1)

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 5/8

135

Guest
Rectangle

Directed Graph Bound: Without loops,

.

Graph ADT

VERTEX: Object storing an element; supports element().

EDGE: Object storing an element and references to origin and destination vertices;

supports element() .

GRAPH: Encapsulates vertex and edge collections and supports graph operations.

Edge List Structure (ELS)

VERTEX OBJECT:

element

reference to position in vertex sequence

EDGE OBJECT:

element

references to origin and destination vertices

reference to position in edge sequence

VERTEX SEQUENCE: Sequence of all vertex objects

EDGE SEQUENCE: Sequence of all edge objects

m ≤ n(n− 1)

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 6/8

136

Guest
Rectangle

Adjacency List Structure (ALS)

INCIDENCE SEQUENCE: For each vertex, a list of references to its incident edges.

AUGMENTED EDGE OBJECT: Contains pointers to its positions in both endpoints’

incidence lists.

Complexity Analysis

Operation ELS Complexity ALS Complexity

insertV

insertE

O(1) O(1)

O(1) O(1)

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 7/8

137

Guest
Rectangle

Operation ELS Complexity ALS Complexity

removeV (or worst-case)

removeE

opposite

incident

areAdjacent

insert (list)

remove (list)

In ALS, removeV traverses ’s incidence list and removes each edge in per edge.

Final Summary & Takeaways

SUMMARY: Covered graph definitions, types, terminology, fundamental properties,

the Graph ADT, two storage structures (ELS & ALS), and their operation complexities.

KEY TAKEAWAYS:

Choice of structure affects local vs. global operation cost.

Property: underpins many algorithms.

Edge bounds guide worst-case scenario analysis.

ALS excels at localized queries; ELS simplifies global edge management.

O(m) O(d(v)) O(m)

O(1) O(1)

O(1) O(1)

O(m) O(d(v))

O(m) O(min(deg(u), deg(v)))

O(1) O(1)

O(1) O(1)

v O(1)

deg(v) =∑ 2m

9/30/25, 7:15 PM 16. Graphs — Theory, ADT & Data Structure Implementations

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/16%20Graphs%20%E2%80%94%20Theory,%20ADT%20… 8/8

138

Guest
Rectangle

17. Graph Representations &

Breadth-First Search

Adjacency Matrix Structure

Definition & Structure

ADJACENCY MATRIX: A 2D array A of size n × n (for n vertices) where

A[i][j] holds a reference to the edge object between vertices i and j, or

Null
 (or

0
 in the “old-fashioned” version) if no edge exists.

AUGMENTED VERTEX OBJECT: Each vertex carries an integer key (its index) allowing

direct access into the matrix.

9/30/25, 7:16 PM 17. Graph Representations & Breadth-First Search

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/17%20Graph%20Representations%20&%20Breadth-First… 1/6

139

Guest
Rectangle

Performance Comparison

For a graph with n vertices and m edges (no parallel edges or self-loops):

Operation Edge List Adjacency List Adjacency Matrix

Space O(n + m) O(n + m) O(n²)

incidentEdges(v) O(m) O(deg(v)) O(n)

areAdjacent(v, w) O(m) O(min(deg(v),deg(w))) O(1)

insertVertex(o) O(1) O(1) O(n²)

insertEdge(v, w, o) O(1) O(1) O(1)

removeVertex(v) O(m) O(deg(v)) O(n²)

removeEdge(e) O(1) O(1) O(1)

Remark: Adjacency-matrix excels at constant-time adjacency checks, but costs

O(n²) space.

9/30/25, 7:16 PM 17. Graph Representations & Breadth-First Search

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/17%20Graph%20Representations%20&%20Breadth-First… 2/6

140

Guest
Rectangle

Breadth-First Search (BFS)

Overview

BFS TRAVERSAL: Visits all vertices and edges of a graph in layers, computes

connected components, and builds a spanning forest in O(n + m) time.

Determines connectivity of G

Computes connected components and spanning forest

Finds shortest path (fewest edges) between two vertices

Detects a simple cycle if one exists

BFS Algorithm

BFS(G, s):
 L[0] ← [s]
 setLabel(s, VISITED)
 i ← 0

 while L[i] not empty:
 L[i+1] ← []
 for v in L[i]:
 for e in incidentEdges(v):
 if getLabel(e) = UNEXPLORED:
 w ← opposite(v, e)
 if getLabel(w) = UNEXPLORED:
 setLabel(e, DISCOVERY)
 setLabel(w, VISITED)
 L[i+1].append(w)
 else:
 setLabel(e, CROSS)
 i ← i +

Comment: Traverses the graph from a single start vertex in “layers,” marking edges as

discovery or cross and building successive frontier lists.

9/30/25, 7:16 PM 17. Graph Representations & Breadth-First Search

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/17%20Graph%20Representations%20&%20Breadth-First… 3/6

141

Guest
Rectangle

BFS(G):
 for each u in G.vertices:
 setLabel(u, UNEXPLORED)
 for each e in G.edges:
 setLabel(e, UNEXPLORED)
 for each v in G.vertices:
 if getLabel(v) = UNEXPLORED:
 BFS(G, v)

Comment: Prepares every vertex and edge for exploration, then invokes the core

routine on each unvisited component to cover the entire graph.

Example Walkthrough

Starting at vertex s = A:

1. Layer L₀: {A}

Only the start vertex is visited.

2. Layer L₁:

{B, C, D}

All neighbors of A discovered via DISCOVERY edges (solid red).

3. Layer L₂: {E, F}

Neighbors of B, C, or D not yet visited, discovered in the next wave.

Note:

Solid red arrows = DISCOVERY edges that bring a new vertex into the frontier.

Dashed green arrows = CROSS edges encountered between already-visited

vertices.

…and the process continues until no unexplored edges remain.

9/30/25, 7:16 PM 17. Graph Representations & Breadth-First Search

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/17%20Graph%20Representations%20&%20Breadth-First… 4/6

142

Guest
Rectangle

Properties of BFS

Property 1: BFS(G, s) visits all vertices and edges of the connected component Gₛ.

