

© 2025 AYKHAN AHMADZADA

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means—electronic, mechanical,

photocopying, recording, or otherwise—without prior written permission

from the author.

This work is a personal academic compilation created for educational

purposes as part of the ELEC205 (Digital System Design) course at Koç

University.

Compiled in Istanbul, Turkey.

Guest
Rectangle

ELEC205

1. Introduction to Digital Devices

2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

4. Combinational Digital Systems and Boolean Algebra

5. Boolean Function Representations and Circuit Optimization

6. Karnaugh Maps and Boolean Function Optimization

7. Karnaugh Map Simplification & Prime Implicant Optimization

8. Digital Logic Optimization and Karnaugh Map Techniques

9. Exclusive OR, Adder Circuits, and Digital Addition

10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

11. Encoders, Selecting Functions and Multiplexers

12. Solutions for Midterm Sample Questions

10/1/25, 3:04 PM ELEC205

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c.html 1/2

Guest
Rectangle

13. Sequential Logic and Memory

14. Flip-Flops & Sequential Circuit Analysis

15. Finite State Machines: State Diagrams, Models, and Representations

16. FSM Design & Sequence Detection

17. State Assignment & Minimization

18. Sequential-Circuit Fundamentals & Flip-Flops

19. Registers & Bus-Based Transfer Structures

20. Registers and Register Transfer Operations

21. Counters, Shift Registers, and Serial Transfer

22. Programmable Computer and Control Unit

23. Algorithmic State Machines and ASM Design

24. Design Examples

25. Final Exam Review

10/1/25, 3:04 PM ELEC205

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c.html 2/2

Guest
Rectangle

1. Introduction to Digital Devices

Objective: This note covers the topics from ELEC 205 Week 1 (Slides 9–36), focusing on

the transition from analog to digital systems, fundamental digital devices, and an

introductory multiplexer (MUX) design example.

What is Digital? (Analog vs. Digital)

Digital systems operate on discrete (individually separate and distinct) signals—typically

0s and 1s—in contrast to the continuous range of analog signals. Understanding the

interplay between analog and digital is crucial for modern electronic design.

Analog vs. Digital Signals

Real-world signals (such as sound waves) are analog and vary continuously. Digital

systems sample these signals at discrete intervals.

(NYQUIST-SHANNON) SAMPLING THEOREM: If you sample an analog signal at a

rate at least twice its highest frequency component, you can fully reconstruct it from

these samples. This minimum sampling rate is called the Nyquist rate.

Frequency: the number of waves that pass by each second, and is measured in Hertz

(Hz).

Physical Storage of 0s and 1s

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 1/9

Guest
Rectangle

Bumps on a CD

Magnetic domains on a hard disk

Charge in flash memory transistors

Flip-flops in integrated circuits

Although hardware at the transistor level is analog, digital abstraction ensures signals are

treated as purely “HIGH” (1) or “LOW” (0).

Everyday Examples

Analog TV vs. Digital TV: Digital TV encodes images as binary data frames, while

analog TV uses continuously modulated waves.

CD Audio: Music is stored as samples at 44.1 kHz, each sample represented by bits.

Cell Phones: Convert voice to digital signals, process internally, then convert back to

analog for playback.

Digital Systems and Applications

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 2/9

Guest
Rectangle

A digital system takes binary data as input, performs logic or arithmetic on it, and

outputs new binary data. In practice, an ADC (Analog-to-Digital Converter) fronts the

system for input, and a DAC (Digital-to-Analog Converter) follows it for output.

Examples of Applications

1. Gaming Consoles: Controller inputs are converted to binary, processed by a

CPU/GPU, then sent to a display or speakers (digital or analog output).

2. Personal Computers: Keyboard and mouse signals are interpreted digitally,

processed, and output to a monitor or speaker.

3. Cell Phones: Convert audio to packets of digital data, process and store them, and

finally reproduce audio signals.

Benefits of Digital Systems

BENEFITS:

Reproducibility: Digital copying does not degrade quality.

Ease of Design: Logical operations (AND, OR, NOT) are simpler conceptually than

continuously variable signals.

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 3/9

Guest
Rectangle

Flexibility & Programmability: Can be updated/reconfigured using firmware or

hardware description languages (HDLs).

Speed: Modern transistors switch in picoseconds, enabling rapid processing.

Economy: Highly complex functionality on tiny chips.

Advancing Technology: Each new generation of semiconductor technology

brings higher performance at lower cost.

Digital Computer Architecture

A basic digital computer typically includes:

Memory: Stores both instructions and data.

Datapath: Executes arithmetic and logical operations.

Control Unit: Directs the flow of data and orchestrates operations.

CPU: Combines control and datapath, often featuring a Floating Point Unit (FPU)

for specialized arithmetic and a Memory Management Unit (MMU) for handling

caches and memory addressing.

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 4/9

Guest
Rectangle

Constructing Digital Systems

DIGITAL SYSTEM: Inputs (binary) → Processing (logic or arithmetic) → Outputs

(binary)

The high-level design flow involves specifying the required behavior, then transforming it

into logical components. Modern workflows use simulators and HDLs to validate designs

before hardware fabrication.

Digital Devices (Gates and Memory)

Basic Gates

AND, OR, and NOT form the foundational building blocks of any digital logic design.

Combinational circuits are built exclusively from these gates or their derivatives.

COMBINATIONAL CIRCUIT: A circuit whose output depends solely on its current

inputs, with no internal storage. (no memory!)

Memory Elements

FLIP-FLOP: A 1-bit storage device that latches data on a clock edge.

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 5/9

Guest
Rectangle

SEQUENTIAL CIRCUIT: Combines gates and flip-flops so that outputs depend on

current inputs and previously stored states (past inputs). (with memory!)

Sequential circuits can implement counters, shift registers, and entire finite state

machines.

Electronic and Software Aspects

All gates and flip-flops are physically analog (transistors, resistors, capacitors), but

operate within defined voltage levels to represent 0 or 1. Designers rely on:

CAD Tools & Simulators: For schematic-based or HDL-based design entry.

HDLs (VHDL, Verilog, SystemVerilog): For specifying either the behavior

(dataflow/behavioral style) or structure (gate-level) of a design.

HDL: VHDL is a hardware description language (HDL) that is used to describe the

structure and behavior of digital systems and circuits.

Digital Design Levels (MUX Example)

Multiplexer (2-Input MUX)

A multiplexer (MUX) selects one of its inputs to pass through to the output.

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 6/9

Guest
Rectangle

MULTIPLEXER: A device that outputs one of several data inputs, controlled by a select

signal.

Truth Table

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

When S = 0, Z = A. When S = 1, Z = B.

Gate-Level Diagram

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 7/9

Guest
Rectangle

HDL (VHDL) Example

library IEEE;
use IEEE.std_logic_1164.all;

entity V1mux is
 port(
 A, B, S : in STD_LOGIC;
 Z : out STD_LOGIC
);
end V1mux;

architecture V1mux_arch of V1mux is
begin
 -- Dataflow style
 Z <= A when S = '0' else B;
end V1mux_arch;

This example demonstrates how designers can describe hardware behavior at a higher

level. A gate-level variant would instantiate specific AND, OR, and NOT components

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 8/9

Guest
Rectangle

directly.

Why Digital Wins: Precision, Stability, and Efficiency

Even though the physical world operates in an analog way—like sound waves,

temperature changes, and light brightness—modern technology increasingly relies on

digital systems because they offer precision, reliability, and efficiency that analog

cannot always provide.

Analog signals are continuous and can take infinite values, but they are also vulnerable

to noise and degradation. That’s why, when you listen to an analog radio, you

sometimes hear that "dzzzzzz" noise—it’s interference corrupting the signal. Over time,

copying an analog signal (like a cassette tape) causes it to lose quality, whereas digital

signals remain unchanged no matter how many times they are copied.

However, some things still feel analog, even in digital systems. For example, when you

adjust the brightness of your iPhone’s flashlight, it seems like a smooth change, but

the LED is actually flickering on and off rapidly using Pulse Width Modulation (PWM).

This is how digital systems simulate the behavior of analog while still keeping the

benefits of binary operation.

One key feature of digital devices is that they either work perfectly or not at all. Since

digital signals are based on 1s and 0s, there’s no gradual loss of quality. A radio station

using digital transmission either delivers a clear signal or nothing at all—there’s no static

like in analog radio. The same applies to digital files, which either open perfectly or

become completely unreadable if corrupted.

In the end, digital doesn't replace analog completely—it refines and optimizes it. We

still live in an analog world, but digital technology helps us process, store, and transmit

information more efficiently, making it clearer, more reliable, and easier to manipulate.

Self Test

Self-Test: Lecture 1

10/1/25, 3:04 PM 1. Introduction to Digital Devices

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/1%20Introduction%20to%20Digital%20Devices%2… 9/9

Guest
Rectangle

2. Binary numbers, Unsigned
addition/subtraction, Two’s
complement system

Objective: This note covers the topics from ELEC 205 Week 1 (Slides 37–57), focusing on

number systems (binary, octal, hexadecimal), two’s complement, and various binary

arithmetic operations.

Number Systems

A number system defines how numeric values are represented. In digital electronics, we

commonly use binary (base 2), but other bases such as octal (base 8) and hexadecimal

(base 16) are also helpful.

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 1/15

Guest
Rectangle

Octal and Hexadecimal Numbers

Octal (base 8) digits cover 0 to 7, each corresponding to three bits in binary. Hexadecimal

(base 16) digits span 0 to 9 and A to F, each corresponding to four bits in binary.

Converting between binary and hex is straightforward by grouping bits in fours; octal

uses groupings of three bits.

OCTAL DIGIT: Uses 3 bits (e.g., = 5₈).

HEXADECIMAL DIGIT: Uses 4 bits (e.g., = A₁₆).

These systems give concise shorthand for large binary strings, useful in debugging,

memory addresses, and processor instructions.

Positional Number System Conversions

Numbers in any base are interpreted by positional notation. For digits to the left of the

radix point, powers of increase from right to left; for digits to the right, powers of are

negative.

1. Base-r to Decimal: Multiply each digit by and sum the results.

2. Decimal to Base-r: Repeatedly divide by , keep track of remainders, and reverse

them at the end.

EXAMPLE: Converting to binary:

1. remainder

2. remainder

101 ​2

1010 ​2

r

r r

rposition

r

179 ​10

179 ÷ 2 = 89 1

89 ÷ 2 = 44 1

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 2/15

Guest
Rectangle

3. remainder

4. remainder

5. remainder

6. remainder

7. remainder

8. remainder (MSB)

Reverse remainders → .

Additional Example

Convert to octal:

 remainder 4

 remainder 5

 remainder 4 (MSB)

Result: .

Addition and Subtraction of Binary Numbers

Binary addition and subtraction are analogous to decimal, except the base is 2.

BINARY ADDITION: 1 + 1 = . If both bits are , produce a sum bit of and carry

out .

BINARY SUBTRACTION: 1 − 1 = , but 0 − 1 requires borrowing from a more

significant bit.

Additional Examples

Addition: (11 in decimal) + (8 in decimal) = (19 in decimal)

44 ÷ 2 = 22 0

22 ÷ 2 = 11 0

11 ÷ 2 = 5 1

5 ÷ 2 = 2 1

2 ÷ 2 = 1 0

1 ÷ 2 = 0 1

10110011 ​2

300 ​10

300 ÷ 8 = 37

37 ÷ 8 = 4

4 ÷ 8 = 0

454 ​8

10 ​2 1 0
1

0

1011 ​2 1000 ​2 10011 ​2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 3/15

Guest
Rectangle

Subtraction: (11 in decimal) − (8 in decimal) = (3 in decimal)

Representation of Negative Numbers

Various methods can represent signed integers in binary:

SIGNED-MAGNITUDE: A sign bit plus magnitude bits.

ONE’S COMPLEMENT: Flip (invert) all bits to represent negative.

TWO’S COMPLEMENT: Invert bits and then add 1 for negative.

Two’s complement is most common because it simplifies hardware for

addition/subtraction.

Signed-Magnitude System

1011 ​2 1000 ​2 0011 ​2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 4/15

Guest
Rectangle

The most significant bit (MSB) is the sign: 0 for positive, 1 for negative. The rest of the bits

store the magnitude. Though intuitive, arithmetic operations are more complex

compared to two’s complement.

Diminished Radix Complement System

’S COMPLEMENT: For an -digit number , . In binary (

), this is one’s complement, created by flipping all bits.

The diminished radix complement system is a way of representing negative numbers

by subtracting a number from the largest possible value in a given number system.

(r − 1) n N (r −n 1) −N r =
2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 5/15

Guest
Rectangle

Complement Number Systems

Complement systems allow negative numbers to be handled using the same addition

logic as positive numbers.

RADIX COMPLEMENT: For base , the complement is . In binary,

(two’s complement).

Two’s Complement System

1. Invert (one’s complement).

2. Add 1.

r r −n N 2 −n N

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 6/15

Guest
Rectangle

TWO’S COMPLEMENT: is . This avoids having two representations for

zero and simplifies arithmetic.

Range for bits: through .

Additional Example

Convert −6 to 8-bit two’s complement:

1. .

2. Flip bits → .

3. Add 1 → (final representation of −6).

Signed Number Systems

SIGNED NUMBER SYSTEMS:

Signed-Magnitude (clear sign bit, complex arithmetic)

One’s Complement (invert bits for negative)

Two’s Complement (dominant standard, single zero, consistent

addition/subtraction)

−N 2 −n N

n −2n−1 +2 −n−1 1

+6 = 0000 0110

1111 1001

1111 1010

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 7/15

Guest
Rectangle

3-Bit Number Examples

When , two’s complement ranges from () to ().

Additional Example

n = 3 −4 100 ​2 +3 011 ​2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 8/15

Guest
Rectangle

Binary Unsigned
Signed-

Magnitude

One’s

Complement

Two’s

Complement

100 4 −0 −3 −4

101 5 −1 −2 −3

110 6 −2 −1 −2

111 7 −3 (or −0) −0 (or −0) −1

Addition in Two’s Complement

Perform regular binary addition. A negative operand is already stored in two’s

complement form.

EXAMPLE: in 4-bit two’s complement

 →

 →

Sum = (−2 in decimal)

Check for overflow when results exceed [.

Additional Example

 in 4-bit:

Sum = → (−2)

Subtraction in Two’s Complement

To subtract from , compute . Negative numbers are formed via two’s

complement.

Additional Example

 in 4-bit:

−3 + 1

−3 1101 ​2

+1 0001 ​2

11102

−2 , 2 −n−1 n−1 1]

−4 + 2

−4 = 1100 ​2

2 = 0010 ​2

1110 ​2

Y X X + (−Y)

5 − 6

5 = 0101 ​2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20addit… 9/15

Guest
Rectangle

 = (−1)

1. Unsigned System

Represents only non-negative numbers.

All bits contribute to the numerical value.

The range is from 0 to for an -bit system.

Example (4-bit system):

Binary: 0000 to 1111

Decimal equivalents: 0 to 15

There is no concept of negative numbers in an unsigned system.

2. Signed Systems (Different Complement Methods)

A. Signed Magnitude

The leftmost bit (MSB) is the sign bit.

0 = positive

1 = negative

The remaining bits represent the magnitude.

The range for an -bit system is to .

Example (4-bit system):

0111 = +7

1111 = -7

Problem: Two representations of zero (0000 and 1000), which makes arithmetic

operations complicated.

B. One’s Complement (Diminished Radix Complement)

6 = 0110 ​2

−6 = 1001 ​ +2 1 = 1010 ​2

0101 + 1010 = 1111 ​2

2 −n 1 n

n −(2 −n−1 1) +(2 −n−1 1)

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20add… 10/15

Guest
Rectangle

Negative numbers are represented by flipping all bits.

The range for an -bit system is to .

Example (4-bit system):

0111 = +7

1000 = -7

0000 = +0

1111 = -0 (Problem: Two zeros, which complicates arithmetic)

C. Two’s Complement (Radix Complement)

Negative numbers are found by flipping all bits and adding 1.

The range for an -bit system is to .

Example (4-bit system):

0111 = +7

1001 = -7

Only one zero (0000), solving the double-zero issue.

Arithmetic works smoothly, making it the standard for modern computers.

Key Differences Between Signed and Unsigned Systems

Feature Unsigned
Signed

Magnitude

One’s

Complement

Two’s

Complement

MSB Role
Part of the

magnitude

Sign bit (0 = +, 1

= -)

Sign bit (0 = +, 1

= -)

Sign bit (0 = +, 1 =

-)

Range (4-bit) 0 to 15 -7 to +7 -7 to +7 -8 to +7

Negative

Representation
Not supported Flip MSB Flip all bits

Flip all bits and

add 1

Zero

Representation
0000 (0 only)

0000 (+0), 1000

(-0)

0000 (+0), 1111

(-0)

0000 (only one

zero)

Arithmetic

Simplicity

Simple but no

negatives

Complex Complex (double

zero)

Efficient

(modern

n −(2 −n−1 1) +(2 −n−1 1)

n −2n−1 +(2 −n−1 1)

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20add… 11/15

Guest
Rectangle

standard)

Unsigned numbers are simple but cannot represent negatives.

Signed numbers use different methods, with two’s complement being the most

practical and widely used because it avoids double-zero issues and simplifies

arithmetic.

Diminished Radix Complement (One’s, Nine’s, Three’s, etc.)

Found by subtracting from the highest possible value minus 1.

Has two representations of zero.

Radix Complement (Two’s, Ten’s, Four’s, etc.)

Found by subtracting from the full radix power.

Has only one zero representation, making it more practical for arithmetic.

Complement Comparison Table

Base
Diminished Radix

Complement
Formula

Radix

Complement
Formula

Binary (2) One’s Complement
Two’s

Complement

Decimal (10) Nine’s Complement
Ten’s

Complement

Quaternary (4)
Three’s

Complement

Four’s

Complement

Binary Multiplication

Unsigned multiplication uses shift-and-add. Two’s complement multiplication extends

this approach while managing sign bits.

BINARY MULTIPLICATION: Multiply partial products, each shifted by the position of

the bit in the multiplier.

(2 −n 1) −N 2 −n N

(10 −n 1) −N 10 −n N

(4 −n 1) −N 4 −n N

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20add… 12/15

Guest
Rectangle

Additional Example

 in binary (unsigned):

Multiply partial products:

1 (LSB of 2) →

Next bit is 0 → , shifted

Sum = (6 in decimal)

Binary Division

Binary division often uses shift-and-subtract. For signed numbers, adjust for sign before

or after the division.

3 × 2

3 = 0011 ​2

2 = 0010 ​2

0011

0000

0110 ​2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20add… 13/15

Guest
Rectangle

Additional Example

 in binary:

, .

Perform repeated shifting and subtracting until the final quotient is found (

) = 7, with remainder 0.

Binary-Coded Decimal (BCD)

BCD encodes each decimal digit (0–9) into a 4-bit binary code (to). Any 4-bit

pattern above is invalid in standard BCD.

BCD: (7) is valid, (10) is not valid for a single decimal digit.

BCD Addition

If a 4-bit sum exceeds 9 (), add 6 () to adjust the digit and manage any carry.

Additional Example

14 ÷ 2

14 = 1110 ​2 2 = 0010 ​2

0111 ​2

0000 1001
1001

0111 1010

1001 ​2 0110 ​2

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20add… 14/15

Guest
Rectangle

Add 44 and 89 in BCD:

44 →

89 →

Initial sum → (not corrected)

Adjust each nibble > by adding

Final correct BCD result = 133 (1 3 3 = in BCD)

Why is BCD (Binary-Coded Decimal) Used?

BCD (Binary-Coded Decimal) is used primarily in applications where decimal

precision is important. Instead of storing numbers in pure binary, BCD represents each

decimal digit separately using a 4-bit binary equivalent. BCD is not memory-

efficient. It wastes storage compared to pure binary. BCD is easy to encode and

decode.

Self Test

Self-Test: Lecture 2

0100 0100

1000 1001

1 0011 1111

1001 0110

0001 0011 0011

10/1/25, 3:04 PM 2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/2%20Binary%20numbers,%20Unsigned%20add… 15/15

Guest
Rectangle

3. Multiplication, Division, and
Binary-Coded Decimal in Digital
Systems

This note covers the full range of arithmetic operations in digital systems, including both

multiplication and division for signed and unsigned numbers, as well as an in-depth look

at Binary-Coded Decimal (BCD).

Multiplication in Digital Systems

Multiplication in digital systems can be performed on both unsigned and signed

numbers. The underlying mechanism is typically based on the shift-and-add algorithm.

Unsigned Multiplication

For unsigned numbers, multiplication is conceptually similar to decimal multiplication

but performed in binary. The basic idea is:

Shift: For each bit in the multiplier, shift the multiplicand by the appropriate number

of positions.

Add: Sum the shifted multiplicands where the corresponding bit of the multiplier is 1.

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 1/7

Guest
Rectangle

Example: Multiply (11 in decimal) by (5 in decimal).

Multiply each bit of the multiplier by the multiplicand and shift accordingly.

Add the resulting partial products to obtain the final product.

Signed Multiplication

For signed numbers, the typical method is to use two’s complement representation. The

same shift-and-add procedure is applied, but extra care is needed to:

Sign Extend: Ensure that when shifting, the sign bit is correctly extended.

Adjust: Interpret the final result as a two’s complement number.