Property 2: Discovery edges form a spanning tree Tₛ of Gₛ.

Property 3: For any vertex v in layer Lᵢ:

The path in Tₛ from s to v has exactly i edges.

No path in Gₛ from s to v has fewer than i edges.

Analysis

Labelling operations (vertex/edge) are O(1) each.

Each vertex is labeled twice (UNEXPLORED → VISITED).

Each edge is labeled twice (UNEXPLORED → DISCOVERY/CROSS).

Each vertex appears once in some layer list L[·].

incidentEdges(v) called once per vertex.

Time complexity: O(n + m) with an adjacency-list representation (since ∑ᵥ deg(v) =

2m).

Applications of BFS

Using the BFS template, we can solve in O(n + m) time:

9/30/25, 7:16 PM 17. Graph Representations & Breadth-First Search

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/17%20Graph%20Representations%20&%20Breadth-First… 5/6

143

Guest
Rectangle

Connected Components: Identify all components by running BFS from unexplored

vertices.

Spanning Forest: Union of BFS trees from each component.

Cycle Detection: If any edge is labeled CROSS in an undirected graph, a cycle exists.

Shortest Path: Find a minimum-edge path between two vertices in an unweighted

graph.

Final Summary & Takeaways

Representation Choice:

Adjacency-matrix: constant-time adjacency, high space cost (O(n²)).

Adjacency-list: space-efficient (O(n + m)), linear-time adjacency checks.

BFS Key Points:

Traverses in layers, builds spanning forest.

Guarantees shortest path (edge-count) in unweighted graphs.

Runs in O(n + m) time with adjacency lists.

Common Pitfalls:

Using adjacency matrix for very sparse graphs leads to wasted space.

Forgetting to mark CROSS edges can mask cycle detection.

Omitting initialization of all labels before traversal can produce incorrect results.

9/30/25, 7:16 PM 17. Graph Representations & Breadth-First Search

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/17%20Graph%20Representations%20&%20Breadth-First… 6/6

144

Guest
Rectangle

18. Graph Traversal, DFS,

Structural Properties

Subgraphs & Spanning Subgraphs

Subgraph: A graph whose vertices and edges are subsets of those of .

Spanning Subgraph: A subgraph containing all vertices of (but possibly fewer

edges).

S G

G

9/30/25, 7:15 PM 18. Graph Traversal, DFS, Structural Properties

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/18%20Graph%20Traversal,%20DFS,%20Structural%20Pr… 1/6

145

Guest
Rectangle

Connectivity & Components

Connected Graph: Every pair of vertices is joined by a path.

Connected Component: A maximal connected subgraph of .

Trees & Forests

Tree: A connected, cycle-free undirected graph.

Forest: An undirected, cycle-free graph (a collection of trees).

Spanning Tree: A spanning subgraph of a connected graph that is a tree.

Spanning Forest: A spanning acyclic subgraph of any graph.

G

9/30/25, 7:15 PM 18. Graph Traversal, DFS, Structural Properties

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/18%20Graph%20Traversal,%20DFS,%20Structural%20Pr… 2/6

146

Guest
Rectangle

Depth-First Search (DFS)

Overview

DFS: Traversal that explores as far as possible along each branch before backtracking.

Discovers connected components and builds a spanning forest.

Labels edges as discovery (part of DFS tree) or back (to an ancestor).

Runs in time for vertices and edges.

DFS Template

Mark start vertex as VISITED.

For each unexplored incident edge, follow to an unexplored neighbor, label edge

DISCOVERY, recurse, then backtrack.

Label any remaining unexplored edge as BACK.

DFS Specializations

Path Finding

Use a stack to record the path from start to target ; halt when is discovered.

Example: Finding any simple path in a maze graph via DFS.

O(n + m) n m

u z z

9/30/25, 7:15 PM 18. Graph Traversal, DFS, Structural Properties

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/18%20Graph%20Traversal,%20DFS,%20Structural%20Pr… 3/6

147

Guest
Rectangle

Cycle Finding

Track edges on recursion stack; upon encountering a BACK edge , extract the

cycle from to .

Example: Detecting a cycle in an undirected graph when a discovery edge leads to an

already VISITED vertex.

DFS vs. BFS Edge Classification

Discovery Edge: Tree edge in DFS/BFS.

Back Edge (DFS): Connects to ancestor.

Forward/Cross Edges (Directed DFS): Connect to proper descendant or to a node

in the same/lower level (see Directed DFS).

Directed Graphs (Digraphs)

Digraph: A graph with directed edges .

Store separate adjacency lists for outgoing and incoming edges for efficient

traversal.

Used for modeling one-way streets, flight routes, task scheduling.

Directed DFS & Reachability

Directed DFS: Traverse only along edge direction, labeling edges as discovery, back,

forward, or cross.

Determines vertices reachable from a start vertex .

(v,w)
w v

(a, b)

s

9/30/25, 7:15 PM 18. Graph Traversal, DFS, Structural Properties

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/18%20Graph%20Traversal,%20DFS,%20Structural%20Pr… 4/6

148

Guest
Rectangle

Strong Connectivity & SCCs

Strongly Connected: Every vertex can reach every other via directed paths.

Strongly Connected Component (SCC): A maximal strongly connected subgraph.

Algorithm:

Run DFS from arbitrary ; if any vertex is unvisited, not strongly connected.

Reverse all edges and run DFS from again; if all visited, graph is strongly

connected.

SCC Decomposition: More advanced DFS-based methods (e.g., Kosaraju’s) find all

SCCs in .

v

v

O(n + m)

9/30/25, 7:15 PM 18. Graph Traversal, DFS, Structural Properties

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/18%20Graph%20Traversal,%20DFS,%20Structural%20Pr… 5/6

149

Guest
Rectangle

Final Summary & Takeaways

Subgraphs, connectivity, trees & forests underpin graph structure.

DFS builds spanning forests, labels edges, and runs in linear time.

Specializations of DFS solve path-finding and cycle detection.

Directed graphs require careful edge-direction handling; DFS reveals reachability.

Strong connectivity checks and SCC algorithms rely on two DFS passes or variants.