Two’s Complement Correction: If the multiplicand is negative, the last partial

product must be converted to its two’s complement form to maintain correctness.

1011 ​2 0101 ​2

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 2/7

Guest
Rectangle

Key Point: The algorithm for signed multiplication is similar to unsigned multiplication,

but the hardware or software must handle sign bits appropriately, ensuring that negative

partial products are correctly processed using two’s complement conversion when

necessary.

2. Division in Digital Systems

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 3/7

Guest
Rectangle

Division is the inverse of multiplication and, like multiplication, is performed differently

for unsigned and signed numbers.

Unsigned Division

Unsigned division is generally carried out by a shift-and-subtract method:

Shift: Align the divisor with the dividend's most significant bit.

Subtract: Subtract the divisor (or its shifted version) from the dividend if it fits;

record a 1 in the quotient.

Repeat: Continue the process by shifting and subtracting until all bits are processed.

Example: Dividing a binary number by another using repeated subtraction and shifts.

Signed Division

For signed division using two’s complement representation, the algorithm typically

involves:

Determining the Sign: The sign of the result is the product of the signs of the

dividend and divisor.

Converting to Unsigned: Temporarily convert both numbers to their absolute

(unsigned) values.

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 4/7

Guest
Rectangle

Performing Division: Use the unsigned division algorithm.

Restoring the Sign: Apply the appropriate sign to the quotient.

Considerations: Care must be taken to handle cases like division by zero and the edge

case where the dividend is the minimum representable value.

3. Binary-Coded Decimal (BCD)

Binary-Coded Decimal (BCD) is a method of representing decimal numbers in which each

digit is stored as its own 4-bit binary number. This is especially useful in applications

where decimal precision is critical (e.g., financial calculations).

Representation

Standard BCD: Each decimal digit (0 through 9) is represented by a 4-bit binary

code.

For example, the decimal number 93 is represented as:

Operations in BCD

Arithmetic operations in BCD (addition, subtraction) are performed digit by digit.

However, if the result of a digit addition exceeds 9 (1001 in binary), a correction must be

applied:

Correction Rule: If the sum of a digit exceeds 9, add 6 (in binary) to that digit

and propagate the carry to the next higher digit.

Example of BCD Addition:

Add 44 and 89 in BCD:

Represent 44 as:

Represent 89 as:

Add corresponding digits:

Right nibble: . Since (13) is greater than 9, add

to get (carry , result digit).

9 → 1001, 3 → 0011, so 93 is 1001 0011 in BCD.

0110

0100 0100

1000 1001

0100 + 1001 = 1101 1101 0110
1101 + 0110 = 1 0011 1 0011

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 5/7

Guest
Rectangle

Left nibble: .

Again, (13) is greater than 9, so add to get

(carry , result digit).

The final BCD result must be adjusted to reflect the carried digits appropriately. (The

exact BCD representation would depend on the method used, ensuring the final

answer has the correct number of significant digits based on the lowest precision

input.)

Importance of BCD

BCD is crucial in systems where decimal accuracy matters because it avoids rounding

errors that can occur when converting between binary and decimal. Although it is less

space-efficient than pure binary, its simplicity in representing decimal digits makes it

valuable in financial and commercial applications.

Summary

This note has covered:

Multiplication: Both unsigned and signed (using two’s complement), focusing on

the shift-and-add method and the handling of sign bits.

Division: Both unsigned (via shift-and-subtract) and signed division (including

conversion to absolute values and sign correction).

Binary-Coded Decimal (BCD): Representation of decimal digits in 4-bit groups, the

rules for BCD arithmetic, and the importance of maintaining decimal precision.

0100 + 1000 + carry 1 = 0100 + 1000 + 0001 = 1101
1101 0110 1101 + 0110 = 1 0011
1 0011

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 6/7

Guest
Rectangle

Understanding these operations is essential for designing efficient digital systems,

especially in contexts where arithmetic accuracy and data representation are critical.

Self Test

Self-Test: Lecture 3

10/1/25, 3:04 PM 3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/3%20Multiplication,%20Division,%20and%20Binar… 7/7

Guest
Rectangle

4. Combinational Digital Systems
and Boolean Algebra

This note covers topics from combinational digital systems to Boolean algebra, as

presented in the lecture slides (23 to 57). It includes detailed explanations of digital logic

circuits, basic gate functions, multi-input systems, and key Boolean algebra theorems

and properties.

Combinational Digital Systems

Combinational digital systems are circuits where the output depends solely on the

current inputs, with no memory elements. They contrast with sequential systems, where

past inputs affect the current output.

COMBINATIONAL DIGITAL SYSTEM: A system in which the output is determined

only by the current combination of inputs.

Key Points:

No storage or memory; all operations are instantaneous.

Used for arithmetic operations, data routing, and signal processing.

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 1/14

Guest
Rectangle

Fundamental building blocks for more complex circuits like adders, multiplexers, and

decoders.

Logic Gates

AND Gate

Function: Outputs 1 only if both inputs are 1.

Algebraic Expression: f = x ⋅ y

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 2/14

Guest
Rectangle

Truth Table:

x y

0 0 0

0 1 0

1 0 0

1 1 1

AND GATE: A basic digital logic gate that produces an output of 1 if and only if all its

inputs are 1.

OR Gate

Function: Outputs 1 if at least one input is 1.

Algebraic Expression:

Truth Table:

x y

0 0 0

0 1 1

1 0 1

1 1 1

OR GATE: A logic gate that outputs 1 if one or more of its inputs are 1.

x ⋅ y

f = x + y

x + y

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 3/14

Guest
Rectangle

NOR Gate

Function: Outputs 1 only if all inputs are 0 (i.e., the complement of OR).

Algebraic Expression:

Truth Table:

x y

0 0 1

0 1 0

1 0 0

1 1 0

NOR GATE: A logic gate whose output is the complement of the OR gate's output.

NAND Gate

Function: Outputs 0 only if all inputs are 1 (i.e., the complement of AND).

Algebraic Expression:

f = (x + y)’

f

f = (x ⋅ y)’

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 4/14

Guest
Rectangle

Truth Table:

x y

0 0 1

0 1 1

1 0 1

1 1 0

NAND GATE: A gate that outputs the inverse of the AND gate’s result.

XOR Gate

Function: Outputs 1 if the inputs are different.

Algebraic Expression:

Truth Table:

x y

0 0 0

0 1 1

1 0 1

1 1 0

XOR GATE: An exclusive OR gate that outputs 1 when the number of 1's in the inputs is

odd.

f

f = x ⊕ y = (x ⋅ ​) +y (⋅x y)

f

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 5/14

Guest
Rectangle

XNOR Gate

Function: Outputs 1 if the inputs are the same.

Algebraic Expression:

Truth Table:

x y

0 0 1

0 1 0

1 0 0

1 1 1

XNOR GATE: A gate that produces an output of 1 when both inputs are equal; it is the

complement of the XOR gate.

Combinational Digital Systems

f = (x ⊕ y)’

f

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 6/14

Guest
Rectangle

These systems are built using logic gates. They produce an output solely based on the

current inputs.

Simple Two-Input Systems: Basic circuits that perform operations like AND, OR,

and XOR.

Multi-Input Systems: Systems with more than two inputs can be built by combining

two-input gates.

Design Strategies:

Sum of Products (SoP): Expresses the function as an OR of minterms.

Product of Sums (PoS): Expresses the function as an AND of maxterms.

COMBINATIONAL DIGITAL SYSTEM: A circuit where the output is a function solely

of the current input values, with no memory element.

Three-Input Systems

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 7/14

Guest
Rectangle

When designing systems with three or more inputs, the complexity increases, but the

principles remain the same.

Example: A three-input AND gate outputs 1 only when all three inputs are 1.

Design Consideration: Ensure that the circuit is scalable by breaking down the logic

into simpler two-input operations if necessary.

THREE-INPUT SYSTEM: A digital logic circuit that accepts three binary inputs and

produces an output based on a specified Boolean function.

General Approach for Building Combinational Digital
Systems

The design of combinational circuits generally follows these steps:

Define the Boolean function using truth tables.

Express the function in standard forms, such as SoP or PoS.

Use Boolean algebra to simplify the expression.

Implement the simplified expression using basic logic gates.

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 8/14

Guest
Rectangle

DESIGN APPROACH: Use Boolean algebra and standard forms (SoP or PoS) to design

efficient combinational circuits from basic gates.

Boolean Algebra

Boolean algebra is the mathematical foundation of digital logic. It uses a set of variables

that take on values from and is governed by specific operations and laws.

Basic Operations

AND ()

OR ()

NOT (')

BOOLEAN ALGEBRA: A branch of algebra dealing with binary variables and logical

operations.

Boolean Algebra Theorems

Identities and Null Elements

{0, 1}

⋅

+

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%20… 9/14

Guest
Rectangle

Identity Laws:

 and x

Null Laws:

 and

IDENTITY AND NULL LAWS: Fundamental rules that simplify expressions by defining

the effect of adding 0 or multiplying by 1, and their opposites.

Idempotency and Complements

Idempotent Laws:

 and

Complement Laws:

 and

IDEMPOTENCY: The property that combining a variable with itself does not change

its value.

COMPLEMENT: A variable’s complement is the opposite value (if , then ;

if , then).

Involution and Commutativity

Involution:

Commutativity:

 and

Associativity:

 and

INVOLUTION: The principle that taking the complement twice returns the original

value.

x + 0 = x ⋅1 = x

x + 1 = 1 x ⋅ 0 = 0

x + x = x x ⋅ x = x

x + x =′ 1 x ⋅ x =′ 0

x = 0 x =′ 1
x = 1 x =′ 0

(x) =′ ′ x

x + y = y + x x ⋅ y = y ⋅ x

x + (y + z) = (x + y) + z x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%2… 10/14

Guest
Rectangle

More Theorems and Distributive Properties

Distributive Laws:

Absorption Laws:

DISTRIBUTIVE AND ABSORPTION LAWS: Rules that allow the reorganization and

simplification of Boolean expressions.

DeMorgan’s Equivalences and Duality

DeMorgan’s Equivalences

(

x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z)
x + (y ⋅ z) = (x + y) ⋅ (x + z)

x + (x ⋅ y) = x

x ⋅ (x + y) = x

x ⋅ y) =′ x +′ y’

(x + y) =′ x ⋅′ y’

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%2… 11/14

Guest
Rectangle

DE-MORGAN’S LAWS: Fundamental transformations that allow the complement of a

conjunction to be expressed as the disjunction of the complements, and vice versa.

Duality Principle

The duality principle states that every Boolean expression remains valid if you swap AND

with OR and 0 with 1 throughout the expression.

DUALITY: The principle that the dual of any Boolean expression (by interchanging +

and , and swapping 0 and 1) is also valid.

Extension to N-Variable Theorems

Boolean algebra extends naturally to functions of variables:

Theorems such as:

These generalize the two-variable cases to functions with many inputs.

⋅

n

(x ​ +1 x ​ +2 ⋯ + x ​) =n
′ x ​ ⋅1

′ x ​ ⋯x ​ 2
′

n
′

(x ​ ⋅1 x ​ ⋯x ​) =2 n
′ x ​ +1

′ x ​ +2
′ ⋯ + x ​ n

′

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%2… 12/14

Guest
Rectangle

NOTE: N-variable theorems are critical when designing complex digital circuits that

involve multiple inputs.

Back to Our Earlier Example

In earlier slides, a Boolean function was presented and simplified using the Sum of

Products (SoP) approach. Although we are excluding the detailed minterm/maxterm

representations beyond slide 57, it is important to understand that:

SoP (Sum of Products) expresses a Boolean function as an OR of multiple AND

terms.

This method is widely used to implement digital circuits.

The simplified expressions allow for efficient hardware implementations using basic

gates.

SUMMARY: Using Boolean algebra, any Boolean function can be systematically

simplified and implemented using a combination of logic gates, ensuring efficient

digital circuit design.

Summary

This study material has covered:

Combinational Digital Systems: The basis of digital circuits with outputs

depending solely on current inputs.

Logic Gates: Detailed discussion of AND, OR, NOR, NAND, XOR, and XNOR gates,

including their functions and truth tables.

Multi-Input Systems: How combinational systems extend to three or more inputs.

Design Approaches: Using Boolean algebra to express functions in standard forms

such as Sum of Products (SoP) and Product of Sums (PoS).

Boolean Algebra: Fundamental theorems, identities, and properties (including

idempotency, complements, DeMorgan’s Laws, duality, and distributivity).

Extension to N-Variable Functions: Generalizing Boolean expressions for more

complex systems.

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%2… 13/14

Guest
Rectangle

Understanding these topics is crucial for designing and optimizing digital systems, as

well as for simplifying and implementing logical functions in hardware.

Self Test

Self-Test: Lecture 4

10/1/25, 3:04 PM 4. Combinational Digital Systems and Boolean Algebra

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/4%20Combinational%20Digital%20Systems%2… 14/14

Guest
Rectangle

5. Boolean Function
Representations and Circuit
Optimization

Objective & Scope

This note covers key topics from slides 14 to 49, focusing on methods to represent and

optimize Boolean functions and digital circuits. Topics include:

Sum of Products (SOP) and Product of Sums (POS) approaches

Comparison between SOP and POS representations

Standard forms using minterms and maxterms

Alternative representations and algebraic simplifications

Circuit optimization criteria such as literal cost and gate input cost

This note is designed to provide a clear, comprehensive understanding of these

fundamental digital design concepts.

Sum of Products (SOP) Approach

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 1/8

Guest
Rectangle

SOP Approach: A method of representing Boolean functions where the function is

expressed as a sum (OR) of product (AND) terms, each called a minterm.

Minterms:

MINTERM: A product term in which all variables appear exactly once (either

complemented or uncomplemented). For a two-variable function, the minterms

are:

Example (Two-Input System):

Consider a function defined by the truth table:

x y f

0 0 1

0 1 1

1 0 0

1 1 1

This function can be represented as:

where each is a minterm corresponding to the input combination.

X Y , X Y , XY , XY′ ′ ′ ′

f

f = m ​ +0 m ​ +1 m ​ 3

m ​i

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 2/8

Guest
Rectangle

Product of Sums (POS) Approach

POS Approach: An alternative representation where the Boolean function is

expressed as a product (AND) of sum (OR) terms. Each sum term is called a maxterm.

Maxterms:

MAXTERM: A sum term that contains every variable exactly once (in

complemented or uncomplemented form). For a two-variable function, the

maxterms are:

Example (Two-Input System):

For a function defined by:

x y f

0 0 0

0 1 1

1 0 1

1 1 0

X + Y , X + Y , X +′ ′ Y , X +′ Y ′

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 3/8

Guest
Rectangle

The POS representation may be obtained by first determining the maxterms for the

outputs that are 0 and then forming the product.

SOP vs. POS Representations

Comparison:

SOP (Sum of Products): Uses minterms; generally leads to an OR of AND terms.

POS (Product of Sums): Uses maxterms; results in an AND of OR terms.

Key Observation: For any Boolean function, the SOP and POS representations are

duals of each other. The duality can be obtained by swapping ANDs with ORs, 0’s with

1’s, and variables with their complements.

Example (XOR Function):

The XOR function can be expressed in SOP form as:

Its equivalent POS form can be derived as:

f = x y +′ xy′

f = (x+ y) ⋅ (x +′ y)′

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 4/8

Guest
Rectangle

This dual representation is useful when designing circuits using only NAND or NOR

gates.

Standard Forms: Minterms and Maxterms

Minterms:

There are minterms for an n-variable function.

Every Boolean function can be expressed as the sum of its minterms.

Missing minterms correspond to the complement function.

Maxterms:

There are maxterms for an n-variable function.

Every Boolean function can also be represented as the product of its maxterms.

A function that includes all maxterms equals 0.

Standard Form Representations: A canonical SOP expression is written as

, while a canonical POS expression is written as .

2n

2n

f =
Σm(i) f = ΠM(i)

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 5/8

Guest
Rectangle

Example (Three-Variable Function):

For a function , one might have:

and its complement can be expressed using maxterms.

Alternative Representations and Algebraic Simplification

Algebraic Simplification:

Boolean algebra theorems (e.g., absorption, DeMorgan’s laws) are used to reduce

expressions, which directly leads to simplified circuits.

Absorption Law Examples:

DeMorgan’s Equivalences:

Applying the Bubble Trick:

A technique to derive the POS form from a given SOP form by complementing and

then re-complementing the function.

Canonical to Simplified Form:

Starting with a canonical sum (or product) and then applying algebraic methods to

minimize the literal count, which directly impacts circuit cost.

Circuit Optimization: Literal and Gate Input Cost

Optimization Goals:

Minimize the hardware cost (number of gates and inputs) while ensuring correct

logical functionality.

Literal Cost (L):

F (x, y, z)

F = x y z +′ ′ ′ x yz +′ ′ xy z +′ xyz

X +XY = X and X(X + Y) = X

(X ⋅ Y) =′ X +′ Y and (X +′ Y) =′ X ⋅′ Y ′

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 6/8

Guest
Rectangle

LITERAL COST: The total number of literal appearances (variables and their

complements) in a Boolean expression.

Gate Input Cost (G):

GATE INPUT COST: The total number of inputs to the gates used in the circuit

implementation. Sometimes, the cost with NOT gates is also considered (GN).

Example:

For a circuit implementing

the literal cost might be 8 if each variable appearance is counted. Gate input cost is

calculated by summing the inputs for each gate used.

Choosing the Best Implementation:

A lower literal and gate input cost often means a simpler, more efficient circuit.

Designers may choose between alternative representations (SOP vs. POS) based on

these cost criteria.

F = BD +AB C +′ AC D ′ ′

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 7/8

Guest
Rectangle

Final Summary & Key Takeaways

Representation Methods:

SOP uses minterms and provides an OR of AND terms.

POS uses maxterms and provides an AND of OR terms.

Duality and Equivalence:

Understanding the duality between SOP and POS forms helps in converting and

optimizing Boolean expressions.

Standard Forms:

Canonical forms using minterms and maxterms provide a systematic way to

represent any Boolean function, serving as a starting point for simplification.

Circuit Optimization:

Techniques such as algebraic simplification, the bubble trick, and cost analysis (literal

and gate input cost) are crucial for designing efficient digital circuits.

This comprehensive note consolidates the key points from slides 14 to 49, equipping you

with the foundational knowledge to represent and optimize Boolean functions for digital

circuit design.

10/1/25, 3:04 PM 5. Boolean Function Representations and Circuit Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/5%20Boolean%20Function%20Representations%… 8/8

Guest
Rectangle

6. Karnaugh Maps and Boolean
Function Optimization

Objective & Scope

This note covers the use of Karnaugh Maps (K-maps) and related techniques for

optimizing Boolean functions and digital circuits. It focuses on:

Understanding the basic structure and purpose of K-maps

Using two-variable and three-variable K-maps for function representation

Alternative map labeling for improved pattern recognition

Combining squares (grouping) to simplify Boolean expressions

Practical examples of K-map simplification and circuit optimization

This comprehensive note is intended to provide both the theoretical foundations and

practical applications needed for effective digital circuit design.

Karnaugh Maps (K-maps)

Karnaugh Map (K-map): A graphical tool that reorganizes a Boolean function’s truth

table into a grid format where adjacent cells differ by only one variable. This structure

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 1/8

Guest
Rectangle

enables visual grouping (combining) of 1's to simplify Boolean expressions.

Structure:

Composed of squares, each representing a minterm.

Cells are arranged so that adjacent ones (horizontally or vertically) differ by a

single bit (Gray code ordering).

Can be viewed as a reorganized truth table or a warped Venn diagram.

Uses of Karnaugh Maps

Key Uses:

Simplification: Derive optimum or near-optimum SOP (Sum of Products) or POS

(Product of Sums) expressions.

Optimization: Minimize the literal cost and gate input cost in circuit

implementations.

Visualization: Make the relationships between minterms clear, thereby aiding in

the identification of simplification opportunities.

Design: Serve as an instructive tool for manually optimizing small digital circuits

before applying computer-aided techniques.

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 2/8

Guest
Rectangle

Two-Variable K-Maps

Basic Layout:

A 2-variable K-map has 4 cells corresponding to the minterms for variables x and

:

Adjacency:

Cells adjacent either horizontally or vertically differ by only one variable.

This property allows adjacent cells containing 1’s to be grouped for

simplification.

K-Maps and Truth Tables

Relationship:

A K-map is simply a reordering of a truth table to expose adjacent minterm

groupings.

y

m ​ :0 x y’′

m ​ :1 x y′

m ​ :2 xy’

m ​ :3 xy

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 3/8

Guest
Rectangle

This organization helps in directly translating truth table information into

simplified Boolean expressions.

Representation:

Values from a truth table are entered into the K-map, marking 1’s for minterms

where the function is true.

These marked cells are then grouped to form simplified product terms.

Three-Variable K-Maps

Layout:

A 3-variable K-map contains 8 cells.

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 4/8

Guest
Rectangle

The arrangement is designed so that each cell is adjacent to those that differ by

a single variable change.

Commonly, variables are ordered such that one dimension (e.g., rows) represents

one variable while columns represent the other two in Gray code order.

Adjacency in 3-Variable Maps:

Allows grouping of cells into rectangles containing 2, 4, or 8 cells (powers of 2)

for minimization.

The map can be visualized as a cylinder or a torus where the edges wrap around,

preserving adjacency.