9/30/25, 7:15 PM 18. Graph Traversal, DFS, Structural Properties

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/18%20Graph%20Traversal,%20DFS,%20Structural%20Pr… 6/6

150

Guest
Rectangle

19. Graph Algorithms:

Reachability, Ordering & Shortest

Paths

Transitive Closure

Transitive Closure: Given a digraph , its transitive closure

has an edge in whenever there is a directed path from to in .

Computing Transitive Closure

DFS-Based Method: Run DFS from each vertex ; mark all reachable and add

to .

Time Complexity: .

Floyd–Warshall Algorithm: A dynamic-programming approach using a distance

matrix to infer reachability in .

Example:

For with edges , , the closure adds since .

G = (V ,E) G (V ,E=)

(u, v) E∗ u v G

u v (u, v)
E∗

O(∣V ∣ ⋅ (∣V ∣ + ∣E∣))

O(∣V ∣)3

G A → B B → C G∗ A → C A → B → C

9/30/25, 7:15 PM 19. Graph Algorithms: Reachability, Ordering & Shortest Paths

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/19%20Graph%20Algorithms%20Reachability,%20Orderin… 1/3

151

Guest
Rectangle

Directed Acyclic Graphs & Topological Ordering

DAG: A digraph with no directed cycles.

Topological Ordering: A labelling of vertices such that for every edge

, .

Existence Theorem

Theorem: A digraph admits a topological ordering if and only if it is a DAG.

Topological Sorting Algorithms

Remove-Sink Method:

Repeatedly remove a vertex with no outgoing edges, assign it the highest

remaining label, and delete it from the graph.

Runs in .

DFS-Based Method:

Perform DFS on each unvisited vertex.

After exploring all descendants of , prepend to a list.

The final list is a topological ordering in .

Shortest Paths in Weighted Graphs

Weighted Graph: Each edge has a weight .

Shortest Path Problem: Find a path from to minimizing the sum of edge weights.

Fundamental Properties

Subpath Optimality: Every subpath of a shortest path is itself a shortest path.

Shortest-Path Tree: For a fixed source , the collection of shortest paths from to all

reachable vertices forms a tree.

Example:

v , … , v 1 n

(v , v)i j i < j

O(∣V ∣ + ∣E∣)

v v

O(∣V ∣ + ∣E∣)

(u, v) w(u, v)

s t

s s

9/30/25, 7:15 PM 19. Graph Algorithms: Reachability, Ordering & Shortest Paths

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/19%20Graph%20Algorithms%20Reachability,%20Orderin… 2/3

152

Guest
Rectangle

In a flight-route graph with weighted edges as distances, the shortest path from

Providence to Honolulu is found by accumulating minimal distances through

intermediate hubs.

Final Summary & Takeaways

Transitive Closure reveals all reachabilities; computed via repeated DFS or Floyd–

Warshall.

DAGs permit topological ordering; detect cycles by failure to order.

Topological Sort can be implemented by removing sinks or via DFS postorder.

Shortest Paths rely on subpath optimality; yield a tree of minimal-cost routes.

Common Mistake: Applying topological sort on graphs with cycles or using

unweighted methods for weighted-graph shortest paths.

9/30/25, 7:15 PM 19. Graph Algorithms: Reachability, Ordering & Shortest Paths

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/19%20Graph%20Algorithms%20Reachability,%20Orderin… 3/3

153

Guest
Rectangle

20. Dijkstra’s Algorithm

Graph Preliminaries

Definitions

GRAPH: A pair , where is a set of vertices and is a set of

edges.

WEIGHTED GRAPH: A graph where each edge has an associated weight .

PATH: A sequence of vertices such that .

PATH WEIGHT: The sum of the weights of edges along the path: .

SPANNING TREE: A subgraph of that includes all vertices and is itself a tree.

Shortest Path Problem

Problem Statement

SHORTEST-PATH PROBLEM: Given a weighted graph and source

, compute the minimum path weight from to every .

Dijkstra’s Algorithm

G = (V ,E) V E ⊆ V × V

e ∈ E w(e)

(v , v , … , v)0 1 k (v , v) ∈i−1 i E

 w(v , v)∑i=1
k

i−1 i

G

G = (V ,E) s ∈
V d(v) s v ∈ V

9/30/25, 7:16 PM 20. Dijkstra’s Algorithm

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/20%20Dijkstra%E2%80%99s%20Algorithm%201f234575a… 1/4

154

Guest
Rectangle

DIJKSTRA’S ALGORITHM: Computes shortest-path distances from source in

graphs with nonnegative edge weights.

1. Initialization:

For all , set ; set .

Let cloud .

2. Main Loop:

Extract with minimum .

Add to .

For each neighbor of , relax edge :

3. Termination: When , distances are final.

Example

Consider graph:

 (s)
 / \
 1/ \4
 / \
(u)---2---(z)

Step 1: ; ; .

Step 2: Relax from : ; .

Step 3: Extract (); relax : .

Step 4: Extract () → done.

Complexity Analysis

TIME: using a binary-heap priority queue.

d(v) s

v ∈ V d(v) = ∞ d(s) = 0

S = ∅

u ∈/ S d(u)

u S

z u (u, z)

d(z) ← min{d(z), d(u) + w(u, z)}.

S = V d(v)

d(s) = 0 d(u) = ∞ d(z) = ∞

s d(u) = 1 d(z) = 4

u d = 1 (u, z) d(z) = 3

z d = 3

O((∣V ∣ + ∣E∣) log ∣V ∣)

9/30/25, 7:16 PM 20. Dijkstra’s Algorithm

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/20%20Dijkstra%E2%80%99s%20Algorithm%201f234575a… 2/4

155

Guest
Rectangle

Correctness & Constraints

Requires nonnegative edge weights; fails on negative-weight edges.

Bellman–Ford Algorithm

BELLMAN–FORD: Handles negative weights (directed graphs) in time

and detects negative cycles.

for each v in V:
 if v = s then d(v)=0 else d(v)=∞
for i = 1 to |V|-1:
 for each edge (u,z) in E:
 if d(u)+w(u,z) < d(z):
 d(z) = d(u)+w(u,z)

Minimum Spanning Trees

Problem Statement

MINIMUM SPANNING TREE (MST): A spanning tree of with minimum total edge

weight.