Alternative Map Labeling

Alternative Labeling: Adjusting the labels or ordering of variables in a K-map can

make certain groups more apparent. This includes:

Changing the sequence of variable representation.

Using different orientations to emphasize adjacent groupings.

Purpose:

Facilitates easier identification of common patterns.

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 5/8

Guest
Rectangle

Enhances clarity in reading product terms from the map.

Combining Squares (Grouping)

Concept:

Grouping: The process of combining adjacent 1’s (marked cells) in the K-map to

form larger rectangles.

Goal: Reduce the number of literals (variables) in each product term.

Grouping Guidelines:

Single Cell: Represents a minterm with all variables.

Pair of Adjacent Cells: Can eliminate one variable.

Four Adjacent Cells: Can reduce a term to a single variable or even represent a

constant.

Edge Wrapping: Cells on the edges of the K-map are considered adjacent if

they wrap around.

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 6/8

Guest
Rectangle

Final Summary & Key Takeaways

Karnaugh Maps (K-maps) are powerful tools for Boolean function optimization,

particularly effective for functions with a small number of variables.

Two-variable and three-variable maps provide a structured method for visualizing

and simplifying Boolean expressions.

Grouping (combining squares) reduces the number of literals in product terms,

thereby minimizing circuit complexity.

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 7/8

Guest
Rectangle

Alternative labeling and visualization techniques help in recognizing patterns and

adjacencies that may not be immediately obvious.

Practical Applications:

K-maps are used to derive simplified SOP and POS forms, which lead to lower literal

and gate input costs in digital circuit implementations.

This note consolidates the key concepts from slides 51 to 67, equipping you with a clear

understanding of how to apply K-map techniques for Boolean function optimization in

digital system design.

10/1/25, 3:04 PM 6. Karnaugh Maps and Boolean Function Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/6%20Karnaugh%20Maps%20and%20Boolean%2… 8/8

Guest
Rectangle

7. Karnaugh Map Simplification &
Prime Implicant Optimization

Objective & Scope

This note focuses on methods for simplifying Boolean functions using Karnaugh maps (K-

maps) and optimizing their representations through prime implicants. We cover

techniques for three-variable and four-variable K-maps, learn how to identify minterms

and maxterms, practice prime implicant extraction, and explore an optimization

algorithm to select a cost-effective solution. This material corresponds to slides 15 to 23.

Three-Variable Map Simplification

Overview:

The goal is to use a 3-variable K-map to simplify a Boolean function by grouping

adjacent 1’s.

Key Concepts:

Grouping adjacent cells in powers of 2 (1, 2, 4, …) minimizes the number of literals

in the product terms.

Simplified terms (prime implicants) are derived from these groups.

10/1/25, 3:04 PM 7. Karnaugh Map Simplification & Prime Implicant Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/7%20Karnaugh%20Map%20Simplification%20&%… 1/6

Guest
Rectangle

Simplification Principle: Group adjacent 1’s in the K-map to form the largest possible

rectangles; each rectangle corresponds to a product term with fewer variables.

Three-Variable Map Minterms/Maxterms

Minterms and Maxterms:

Minterm: A product term where every variable appears exactly once (in true or

complemented form).

Maxterm: A sum term that includes every variable exactly once.

Usage in K-maps:

Minterms are used in the Sum of Products (SOP) representation; maxterms are used

in the Product of Sums (POS) representation.

Example:

A function may be written as a sum of specific minterms extracted from the K-map,

or as a product of its maxterms.

Key Idea: Expressing a function in canonical form provides a starting point for

minimization via grouping.

Four-Variable Maps

Introduction to Four-Variable K-Maps:

Four-variable K-maps extend the principles of 3-variable maps with 16 cells.

Layout and Adjacency:

Cells are arranged so that every adjacent pair differs by only one variable.

Enables grouping of 1’s into larger rectangles (groups of 2, 4, 8, or 16).

Note: Understanding four-variable maps is essential for functions of higher complexity,

as the same grouping principles apply.

10/1/25, 3:04 PM 7. Karnaugh Map Simplification & Prime Implicant Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/7%20Karnaugh%20Map%20Simplification%20&%… 2/6

Guest
Rectangle

Four Variable Terms

Definition:

A “term” in a Boolean expression derived from a four-variable K-map.

Grouping Effects:

A single cell represents a minterm with 4 literals.

A pair (2 cells) reduces one variable (3 literals remain).

A group of four cells results in a term with 2 literals.

Larger groups (e.g., eight cells) can reduce the term to a single literal.

Optimization Impact:

Grouping reduces the literal count, lowering both the complexity and the hardware

cost of the resulting circuit.

Optimization Tip: Always look for the largest possible grouping to minimize the

expression.

Karnaugh-map Usage

Procedure for Using K-Maps:

Plot the function’s output (1’s for true minterms) into the K-map.

10/1/25, 3:04 PM 7. Karnaugh Map Simplification & Prime Implicant Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/7%20Karnaugh%20Map%20Simplification%20&%… 3/6

Guest
Rectangle

Circle or highlight the largest rectangular groups of 1’s (the groups must contain

2^n cells).

Translate each group into its corresponding product term.

Benefits:

Reduces the number of terms and literals.

Provides a visual method for function minimization.

Usage Guidelines: The groups (or prime implicants) must cover all 1’s in the map, and

overlapping groups can sometimes yield a more optimal solution.

Example of Prime Implicants

Prime Implicant:

A group (rectangle) on the K-map that cannot be combined with adjacent groups to

form a larger group.

Identification:

Mark all groups of 1’s.

Identify which groups cover 1’s that no other group covers (these are essential

prime implicants).

Example Process:

For a given function on a 3-variable or 4-variable map, list all potential groups and

then narrow them down to prime implicants based on their coverage and size.

Remember: Prime implicants are the building blocks of a minimized Boolean

expression.

10/1/25, 3:04 PM 7. Karnaugh Map Simplification & Prime Implicant Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/7%20Karnaugh%20Map%20Simplification%20&%… 4/6

Guest
Rectangle

Optimization Algorithm

Optimization Process:

1. Find all prime implicants: List every possible grouping on the K-map.

2. Identify essential prime implicants: Determine which groups cover minterms

uniquely.

3. Select a minimum cost set: From the remaining non-essential prime implicants,

choose the ones that cover all minterms with the lowest overall cost (considering

literal and gate input costs).

Selection Rule:

Minimize overlap among selected prime implicants.

Ensure each chosen prime implicant includes at least one minterm not covered

by another.

Goal:

Obtain a simplified Boolean expression that minimizes hardware implementation

cost.

10/1/25, 3:04 PM 7. Karnaugh Map Simplification & Prime Implicant Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/7%20Karnaugh%20Map%20Simplification%20&%… 5/6

Guest
Rectangle

Optimization Insight: The algorithm ensures that the final solution is not only

logically correct but also cost-effective in practical circuit design.

Final Summary & Key Takeaways

Karnaugh Maps are a powerful graphical tool for Boolean function simplification.

Grouping in K-maps reduces the number of literals in an expression, which directly

lowers the complexity and cost of digital circuits.

Prime Implicants represent the core simplified groups that cannot be further

combined.

Optimization Algorithms help select the best combination of prime implicants,

balancing coverage and cost.

This note consolidates the key points from slides 15 to 23, offering a clear pathway from

K-map simplification to prime implicant optimization for effective Boolean function

reduction.

10/1/25, 3:04 PM 7. Karnaugh Map Simplification & Prime Implicant Optimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/7%20Karnaugh%20Map%20Simplification%20&%… 6/6

Guest
Rectangle

8. Digital Logic Optimization and
Karnaugh Map Techniques

Introduction

Digital systems often require optimized logic circuits to reduce complexity, lower

manufacturing costs, and improve performance. Simplification techniques such as

Karnaugh maps (K-maps) help transform complex Boolean functions into simpler, more

cost-effective forms. By applying systematic methods for grouping minterms and

leveraging selection rules, designers can minimize the number of required logic gates

and inputs.

Selection Rules and Prime Implicants

The foundation of K-map optimization lies in identifying prime implicants—groups of

adjacent 1s (minterms) that can be combined to form simplified product terms. A key

strategy involves:

Choosing prime implicants that minimize overlap: Each selected implicant should

cover at least one minterm not shared with any other implicant.

Ensuring minimal literal cost: The goal is to reduce the number of literals (variables

or their complements) in each product term, thus lowering the overall gate input

10/1/25, 3:04 PM 8. Digital Logic Optimization and Karnaugh Map Techniques

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/8%20Digital%20Logic%20Optimization%20and%2… 1/5

Guest
Rectangle

cost.

This selection rule is critical for deriving a final expression that is both optimal and

implementable with fewer gates.

Simplifying Four-Variable Functions

For functions defined over four variables, the Karnaugh map provides a clear visual tool

to group minterms:

Grouping Adjacent Minterms: By forming groups (or rectangles) that contain 2, 4,

or 8 cells, the number of literals in each resulting product term is reduced.

Extracting Simplified Expressions: Depending on how the groups are formed, you

can derive either a Sum-of-Products (SOP) or a Product-of-Sums (PoS) expression.

The process involves visually identifying the largest possible groups that cover all 1s in

the map while avoiding unnecessary overlap.

Converting to Product-of-Sums (PoS)

When a design requires a Product-of-Sums form—often for specific gate

implementations like NOR-only circuits—the following steps are used:

Derive the Complement: First, express the complement of the function in SOP

form.

Apply De Morgan’s Law: Complement the expression to convert it into PoS form.

This approach yields a PoS expression that can simplify the circuit design by reducing the

number of required gate inputs.

Techniques for Functions with More Variables

As functions grow to five or more variables, Karnaugh maps become more complex. To

manage this:

Partition the Map: Divide the map into sections based on the value of one or more

variables. For example, a five-variable function may be split into two four-variable

maps corresponding to a variable being 0 or 1.

10/1/25, 3:04 PM 8. Digital Logic Optimization and Karnaugh Map Techniques

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/8%20Digital%20Logic%20Optimization%20and%2… 2/5

Guest
Rectangle

Apply Standard Grouping: Within each partition, the usual grouping techniques are

used to combine adjacent minterms.

This segmentation enables the application of familiar two-level optimization techniques

even for higher-variable functions.

Incorporating Don’t Care Conditions

In many practical designs, certain input combinations never occur or their outputs are

irrelevant. These are marked as don’t care conditions:

Flexible Grouping: Don’t cares can be treated as either 0 or 1 in the K-map, allowing

for larger groups that reduce the overall literal count.

Cost Reduction: By including don’t care cells in groups, the final logic expression

often has fewer terms and lower gate input cost.

For example, in a BCD (Binary-Coded Decimal) circuit, only the codes 0000 to 1001 are

valid. The remaining combinations (1010 to 1111) are don’t cares, which can be used to

simplify the circuit.

Optimized Selection with Don’t Cares

Integrating don’t care conditions into the selection process further enhances

optimization:

Larger Prime Implicants: By including don’t care cells, groups can be expanded,

which simplifies the final expression.

Minimized Overlap: The selection rule is applied with the additional flexibility of

choosing groups that cover both required minterms and don’t care conditions.

This method leads to a design with even lower gate input costs and reduced overall

complexity.

Practical Application: 4-Bit Prime Number Detector

One practical application of these optimization techniques is the design of a 4-bit prime

number detector:

Function Definition: The detector identifies prime numbers by outputting a high

signal when the 4-bit input corresponds to a prime number.

10/1/25, 3:04 PM 8. Digital Logic Optimization and Karnaugh Map Techniques

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/8%20Digital%20Logic%20Optimization%20and%2… 3/5

Guest
Rectangle

Mapping Minterms: The function is defined by minterms corresponding to prime

numbers (e.g., 2, 3, 5, 7, 11, 13). Using a K-map, these minterms are grouped and

simplified.

Resulting Expression: The final simplified expression requires fewer gates, making

the detector both efficient and cost-effective.

Practical Application: 4-Bit BCD Prime Number Detector

Adapting a prime number detector for BCD inputs requires additional considerations:

Valid Input Range: BCD inputs range from 0000 to 1001, so the K-map is constructed

only for these values.

Handling Don’t Cares: Inputs outside the valid range (typically 1010 to 1111) are

marked as don’t cares. These conditions are used to simplify the grouping on the K-

map.

Optimized Design: The resulting logic function is simpler, ensuring the detector

works accurately within the decimal range while using minimal hardware resources.

Advanced Optimization Algorithms

The process of Boolean function optimization can be summarized by the following steps:

Identify All Prime Implicants: List every possible grouping of adjacent 1s in the K-

map.

Determine Essential Prime Implicants: Select those groups that cover minterms

which no other group covers.

Select a Minimal Cover: Choose a combination of prime implicants that covers all

required minterms with minimal overlap.

Calculate Gate Input Cost: Evaluate the final expression in terms of the number of

gate inputs required, aiming to minimize this cost.

These steps ensure that the final implementation is both optimal and efficient, balancing

simplicity with functionality.

Conclusion

10/1/25, 3:04 PM 8. Digital Logic Optimization and Karnaugh Map Techniques

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/8%20Digital%20Logic%20Optimization%20and%2… 4/5

Guest
Rectangle

Karnaugh map techniques are vital for simplifying Boolean functions in digital circuit

design. By carefully applying selection rules, managing don’t care conditions, and

optimizing groupings in both SOP and PoS forms, designers can create circuits that are

not only functionally correct but also cost-effective and efficient. These methods

underpin many modern digital systems, contributing to better performance and reduced

resource usage in practical applications.

10/1/25, 3:04 PM 8. Digital Logic Optimization and Karnaugh Map Techniques

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/8%20Digital%20Logic%20Optimization%20and%2… 5/5

Guest
Rectangle

9. Exclusive OR, Adder Circuits,
and Digital Addition

Exclusive OR (XOR) Fundamentals

XOR: The Exclusive OR (XOR) operation outputs true only when the inputs differ. Its

Boolean expression is given by:

Truth Table:

X Y

0 0 0

0 1 1

1 0 1

1 1 0

Remark: Some useful identities of XOR include:

F = X ⋅ Y +′ X ⋅′ Y

X ⊕ Y

X ⊕ 0 = X

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 1/7

Guest
Rectangle

Associativity:

Applications of XOR in Digital Logic

Binary Addition and the Half Adder

HALF ADDER: A half adder is a digital circuit that adds two one-bit binary numbers. It

uses an XOR gate to compute the sum and an AND gate to generate the carry.

Equations:

Sum:

Carry:

X ⊕ X = 0

X ⊕ Y = Y ⊕ X

X ⊕ 1 = X’

(X ⊕ Y) ⊕ Z = X ⊕ (Y ⊕ Z) = X ⊕ Y ⊕ Z

S = A ⊕ B

C = A ⋅ B

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 2/7

Guest
Rectangle

Truth Table for Half Adder:

A B

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Extending XOR to Multi-Input Functions

MULTI-INPUT XOR: A multi-input XOR gate computes the parity (odd or even) of its

inputs. For example, a 3-input XOR function is defined as:

and can be implemented as .

Properties:

The output is 1 if an odd number of inputs are 1 (odd function).

S = A ⊕ B C = A ⋅ B

F = X ⊕ Y ⊕ Z

(X ⊕ Y) ⊕ Z

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 3/7

Guest
Rectangle

For a 4-input XOR, the output is 1 if the number of ones is odd.

The Exclusive-NOR (XNOR) function is the complement of XOR and outputs true

when the number of ones is even.

Remark: Multi-input XOR functions are widely used for parity checking and error

detection, although they may incur longer delay lines in large-scale implementations.

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 4/7

Guest
Rectangle

Full Adder Circuit

FULL ADDER: A full adder is a digital circuit that adds three bits (two significant bits

and an input carry) to produce a sum and an output carry.

Equations:

Sum:

Carry-out:

Truth Table for Full Adder:

A B

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

S = (A ⊕ B) ⊕ C ​in

C ​ =out (A ⋅ B) + (C ​ ⋅in (A ⊕ B))

C ​in S C ​out

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 5/7

Guest
Rectangle

A B

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Larger-Scale Addition

Definition: Multi-bit addition (such as adding 32-bit numbers) is achieved by

cascading full adders. The least significant bit (LSB) is typically computed using a half

adder, while full adders are used for the remaining bits.

Concept:

Each full adder receives a carry input from the previous (less significant) stage.

The final carry-out from the most significant stage represents an overflow if

present.

C ​in S C ​out

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 6/7

Guest
Rectangle

Remark: A 32-bit adder can be constructed by connecting 31 full adders in series after

a half adder for the LSB, resulting in a combinational circuit with 33 outputs (including

the final carry).

Conclusion

This comprehensive note has covered the critical concepts and applications of the XOR

operation in digital logic. Key takeaways include:

The fundamental operation and identities of XOR.

How XOR is used in designing half adders for binary addition.

The extension of XOR to multi-input functions for parity checking.

The construction and functioning of full adders, which are essential for multi-bit

addition.

The overall architecture of larger-scale adders, which are fundamental in digital

system design.

Understanding these concepts is vital for designing efficient digital circuits and

performing accurate binary arithmetic operations.

10/1/25, 3:04 PM 9. Exclusive OR, Adder Circuits, and Digital Addition

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/9%20Exclusive%20OR,%20Adder%20Circuits,%2… 7/7

Guest
Rectangle

10. Digital Decoders:
Architecture, Expansion, and
Applications in Circuit Design

32-Bit Adder Hardware

32-Bit Adder Hardware: A digital circuit designed to add two 32-bit binary numbers.

This hardware typically uses a half adder for the least significant bit and cascaded full

adders for the remaining bits, resulting in a 33-bit sum.

Further Understanding:

The design leverages modular construction to simplify complex arithmetic

operations.

It is a building block for larger adders, such as 64-bit adders, by combining two

32-bit units.

Larger Scale Subtraction

Larger Scale Subtraction: A method to subtract binary numbers by converting the

subtrahend to its two’s complement and then adding it to the minuend.

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 1/8

Guest
Rectangle

Further Understanding:

This approach simplifies hardware design by allowing the use of an adder circuit

for both addition and subtraction.

It minimizes the need for separate subtraction circuitry, reducing complexity and

cost.

Two’s Complement of B

Two’s Complement: A binary representation for negative numbers, obtained by

inverting all bits of a number and adding one.

Further Understanding:

Using two’s complement simplifies the arithmetic operation by turning

subtraction into addition.

It is the standard method for representing signed numbers in most digital

systems.

32-Bit Subtractor

32-Bit Subtractor: A circuit that subtracts one 32-bit binary number from another

using the two’s complement method.

Further Understanding:

It uses the same architecture as the 32-bit adder by first converting the

subtrahend into its two’s complement.

The result includes a carry (or borrow) signal which can be used for error

detection or overflow checking.

4-Bit Adder/Subtractor

4-Bit Adder/Subtractor: A compact arithmetic unit capable of performing both

addition and subtraction on 4-bit numbers.

Further Understanding:

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 2/8

Guest
Rectangle

It typically incorporates a control signal to select between addition and

subtraction modes.

This unit is often used in educational examples to illustrate basic binary

arithmetic and overflow conditions.

Overflow

Overflow: A condition that occurs when the result of an arithmetic operation exceeds

the maximum value representable with a given number of bits.

Further Understanding:

In a signed 4-bit system (range), overflow is detected when the carry into

the most significant bit differs from the carry out.

Proper overflow detection is essential to ensure the integrity of arithmetic

operations in digital systems.

Decoders

Decoders: Combinational circuits that convert n-bit input codes into up to unique

output lines.

Further Understanding:

They are crucial in digital systems for tasks such as memory addressing,

instruction decoding, and signal routing.

A decoder activates a single output corresponding to the binary value of the

input.

[−8, 7]

2n

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 3/8

Guest
Rectangle

Binary 2-to-4 Decoder

Binary 2-to-4 Decoder: A specific decoder that takes 2 input bits and produces 4

unique outputs.

Key Logic Equations:

Further Understanding:

It forms the foundation for more complex decoding schemes and is often used

to demonstrate the basics of decoder operation.

Decoder

Decoder: A circuit that maps encoded input signals to a unique active output,

ensuring that only one output is activated at any time.

m ​ =0 I ​I ​1
′

0
′

m ​ =1 I ​I ​1
′

0

m ​ =2 I ​I ​1 0
′

m ​ =3 I ​I ​1 0

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 4/8

Guest
Rectangle

Further Understanding:

This functionality is essential for control and selection tasks in digital circuits,

such as activating memory cells or peripheral devices.

Addressing

Addressing: The process of selecting specific memory locations or devices using

decoder circuits.

Further Understanding:

Decoders translate binary addresses into specific enable signals that activate the

correct memory module or peripheral.

Efficient addressing is critical for the performance of microprocessor-based

systems.

2-to-4-Decoder Logic Diagram

2-to-4-Decoder Logic Diagram: A schematic representation showing how two input

bits generate four outputs using logic gates.

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 5/8

Guest
Rectangle

Further Understanding:

The diagram visually explains the correlation between input combinations and

the activation of one unique output.

It is a valuable tool for understanding the internal workings of a basic decoder.

Decoder Expansion

Decoder Expansion: A technique for constructing larger decoders (e.g., a 3-to-8

decoder) by using multiple smaller decoders (e.g., 2-to-4 decoders) with enable inputs.

Further Understanding:

This modular approach allows designers to scale decoder functionality without

increasing complexity exponentially.