Cycle & Partition Properties

Cycle Property: For any cycle in , the maximum-weight edge on that cycle is not

included in some MST.

Partition Property: For any cut of , the minimum-weight edge crossing the

cut is in some MST.

Final Summary & Takeaways

Shortest Paths:

Dijkstra’s: , nonnegative weights.

Bellman–Ford: , supports negatives and detects cycles.

O(∣V ∣ ⋅ ∣E∣)

G

G

(U ,V) V

O((V + E) log V)

O(V E)

9/30/25, 7:16 PM 20. Dijkstra’s Algorithm

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/20%20Dijkstra%E2%80%99s%20Algorithm%201f234575a… 3/4

156

Guest
Rectangle

Greedy Paradigm: Both problems solved by iteratively choosing the local optimum

(minimum distance or minimum edge).

Pitfalls: Dijkstra breaks with negative weights; Kruskal needs cycle detection;

Bellman–Ford is slower but more versatile.

9/30/25, 7:16 PM 20. Dijkstra’s Algorithm

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/20%20Dijkstra%E2%80%99s%20Algorithm%201f234575a… 4/4

157

Guest
Rectangle

21. Minimum Spanning Trees

Basics of Spanning Trees

Definitions

SPANNING TREE: A subgraph of a graph that is a tree containing all vertices.

MINIMUM SPANNING TREE (MST): A spanning tree in a weighted graph with the

smallest possible total edge weight.

Properties of MST

Cycle Property

CYCLE PROPERTY: For any cycle in the graph, the maximum-weight edge on that

cycle does not belong to any MST.

Sketch of Proof: Removing the heaviest edge from the cycle reduces total weight

while preserving connectivity.

Partition (Cut) Property

PARTITION PROPERTY: For any partition of the graph’s vertices into sets U and V, the

minimum-weight edge crossing the cut (U, V) belongs to some MST.

9/30/25, 7:15 PM 21. Minimum Spanning Trees

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/21%20Minimum%20Spanning%20Trees%201f434575a83… 1/4

158

Guest
Rectangle

Sketch of Proof: If the MST does not include this lightest crossing edge, swapping it

with a heavier edge across the cut yields a lighter spanning tree.

Greedy Algorithms for MST

Kruskal’s Algorithm

KRUSKAL’S ALGORITHM: Builds MST by sorting edges and adding the smallest ones

that do not form a cycle.

Procedure:

1. Create a forest where each vertex is its own tree.

2. Sort all edges by increasing weight.

3. For each edge (u, v) in sorted order:

If u and v are in different trees, add (u, v) to the MST and union their trees.

4. Repeat until the forest merges into a single tree.

Prim’s Algorithm

PRIM’S ALGORITHM: Grows an MST from an initial vertex by repeatedly adding the

cheapest edge crossing the current tree boundary.

Procedure:

1. Start with a single vertex s in set S.

2. Initialize key(v) = ∞ for all v ≠ s; set parent(v) = null.

3. While S ≠ V:

Select u ∉ S with minimum key(u).

Add u to S.

For each neighbor v of u not in S, if weight(u, v) < key(v), set key(v) = weight(u,

v) and parent(v) = u.

Data Structures and Complexity

9/30/25, 7:15 PM 21. Minimum Spanning Trees

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/21%20Minimum%20Spanning%20Trees%201f434575a83… 2/4

159

Guest
Rectangle

Union-Find Structure

UNION-FIND: Maintains disjoint sets with operations makeSet, find, and union for

Kruskal’s algorithm.

makeSet(u): Create set containing u.

find(u): Find representative of u’s set.

union(A, B): Merge sets A and B.

Use union by rank and path compression for near-constant time operations.

Complexity Analysis

Kruskal’s Algorithm: O(E log E) for sorting edges and union-find operations.

Prim’s Algorithm: O((V + E) log V) using a binary heap for the priority queue.

Example Execution

Kruskal’s Example

Graph with vertices {A, B, C, D}, edges with weights.

Steps:

1. Sort edges: (A, B), (C, D), …

2. Add edges, skipping those forming cycles.

3. Final MST: list of edges.

Prim’s Example

Same graph as above.

Steps:

1. Start at A, set keys.

2. Add the lightest outgoing edge, update keys.

3. Continue until all vertices included.

Final Summary & Takeaways

9/30/25, 7:15 PM 21. Minimum Spanning Trees

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/21%20Minimum%20Spanning%20Trees%201f434575a83… 3/4

160

Guest
Rectangle

MSTs connect all vertices with minimum total weight.

Cycle and partition properties ensure greedy choice correctness.

Kruskal’s uses edge sorting and union-find; Prim’s uses a priority queue.

Both algorithms run in O(E log V) time for sparse graphs.

9/30/25, 7:15 PM 21. Minimum Spanning Trees

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/21%20Minimum%20Spanning%20Trees%201f434575a83… 4/4

161

Guest
Rectangle

22. Priority Queues & Heap-Based

Sorting

Priority Queue ADT

A priority queue stores a collection of entries (key, value) so that the entry with the

smallest (or largest) key can be accessed quickly. Common operations:

insert(k, v) — add a new entry

min() — peek at the entry with smallest key

removeMin() — remove and return the entry with smallest key

size(), isEmpty() — query the number of entries

All operations must maintain the priority ordering.

9/30/25, 7:15 PM 22. Priority Queues & Heap‐Based Sorting

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/22%20Priority%20Queues%20&%20Heap%E2%80%90B… 1/6

162

Guest
Rectangle

Implementations & Complexities

Unsorted list

insert in O(1) by appending

min() / removeMin() in O(n) by scanning

overall PQ-sort cost: O(n²)

Sorted list

insert in O(n) by shifting into position

min() / removeMin() in O(1) at head

overall PQ-sort cost: O(n²)

Binary heap (array-based)

insert: add at end and “up-heap” in O(log n)

min(): O(1) at root

9/30/25, 7:15 PM 22. Priority Queues & Heap‐Based Sorting

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/22%20Priority%20Queues%20&%20Heap%E2%80%90B… 2/6

163

Guest
Rectangle

removeMin: swap root with last, “down-heap” in O(log n)

size(), isEmpty(): O(1)

Priority-Queue Sorting

1. Insert all n items into the chosen PQ

2. Repeatedly removeMin to emit items in sorted order

Using a binary heap yields O(n log n) total time

Selection Sort

Idea: Repeatedly select the minimum from the unsorted suffix and swap it into place.

Algorithm:

1. For each index i from 0 to n−2:

Find index minIdx of smallest element in A[i…n−1].

Swap A[i] and A[minIdx].

Time Complexity:

Best/Average/Worst: O(n²)

Space Complexity: O(1) (in-place)

Stable: No (by default)

9/30/25, 7:15 PM 22. Priority Queues & Heap‐Based Sorting

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/22%20Priority%20Queues%20&%20Heap%E2%80%90B… 3/6

164

Guest
Rectangle

Insertion Sort

Idea: Build a sorted portion at the front by inserting each new element into its

correct place.

Algorithm:

1. For each index

i
 from 1 to n−1:

Save key = A[i] .

Compare with elements to its left, shifting larger items right.

Insert key into its proper position.

Time Complexity:

Best: O(n) (already sorted)

Average/Worst: O(n²)

Space Complexity: O(1) (in-place)

Stable: Yes

9/30/25, 7:15 PM 22. Priority Queues & Heap‐Based Sorting

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/22%20Priority%20Queues%20&%20Heap%E2%80%90B… 4/6

165

Guest
Rectangle

Heap Data Structure

Stored in an array of length n

Parent at index i has children at 2·i+1 and 2·i+2

Maintains the heap property: each node’s key ≤ its children’s keys

Bottom-Up Heap Construction

Instead of n successive inserts (O(n log n)), you can build a heap in O(n) by:

Treat the array as a complete tree

Perform down-heap (“heapify”) on each non-leaf node from ⌊n/2⌋–1 down to 0

This linear-time build phase speeds up the first half of heap-sort without changing its

overall O(n log n) cost.

Heap-Sort Overview

Build a heap in O(n) (using bottom-up)

RemoveMin (or swap root to end and shrink) n times in O(log n) each

Total running time: O(n log n)

9/30/25, 7:15 PM 22. Priority Queues & Heap‐Based Sorting

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/22%20Priority%20Queues%20&%20Heap%E2%80%90B… 5/6

166

Guest
Rectangle

In-place: uses the input array and O(1) extra space

9/30/25, 7:15 PM 22. Priority Queues & Heap‐Based Sorting

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/22%20Priority%20Queues%20&%20Heap%E2%80%90B… 6/6

167

Guest
Rectangle

23. Heap-Based Sorting & Merge-

Sort Overview

Heap-Sort

A heap-sort uses a binary heap as a priority queue to sort n elements in place.

Space: O(n)

Operations on heap of size n:

insert, removeMin → O(log n)

min, size, isEmpty → O(1)

Overall sort time:

1. Build heap (bottom-up) → O(n)

2. Repeatedly removeMin n times → n·O(log n) = O(n log n)

Heap-sort outperforms quadratic sorts (insertion, selection) for large n.

Merging Two Heaps

To merge two heaps H₁ and H₂ with a new key k:

9/30/25, 7:15 PM 23. Heap-Based Sorting & Merge-Sort Overview

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/23%20Heap-Based%20Sorting%20&%20Merge-Sort%20… 1/5

168

Guest
Rectangle

Create a new root node storing k.

Hang H₁ and H₂ as its left and right subtrees.

Perform a down-heap from the root to restore the heap-order property in O(log n)

time (n = |H₁|+|H₂|+1).

Bottom-Up Heap Construction

Instead of n successive inserts (O(n log n)), you can build a heap in linear time:

View the input array as a complete binary tree.

For each non-leaf node from ⌊n/2⌋–1 down to 0, perform a down-heap (“heapify”).

Total cost: O(n)

9/30/25, 7:15 PM 23. Heap-Based Sorting & Merge-Sort Overview

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/23%20Heap-Based%20Sorting%20&%20Merge-Sort%20… 2/5

169

Guest
Rectangle

Speeds up heap-sort’s build phase without changing overall O(n log n) runtime.

Merge-Sort

A classic divide-and-conquer sorter for n elements:

1. Divide: split the sequence into two halves of ~n/2 each.

2. Recur: sort each half recursively.

3. Conquer: merge the two sorted halves into one.

Like heap-sort it has O(n log n) running time.

Merge step: O(n) time and O(n) extra space.

Recurrence: T(n) = 2 T(n/2) + O(n) ⇒ T(n) = O(n log n).

Characteristics:

Stable sort (if implemented carefully).

9/30/25, 7:15 PM 23. Heap-Based Sorting & Merge-Sort Overview

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/23%20Heap-Based%20Sorting%20&%20Merge-Sort%20… 3/5

170

Guest
Rectangle

Accesses data sequentially (good for external/disk-based sorting).

Requires O(n) auxiliary space for merging.

Merge Procedure

Maintain two pointers at the heads of the sorted sublists A and B.

Repeatedly compare and remove the smaller element, appending it to the output.

After one list is exhausted, append the remainder of the other.

Time: O(n) for total of |A|+|B| = n elements.

9/30/25, 7:15 PM 23. Heap-Based Sorting & Merge-Sort Overview

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/23%20Heap-Based%20Sorting%20&%20Merge-Sort%20… 4/5

171

Guest
Rectangle

9/30/25, 7:15 PM 23. Heap-Based Sorting & Merge-Sort Overview

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/23%20Heap-Based%20Sorting%20&%20Merge-Sort%20… 5/5

172

Guest
Rectangle

24. Sorting Algorithms

Selection Sort

Description

SELECTION SORT: Repeatedly selects the smallest (or largest) element from the unsorted portion of the array and swaps it into its

correct position at the front (or end).