It is widely used in systems requiring a large number of unique output signals,

such as memory addressing.

Decoder Applications

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 6/8

Guest
Rectangle

Decoder Applications: Practical implementations of decoder circuits in digital

systems.

Further Understanding:

Memory Systems: Select different memory banks or rows.

I/O Systems: Enable specific devices within a microprocessor environment.

Instruction Decoding: Activate functional units based on the instruction code.

Display Systems: Drive segmented displays (e.g., seven-segment displays).

Combinational Functions and Circuits

Combinational Functions and Circuits: Logic circuits where the outputs depend

solely on the current inputs, with no memory elements.

Further Understanding:

These circuits include decoders, encoders, multiplexers, and others that form the

backbone of digital system design.

They are essential for performing arithmetic, data routing, and control logic,

ensuring that digital systems operate efficiently and reliably.

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 7/8

Guest
Rectangle

10/1/25, 3:04 PM 10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/10%20Digital%20Decoders%20Architecture,%20E… 8/8

Guest
Rectangle

11. Encoders, Selecting Functions
and Multiplexers

Encoders and Decoders

Encoders vs. Decoders

ENCODER: A circuit that converts multiple input signals into a compact binary

representation.

DECODER: A circuit that converts coded inputs into a one-hot output, effectively

reversing the encoding process.

Encoders are used to reduce the number of signal lines by representing the active input

with a binary code, while decoders expand a coded input into a set of distinct output

lines.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 1/11

Guest
Rectangle

Binary Encoders

BINARY ENCODER: A device that takes 2ⁿ input lines and produces an n-bit binary

output corresponding to the active input.

For example, a 4-to-2 binary encoder translates 4 input lines into a 2-bit output.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 2/11

Guest
Rectangle

Priority Encoders

In real-world applications, more than one input may be active simultaneously. Priority

encoders resolve such conflicts by assigning higher priority to inputs with higher indices.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 3/11

Guest
Rectangle

PRIORITY ENCODER: An encoder that outputs the binary code of the highest-priority

active input.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 4/11

Guest
Rectangle

Selecting Functions and Multiplexers

Multiplexers (MUX)

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 5/11

Guest
Rectangle

MULTIPLEXER: A combinational circuit that selects one of many input lines and

forwards the chosen input to a single output based on control signals.

Key points:

Control Lines: An n-bit control input selects among 2ⁿ possible inputs.

Example: A 4-to-1 multiplexer uses 2 control bits to select one input from four.

Multiplexers are crucial for routing data in digital systems and can simplify the

implementation of complex Boolean functions.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 6/11

Guest
Rectangle

Combinational Circuit Implementation Using MUX

Multiplexers can be used to directly implement Boolean functions.

Example:

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 7/11

Guest
Rectangle

To implement the function

a 4-to-1 multiplexer is used where the control lines select the appropriate input

corresponding to the minterms.

F (X,Y ,Z) = m(1, 2, 6, 7) ∑

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 8/11

Guest
Rectangle

Demultiplexers

DEMULTIPLEXER: The inverse of a multiplexer; it takes a single input and routes it to

one of many outputs based on control signals.

Demultiplexers are used in applications such as memory addressing and data

distribution, where a single source must be directed to one of several destinations.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%20… 9/11

Guest
Rectangle

Final Summary & Takeaways

Encoders convert multiple signals into a compact binary form, whereas decoders

expand coded inputs into distinct outputs.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%2… 10/11

Guest
Rectangle

Priority encoders handle multiple active inputs by assigning precedence, with

specific Boolean equations governing their behavior.

Multiplexers and demultiplexers are essential for data selection and distribution,

simplifying complex circuit implementations.

Understanding these combinational circuits is critical as they form the foundation for

more advanced sequential logic and digital system design.

10/1/25, 3:04 PM 11. Encoders, Selecting Functions and Multiplexers

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/11%20Encoders,%20Selecting%20Functions%2… 11/11

Guest
Rectangle

12. Solutions for Midterm Sample
Questions

Question 1: Number Representations and Arithmetic

Part (a): Converting Decimal Numbers to 6-Bit Representations

For a 6-bit system:

Sign-Magnitude and 1's Complement have a range of –31 to +31 (5-bit magnitude).

2's Complement has a range of –32 to +31.

1. Decimal 12

Binary (Magnitude):

12 in binary (using 5 bits) is:

Sign-Magnitude:

Since 12 is positive, the sign bit is 0.

12 = 01100

Sign-Magnitude: 0 01100 ⇒ 001100

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 1/13

Guest
Rectangle

1's Complement:

Positive numbers remain unchanged.

2's Complement:

For positive numbers, it is the same as the standard binary representation.

2. Decimal 19

Magnitude in Binary:

19 in binary (5 bits):

Sign-Magnitude:

For negative numbers, set the sign bit to 1.

1's Complement:

First, represent 19 in 6-bit positive form:

Then, flip all bits:

2's Complement:

Add 1 to the 1's complement:

3. Decimal 32

1’s Complement: 001100

 2’s Complement: 001100

19 = 10011

Sign-Magnitude: 1 10011 ⇒ 110011

19 = 010011

1’s Complement: 010011 → 101100

2’s Complement: 101100 + 1 = 101101

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 2/13

Guest
Rectangle

Sign-Magnitude and 1's Complement:

The maximum magnitude representable is 31, so is not representable in these

systems.

2's Complement:

For 6 bits, is representable.

In 2's complement, the most negative number is represented by a 1 followed by all 0s:

Part (b): Arithmetic Operations in 8-Bit 2's Complement

Before performing arithmetic, we must sign-extend the given numbers to 8 bits.

Operation 1:

First Operand:

 (4-bit) has MSB = 1, so it is negative.

In 4-bit 2's complement, represents:

Sign-extend to 8 bits (replicate the sign bit):

Second Operand:

 (6-bit) has MSB = 0 (positive).

Sign-extend to 8 bits by adding two zeros:

Addition in 8-Bit 2's Complement:

−32

Sign-Magnitude: NA, 1’s Complement: NA

−32

2’s Complement: 100000

1101 + 010111

1101

1101

− 16 − 13 =() −3.

1101 → 11111101.

010111

010111 → 00010111.

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 3/13

Guest
Rectangle

Result:

 in 8-bit 2's complement, which equals decimal 20.

Operation 2:

First Operand:

 (4-bit) is positive.

Sign-extend to 8 bits:

Second Operand:

 (5-bit) has MSB = 1 (negative).

Sign-extend to 8 bits (prepend three 1's):

Subtraction:

Represent 10 in 8-bit 2's complement:

Result:

 in 8-bit 2's complement, which equals decimal 10.

Part (c): Left-Shift Multiplication and Overflow Detection

Concept:

Multiplying a number by 2 in 2's complement arithmetic is equivalent to shifting its

binary representation one bit to the left. This shift inserts a 0 at the least significant bit

​​

11111101 (−3)
00010111 (23)
00010100 (20)

00010100

0111 − 11101

0111

0111 → 00000111 (7).

11101

11101 → 11111101 (−3) (in 5-bit 2’s complement, 11101 = −3).

7 − (−3) = 7 + 3 = 10.

10 = 00001010.

00001010

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 4/13

Guest
Rectangle

and discards the bit that overflows from the most significant position.

Procedure:

1. Left Shift:

For an n-bit 2's complement number , shifting left one bit gives a new binary

number that represents (provided there is no overflow).

2. Example:

Consider the 8-bit number (which is decimal 54).

Left shift by one bit:

 represents decimal 108, which is exactly .

3. Overflow Detection Rule:

Overflow occurs when the result of the shift cannot be represented within the fixed

number of bits.

OVERFLOW RULE: In 2's complement, overflow is detected if the sign bit (MSB) of

the original number does not match the sign bit of the shifted result.

For example, if a positive number (MSB = 0) becomes negative (MSB = 1) after

shifting, then overflow has occurred.

Question 2: Canonical forms, K-map optimization, and
hardware implementation using multiplexers

This section provides formal, step‐by‐step solutions for optimizing the Boolean function

with the don’t-care condition

The problem is divided into four parts (a)–(d).

(a) Product-of-Maxterms Representation

x

2x

00110110

00110110 → 01101100.

01101100 54 × 2

F (A,B,C,D) = (+A)(+C A B +)(A +D C +)D

d(A,B,C,D) = m(9, 10).∑

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 5/13

Guest
Rectangle

Objective: Find the canonical product-of-maxterms form (Π‑form) of .

Approach:

A Boolean function in product-of-sums (POS) form is 0 if at least one of its factors is 0.

We analyze each factor to determine the conditions for :

1. Factor 1:

This is 0 when both and , i.e.

This condition covers all minterms with and (independent of and

).

2. Factor 2:

This is 0 when

Minterms: (for) and (for).

(Note that is already included.)

3. Factor 3:

This is 0 when

Minterms: (for) and (for).

Union of all conditions:

The zeros of occur for minterms:

Thus, the product-of-maxterms (canonical POS form) is:

F

F

F = 0

+A C

=A 0 =C 0

A = 1 and C = 1.

A = 1 C = 1 B

D

+A B + D

=A 0, B = 0, =D 0 ⇒ A = 1, B = 0, D = 1.

m(9) C = 0 m(11) C = 1

m(11)

(A + C +)D

A = 0, C = 0, =D 0 ⇒ A = 0, C = 0, D = 1.

m(1) B = 0 m(5) B = 1

F

{1, 5, 9, 10, 11, 14, 15}.

F = ΠM(1, 5, 9, 10, 11, 14, 15).

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 6/13

Guest
Rectangle

(b) Optimized SOP Expression via 4-Variable K-Map

Given:

 (don’t cares)

 is 0 for minterms ; hence, for the remaining

minterms:

K-Map Setup:

We use the standard 4-variable K-map (rows: in Gray code order ;

columns: in order). The assignments are as follows:

Row 00 (A=0,B=0):

Row 01 (A=0,B=1):

Row 11 (A=1,B=1):

Row 10 (A=1,B=0):

d(A,B,C,D) = m(9, 10)∑

F {1, 5, 9, 10, 11, 14, 15} F = 1

{0, 2, 3, 4, 6, 7, 8, 12, 13}.

AB 00, 01, 11, 10
CD 00, 01, 11, 10

m(0) = 0000 : 1

m(1) = 0001 : 0

m(3) = 0011 : 1

m(2) = 0010 : 1

m(4) = 0100 : 1

m(5) = 0101 : 0

m(7) = 0111 : 1

m(6) = 0110 : 1

m(12) = 1100 : 1

m(13) = 1101 : 1

m(15) = 1111 : 0

m(14) = 1110 : 0

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 7/13

Guest
Rectangle

 (don’t care)

 (don’t care)

Grouping for SOP:

1. Group 1:

A 2×2 block covering cells in rows 00 and 01, columns 10 and 11 (minterms

).