Pseudocode

Algorithm selectionSort(A, n)
Input: Array A[0..n-1]
Output: A sorted in nondecreasing order

for i from 0 to n-2 do
 minIndex ← i
 for j from i+1 to n-1 do
 if A[j] < A[minIndex] then
 minIndex ← j
 // swap A[i] and A[minIndex]
 temp ← A[i]
 A[i] ← A[minIndex]
 A[minIndex] ← temp

Time Complexity

Best-case: O(n²)

Average-case: O(n²)

Worst-case: O(n²)

Space Complexity

Auxiliary Space: O(1) (in-place)

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 1/7

173

Guest
Rectangle

Advantages

Simple to understand and implement.

Performs well for very small arrays (n < 1000).

Number of swaps is at most n (one per outer iteration).

Disadvantages

Quadratic time makes it inefficient for large n.

Always performs O(n²) comparisons, even if the array is already sorted.

Insertion Sort

Description

INSERTION SORT: Builds a sorted prefix one element at a time by taking an element from the unsorted portion and inserting it into

the correct position within the sorted prefix.

Pseudocode

Algorithm insertionSort(A, n)
Input: Array A[0..n-1]
Output: A sorted in nondecreasing order

for i from 1 to n-1 do
 key ← A[i]
 j ← i - 1
 // Shift elements of A[0..i-1] that are greater than key
 while j ≥ 0 and A[j] > key do
 A[j+1] ← A[j]
 j ← j - 1
 A[j+1] ← key

Time Complexity

Best-case: O(n) (when array is already sorted; only one comparison per element)

Average-case: O(n²)

Worst-case: O(n²)

Space Complexity

Auxiliary Space: O(1) (in-place)

Advantages

Efficient for small arrays or nearly sorted data.

Adaptive: runs in linear time if the input is nearly sorted.

Stable sort (does not change the relative order of equal keys).

Online algorithm: can sort as elements arrive.

Disadvantages

Quadratic time for large or reverse-sorted inputs.

Less efficient than more advanced algorithms (Merge, Quick, Heap) on large n.

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 2/7

174

Guest
Rectangle

Heap Sort

Description

HEAP SORT: Builds a max-heap (binary heap) from the input array, then repeatedly extracts the maximum element and places it at

the end of the array, shrinking the heap until empty.

Pseudocode

Algorithm heapSort(A, n)
Input: Array A[0..n-1]
Output: A sorted in nondecreasing order

// Build max-heap in-place
for i from ⌊n/2⌋ - 1 down to 0 do
 heapify(A, n, i)

// Repeatedly extract the maximum and restore heap
for i from n - 1 down to 1 do
 // Move current root (max) to end
 swap A[0], A[i]
 // Reduce heap size by one and heapify root
 heapify(A, i, 0)

Procedure heapify(A, heapSize, i)
 largest ← i
 left ← 2 * i + 1
 right ← 2 * i + 2
 if left < heapSize and A[left] > A[largest] then
 largest ← left
 if right < heapSize and A[right] > A[largest] then
 largest ← right
 if largest ≠ i then
 swap A[i], A[largest]
 heapify(A, heapSize, largest)

Time Complexity

Best-case: O(n log n)

Average-case: O(n log n)

Worst-case: O(n log n)

Space Complexity

Auxiliary Space: O(1) (in-place)

Advantages

In-place sort (requires no extra array).

Guarantees O(n log n) time regardless of input order.

Not sensitive to input distribution—consistent performance.

Disadvantages

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 3/7

175

Guest
Rectangle

Not stable (may reorder equal elements).

Access pattern is less sequential than merge sort; potentially poorer cache performance.

Constant factors in heapify may be larger than quick sort’s partition.

Merge Sort

Description

MERGE SORT: Divide-and-conquer algorithm that recursively splits the array into halves, sorts each half, and merges the two

sorted halves into a single sorted array.

Pseudocode

Algorithm mergeSort(A, left, right)
Input: Array A[left..right]
Output: A[left..right] sorted

if left < right then
 mid ← ⌊(left + right) / 2⌋
 mergeSort(A, left, mid)

 mergeSort(A, mid+1, right)
 merge(A, left, mid, right)

Procedure merge(A, left, mid, right)
 n1 ← mid - left + 1
 n2 ← right - mid
 create arrays L[0..n1] and R[0..n2]
 for i from 0 to n1-1 do
 L[i] ← A[left + i]
 for j from 0 to n2-1 do
 R[j] ← A[mid + 1 + j]
 L[n1] ← ∞ // sentinel
 R[n2] ← ∞ // sentinel
 i ← 0, j ← 0
 for k from left to right do
 if L[i] ≤ R[j] then
 A[k] ← L[i]
 i ← i + 1
 else
 A[k] ← R[j]
 j ← j + 1

Time Complexity

Best-case: O(n log n)

Average-case: O(n log n)

Worst-case: O(n log n)

Space Complexity

Auxiliary Space: O(n) (requires temporary arrays for merging)

Advantages

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 4/7

176

Guest
Rectangle

Stable sort (maintains order of equal elements).

Guarantees O(n log n) time for all inputs.

Excellent for sorting linked lists (no extra space needed for merging).

Access pattern is sequential—good for external sorting and cache performance.

Disadvantages

Uses O(n) extra space, which can be expensive for large arrays.

Recursive calls incur overhead; constant factors larger than some in-place sorts.

Quick Sort

Description

QUICK SORT: Divide-and-conquer algorithm that picks a pivot element, partitions the array into three groups (elements less than,

equal to, and greater than the pivot), recursively sorts the “less” and “greater” subarrays, and concatenates results. Often

implemented in-place using two indices scanning from ends.

Pseudocode (In-Place Randomized Quick Sort)

Algorithm quickSort(A, low, high)
Input: Array A[low..high]
Output: A[low..high] sorted

if low < high then
 // Randomly choose pivot index
 pivotIndex ← RANDOM(low, high)
 pivot ← A[pivotIndex]
 // Partition A around pivot: returns two boundaries h and k
 (h, k) ← partitionInPlace(A, low, high, pivot)
 quickSort(A, low, h - 1)
 quickSort(A, k + 1, high)

Procedure partitionInPlace(A, low, high, pivot)
 i ← low
 j ← high
 while i ≤ j do
 while i ≤ j and A[i] < pivot do
 i ← i + 1
 while i ≤ j and A[j] > pivot do
 j ← j - 1
 if i ≤ j then
 swap A[i], A[j]
 i ← i + 1
 j ← j - 1
 // Now, A[low..j] ≤ pivot, A[i..high] ≥ pivot
 return (i, j)

Time Complexity

Best-case: O(n log n) (balanced partitions every time)

Average-case: O(n log n)

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 5/7

177

Guest
Rectangle

Worst-case: O(n²) (if pivot is always the smallest or largest element)

Space Complexity

Auxiliary Space: O(log n) on average (stack space for recursion); O(n) in worst case if recursion is unbalanced.

Advantages

In-place sort (no extra array needed for partition).

Typically faster in practice than other O(n log n) algorithms due to low overhead and good cache utilization.

Average-case time is optimal for comparison sorts.

Disadvantages

Unstable (equal keys may change order).

Worst-case time O(n²) if pivot selection is poor (e.g., already sorted data and pivot = first element).

Requires careful pivot selection or randomization (or “median-of-three” heuristic) to avoid worst-case scenarios.

Comparative Differences

Algorithm Best Case Avg. Case Worst Case Space Stable In-Place Notes

Selection Sort O(n²) O(n²) O(n²) O(1) No Yes

Simple; few

swaps; inefficie

for large n.

Insertion Sort O(n) O(n²) O(n²) O(1) Yes Yes

Adaptive; good

for nearly sorte

data.

Heap Sort O(n log n) O(n log n) O(n log n) O(1) No Yes

In-place;

consistent

performance;

not stable.

Merge Sort O(n log n) O(n log n) O(n log n) O(n) Yes No

Guaranteed n

log n; sequenti

access; extra

memory.

Quick Sort O(n log n) O(n log n) O(n²) O(log n)* No Yes

In-place; fastes

on average;

avoid worst-ca

by

randomization

Final Summary & Takeaways

Quadratic vs. n log n:

Selection and Insertion sorts run in O(n²) and are only suitable for very small or nearly sorted arrays.

Merge, Heap, and Quick sorts run in O(n log n) on average or guaranteed, making them appropriate for large inputs.

Stability:

Insertion and Merge are stable; useful when the relative order of equal elements must be preserved (e.g., sorting records by

multiple keys).

Selection, Heap, and Quick are not stable without modifications.

Space Usage:

Selection, Insertion, and Heap are in-place (O(1) extra space).

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 6/7

178

Guest
Rectangle

Quick is in-place but may use O(log n) stack overhead.

Merge requires O(n) additional memory for merging.

Practical Considerations:

For large datasets, Quick Sort (with random pivot) often outperforms Heap Sort and Merge Sort due to cache friendliness.

Merge Sort excels on linked lists or when stability is required, and for external sorting (data on disk).

Heap Sort is a good choice when O(1) extra space and guaranteed O(n log n) time are needed.

Pivot and Partitioning:

Proper pivot selection (random or median-of-three) is essential in Quick Sort to avoid worst-case O(n²).

Three-way partitioning (elements <, =, > pivot) reduces overhead when many duplicates exist.

Adaptive vs. Non-Adaptive:

Insertion Sort is adaptive: linear on nearly sorted arrays.

Others (Selection, Merge, Heap, Quick) are non-adaptive: performance does not improve significantly on partially sorted data.

9/30/25, 7:16 PM 24. Sorting Algorithms

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/24%20Sorting%20Algorithms%2020034575a83880b0a12… 7/7

179

Guest
Rectangle

25. Sorting Lower Bounds and the

Selection Problem

1. Sorting Lower Bound

1.1. Comparison-Based Sorting Model

COMPARISON-BASED SORTING: Any sorting algorithm that determines order by

comparing pairs of elements. Common examples: bubble sort, selection sort, insertion

sort, merge sort, heap sort, quick sort.

Each comparison can be viewed as a binary decision (“Is xᵢ < xⱼ?”).

The sorting process corresponds to traversing a decision tree, where each internal

node is a comparison and each leaf represents a possible permutation of the input.

1.2. Decision Tree and Height

Decision Tree Height (h): The worst-case number of comparisons needed is at least

the height of this binary decision tree.

For an input of size n, there are n! possible orderings (permutations), so the tree must

have at least n! leaves.

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 1/8

180

Guest
Rectangle

A binary tree with L leaves has height at least log₂ L. Therefore:

Lower Bound Theorem: Any comparison-based sorting algorithm must perform at

least Ω(n log n) comparisons in the worst case.

1.3. Implications

No comparison-based sorting algorithm can have a worst-case time better than Ω(n

log n).

Algorithms like merge sort, heap sort, and (randomized) quick sort achieve this

bound in average or worst case, matching the lower bound up to constant factors.

h ≥ log (n!) =2 log i =
i=1

∑
n

2 n log n −2 n log e +2 O(log n).

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 2/8

181

Guest
Rectangle

2. The Selection Problem

2.1. Problem Definition

k-TH SMALLEST (SELECTION) PROBLEM: Given a set S of n elements drawn from a

total order and an integer k (1 ≤ k ≤ n), find the element whose rank is k (the k-th

smallest element) without fully sorting the set.

Naive Approach: Sort the n elements (O(n log n)), then pick the k-th position.

Goal: Achieve O(n) expected time (randomized) or O(n) worst-case time

(deterministic) without full sorting.

2.2. Quick-Select (Randomized Selection)

2.2.1. Idea & Overview

Quick-Select: A randomized “prune-and-search” algorithm similar to quick sort’s

partition step.

Steps:

1. Choose a random pivot x from S.

2. Partition S into three subsets:

L = { elements < x }

E = { elements = x }

G = { elements > x }

3. Let ℓ = |L|, e = |E|.

If k ≤ ℓ, recurse on L to find the k-th smallest.

Else if k > ℓ + e, recurse on G to find the (k − ℓ − e)-th smallest.

Otherwise (ℓ < k ≤ ℓ + e), x is the answer.

RUNTIME: O(n) expected time, because each partition step takes O(n), and the

expected size of the recursive subproblem is at most ¾ n when the pivot falls between

the 25th and 75th percentiles (with probability ≥ ½).

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 3/8

182

Guest
Rectangle

2.2.2. Pseudocode

Algorithm quickSelect(S[1..n], k)
Input: Array S[1..n] of n elements, integer k (1 ≤ k ≤ n)
Output: The k-th smallest element of S

if n = 1 then
 return S[1] // only one element

// Randomly choose pivot index p ∈ {1, …, n}
pivotIndex ← RANDOM(1, n)
pivot ← S[pivotIndex]

// Partition into L, E, G
L ← empty list
E ← empty list
G ← empty list
for i from 1 to n do
 if S[i] < pivot then
 append S[i] to L
 else if S[i] > pivot then
 append S[i] to G
 else
 append S[i] to E

ℓ ← |L| // size of L
e ← |E| // size of E

if k ≤ ℓ then
 return quickSelect(L, k)
else if k ≤ ℓ + e then
 return pivot // pivot is the k-th smallest
else
 return quickSelect(G, k − ℓ − e)

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 4/8

183

Guest
Rectangle

2.2.3. Complexity Analysis

Partition Step: O(n) time to build L, E, G.

Expected Subproblem Size: With probability ≥ ½, pivot is in the middle 50% of the

sorted order, so both |L| and |G| ≤ ¾ n.

Worst Case: O(n²) if pivot is always the minimum or maximum (rare with

randomization). Choosing pivot randomly or via “median-of-three” reduces worst-

case likelihood.

2.2.4. Advantages & Disadvantages

Advantages:

Expected linear time, simple to implement.

In-place version can be written that uses only O(1) additional memory (by

swapping elements around the pivot).

Disadvantages:

Worst case O(n²) if pivot choices are poor.

3. Deterministic Linear-Time Selection (Median of

Medians)

3.1. Overview

DETERMINISTIC SELECT (Median-of-Medians): Guarantees O(n) worst-case time by

choosing a “good” pivot deterministically.

Main Idea:

1. Divide S into ⌈n/5⌉ groups of 5 elements each (the last group may have fewer).

2. For each group, find its median by sorting the 5-element group in O(1) time

(constant work).

3. Gather all group medians into an array M (size ≈ n/5).

4. Recursively compute the median of M; call this pivot “median-of-medians.”

5. Partition S around this pivot into L, E, G as in Quick-Select.

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 5/8

184

Guest
Rectangle

6. Recur on the appropriate subset (L or G) depending on k.

By choosing the median-of-medians, we ensure that at least 3n/10 elements are

“good” (≥ pivot or ≤ pivot), guaranteeing that the larger recursive subproblem has

size ≤ 7n/10.

3.2. Pseudocode

Algorithm deterministicSelect(S[1..n], k)
Input: Array S[1..n] of n elements, integer k (1 ≤ k ≤ n)
Output: The k-th smallest element of S

if n ≤ 5 then
 sort S in O(1) time
 return S[k]

1. Partition S into groups of 5 and find medians
M ← empty list
for i from 1 to n step 5 do
 group ← S[i .. min(i+4, n)]
 sort group // O(1) since group size ≤ 5
 median ← group[⌊|group|/2⌋ + 1]
 append median to M

2. Find pivot by selecting median of M recursively
m ← length(M)
pivot ← deterministicSelect(M, ⌈m/2⌉)
3. Partition S around pivot
L ← empty list
E ← empty list
G ← empty list
for i from 1 to n do
 if S[i] < pivot then
 append S[i] to L
 else if S[i] > pivot then

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 6/8

185

Guest
Rectangle

 append S[i] to G
 else
 append S[i] to E

ℓ ← |L|
e ← |E|

if k ≤ ℓ then
 return deterministicSelect(L, k)
else if k ≤ ℓ + e then
 return pivot
else
 return deterministicSelect(G, k − ℓ − e)

3.3. Complexity Analysis

Grouping & Median Computation:

O(n) time to form ⌈n/5⌉ groups.

Sorting each 5-element group in O(1) time per group → O(n) total.

Recursively selecting the median of ⌈n/5⌉ medians takes T(n/5).

Partitioning Around Pivot: O(n).

Solution: This recurrence solves to T(n) = O(n).

3.4. Advantages & Disadvantages

Advantages:

Guaranteed worst-case linear time O(n), no randomization needed.

Useful in real-time systems or when deterministic guarantees are critical.

Disadvantages:

Higher constant factors compared to randomized Quick-Select.

More complicated to implement (grouping, median-finding, recursive calls).

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 7/8

186

Guest
Rectangle

4. Comparative Summary

Algorithm Expected Time Worst-Case Time Space Overhead Notes

Comparison-

Based Sorting LB

— Ω(n log n) —

Provably no

comparison sort

can beat n log n

time.

Quick-Select

(Randomized)

O(n) O(n²) O(1) or O(log n)

Simple; average-

case O(n); worst-

case rare.

Deterministic

Select

O(n) O(n) O(n)

Worst-case O(n);

larger constants;

no

randomization.

5. Final Takeaways

Sorting Lower Bound (Ω(n log n)): Any comparison-based sort must use at least

~n log₂ n comparisons in the worst case.

Selection without Sorting: The k-th smallest element can be found in expected

linear time via Quick-Select or in deterministic linear time via the median-of-medians

algorithm.

Trade-Offs:

Quick-Select has lower constants in practice but only expected O(n).

Deterministic Select guarantees O(n) worst-case but with higher overhead.

Applications: Selection algorithms are used in order statistics, finding medians,

percentile computations, and quickly partitioning data.

9/30/25, 7:16 PM 25. Sorting Lower Bounds and the Selection Problem

file:///C:/Users/Aykhan/Downloads/1/COMP202%2019d34575a83880598f89cd3be4b9b3e4/25%20Sorting%20Lower%20Bounds%20and%20the%20… 8/8

187

Guest
Rectangle

	Untitled
	Copyright — MATH203 Course Notes
	Untitled