Common: (since rows 00 & 01) and (columns 10 and 11).

Prime Implicant: .

2. Group 2:

A vertical group in column 00 covering rows 00 and 01 (minterms and).

Common: (B varies).

Prime Implicant: .

3. Group 3:

A horizontal pair in row 11, columns 00 and 01 (minterms and .

Common: .

Prime Implicant: .

4. Group 4:

A pair in row 10, columns 00 and (if we assign as 1) column 01 (minterm

and don’t care).

Common: .

Prime Implicant: .

Combining Groups:

Notice that Groups 3 and 4 can be combined:

m(8) = 1000 : 1

m(9) = 1001 : X

m(11) = 1011 : 0

m(10) = 1010 : X

m(2),m(3),m(6),m(7)

A = 0 C = 1

A C′

m(0) m(4)

A = 0, C = 0, D = 0

A C D’′ ′

m(12) m(13)

A = 1, B = 1, C = 0

ABC ′

m(9) m(8)
m(9)

A = 1, B = 0, C = 0

AB C’′

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 8/13

Guest
Rectangle

Thus, the simplified SOP expression becomes:

Further Simplification:

Factor from the first two terms:

Using the identity (since if , then ; if ,

the sum is 1), we obtain:

ABC +′ AB C =′ ′ AC (B +′ B) =′ AC .′

F = A C +′ A C D +′ ′ ′ AC .′

A’

F = A (C +′ C D) +′ ′ AC .′

C + C D =′ ′ C + D’ C = 0 C D =′ ′ D’ C = 1

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 9/13

Guest
Rectangle

Gate Input Cost:

Counting literal occurrences:

In : literals , , → 3 inputs.

In : literals , → 2 inputs.

Final OR (summing two product terms) → 2 inputs.

Thus, an estimated total cost is inputs.

(c) Optimized POS Expression via 4-Variable K-Map

Objective:

Obtain the minimal product-of-sums (POS) expression for using the given don't cares.

Zeros of :

From part (a), for minterms: .

Treat the don't cares and as 0 to facilitate grouping.

K-Map Grouping for Zeros:

1. Group 1:

Minterms (00,01) and (01,01).

Common values:

 (both rows have),

 (column 01 gives),

.

Maxterm: For zeros, if a variable is 0 in all cells, include it in non-complemented

form; if 1, include its complement.

→ (since), (since), and (since).

Result: .

2. Group 2:

Common values:

F = A (C +′ D) +′ AC .′

A (C +′ D)′ A’ C D’

AC’ A C’

3 + 2 + 2 = 7

F

F

F = 0 {1, 5, 9, 10, 11, 14, 15}

m(9) m(10)

m(1) m(5)

A = 0 A = 0

C = 0 C = 0

D = 1

A A = 0 C C = 0 D’ D = 1
(A + C + D)′

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 10/13

Guest
Rectangle

,

 ,

Maxterm: (since), (since).

Result: .

3. Group 3:

Common values:

,

,

.

Maxterm: (since), (since), (since).

Result: .

Thus, the optimized POS expression is:

Gate Input Cost: 11.

(d) Implementation Using a 4-to-1 Multiplexer and a Single
NOT Gate

Objective:

Implement (with don’t cares) using only a 4-to-1-line multiplexer and one NOT gate.

Strategy:

We start with the simplified SOP form from part (b):

This expression depends on and one of or but not on . We can choose select

lines such that the expression becomes independent of one variable.

Step 1: Choose Select Variables

A = 1

C = 1

A’ A = 1 C’ C = 1
(A +′ C)′

A = 1

B = 0

D = 1

A’ A = 1 B B = 0 D′ D = 1
(A +′ B + D)′

F = (A + C + D)(A +′ ′ C)(A +′ ′ B + D)′

F

F = A (C +′ D) +′ AC .′

A C D B

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 11/13

Guest
Rectangle

Let’s choose and as the select lines of the 4-to-1 multiplexer. Then the MUX will

implement as:

with and determining which data input is selected.

Step 2: Determine the Output for Each Combination of

Using the simplified expression:

Case 1:

Then .

When : .

When : .

Case 2:

Then (independent of).

When : .

When : .

Step 3: Assign Multiplexer Data Inputs

The 4-to-1 MUX has 4 data inputs corresponding to select line combinations as

follows (using binary order 00, 01, 11, 10 where the order of bits is (MSB) and (LSB)):

For : → .

For : → .

For : → .

For : → .

Step 4: Hardware Implementation

Select Lines: Connect and to the multiplexer select inputs.

Data Inputs:

 (requires the single NOT gate to invert).

A C

F

F = f ​(D),AC

A C

(A,C)

A = 0
F = (C + D)′

C = 0 F = 0 + D =′ D’

C = 1 F = 1 + D =′ 1

A = 1
F = C’ D

C = 0 C =′ 1

C = 1 C =′ 0

(A,C)
A C

(A,C) = 00 A = 0, C = 0 F = D’

(A,C) = 01 A = 0, C = 1 F = 1

(A,C) = 11 A = 1, C = 1 F = 0

(A,C) = 10 A = 1, C = 0 F = 1

A C

I ​ =0 D’ D

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 12/13

Guest
Rectangle

 (logic high).

 (logic low).

 (logic high).

The output of the multiplexer will yield .

This design meets the requirement: only one NOT gate is used (to generate), and the

entire function is implemented with a single 4-to-1 MUX.

Midterm Sample

midterm-sample.pdf

I ​ =1 1

I ​ =2 0

I ​ =3 1

F

D’
F

10/1/25, 3:04 PM 12. Solutions for Midterm Sample Questions

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/12%20Solutions%20for%20Midterm%20Sample… 13/13

Guest
Rectangle

13. Sequential Logic and Memory

Introduction to Digital Systems and Sequential Circuits

Big Picture of Digital Systems

Digital Systems are broadly classified into:

Combinational Logic: Systems without memory where outputs depend solely

on current inputs.

Sequential Logic: Systems that incorporate memory elements, where outputs

depend on both current inputs and past history.

DIGITAL SYSTEMS: Systems that process binary signals; sequential systems

specifically integrate storage elements (latches or flip-flops) with combinational logic

to implement state-dependent operations.

Introduction to Sequential Circuits

A sequential circuit is composed of:

Storage Elements (Memory): Such as latches or flip-flops to hold state.

Combinational Logic: Which computes next state and output based on current

inputs and stored state.

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 1/8

Guest
Rectangle

SEQUENTIAL CIRCUITS: Digital circuits where outputs are functions of both present

inputs and the stored (past) state. This design enables complex operations such as

counting, memory storage, and control flow.

Memory in Digital Systems

Role of Memory

Memory is essential for maintaining state in a digital system.

Inherent delays in gates can unintentionally store a value, but these effects are

temporary.

To store data indefinitely, feedback is introduced.

MEMORY: The capability of a circuit to store information; it is achieved by feeding

outputs back to inputs, thereby maintaining a stable state over time.

Extending Storage with Feedback

Feedback Mechanism: Feeding the output back into the input loop allows a system

to “hold” a value indefinitely.

Latches: The Basic Storage Element

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 2/8

Guest
Rectangle

g
Overview of Latches

Latches are the simplest storage elements in sequential circuits.

They hold a binary state (0 or 1) until an external signal causes a change.

LATCH: A bistable circuit that maintains its state until altered by an input signal,

serving as a fundamental memory element in digital systems.

Basic (NOR) S-R Latch

Construction: Uses NOR gates to implement the Set-Reset (S-R) functionality.

Inputs and Operations:

S = 1, R = 0: Sets to 1.

S = 0, R = 1: Resets to 0.

S = 0, R = 0: Holds the current state.

S = 1, R = 1: Typically an undefined or forbidden state.

S-R LATCH (NOR): A basic latch using NOR gates where S (set) and R (reset)

determine the output .

Q

Q

Q

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 3/8

Guest
Rectangle

Basic (NAND) S'-R' Latch

Construction: Formed by cross-coupling two NAND gates.

Inputs: Active-low inputs (S' and R').

Operations:

S' = 0, R' = 1: Sets to 1.

S' = 1, R' = 0: Resets to 0.

S' = 1, R' = 1: Maintains the current state.

S' = 0, R' = 0: Forbidden input condition.

S'-R' LATCH (NAND): A latch that uses NAND gates with active-low signals, ensuring

stable operation by avoiding ambiguous states.

Q

Q

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 4/8

Guest
Rectangle

Clocked (Gated) S-R Latch

Enhancement: Incorporates a clock signal (C) to control when S and R are observed.

Operation: The latch updates its state only when the clock is high.

CLOCKED S-R LATCH: A variant of the S-R latch where a clock input enables state

changes, providing synchronization in sequential circuits.

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 5/8

Guest
Rectangle

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 6/8

Guest
Rectangle

D Latch

Derivation: Obtained by adding an inverter to the S-R latch to eliminate

indeterminate states.

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 7/8

Guest
Rectangle

Operation:

Input D: Directly drives the output when the clock is active.

Characteristic: No ambiguous state exists, making the latch predictable.

D LATCH: A latch that captures the value of the input under a clock condition,

ensuring unambiguous data storage.

Final Summary & Takeaways

Sequential Circuits integrate memory elements with combinational logic to manage

state and process sequences of inputs.

Latches are fundamental storage devices, with various implementations (NOR-based,

NAND-based, clocked, and D latches) ensuring reliable memory.

Feedback plays a critical role in extending storage duration, making it possible to

hold a value indefinitely.

Q

D

10/1/25, 3:04 PM 13. Sequential Logic and Memory

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/13%20Sequential%20Logic%20and%20Memory%… 8/8

Guest
Rectangle

14. Flip-Flops & Sequential Circuit
Analysis

Flip-Flops

The Latch Timing Problem

LATCH TIMING PROBLEM: In a clocked D-latch with feedback, as long as the clock

input C = 1, changes in output Q immediately feed back to the input D, causing

uncontrolled oscillation or multiple updates within one clock pulse.

Flip-Flop Timing (1’s-Catching)

1’s-CATCHING PROBLEM: If the data input (S or D) changes while the latch is

transparent (C = 1), the master latch may set or reset multiple times during the same

pulse, capturing unintended “1’s.”

Example: With Q = 0, a brief high on D while C = 1 can propagate to Q, then back

to D, toggling multiple times.

Consequence: Results in extra transitions, metastability risk, and dependence on

pulse-width.

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 1/7

Guest
Rectangle

Solution: Use edge-triggered architecture so inputs are ignored when C is

steady; only the clock edge causes a single update.

Master-Slave Flip-Flop

MASTER-SLAVE FF: Two clocked latches in series, with the slave latch driven by the

inverted clock.

Master (C = 1): Captures input.

Slave (C = 0): Transfers master’s output to Q.

Benefit: Master and slave are never transparent at the same time, preventing

intra-pulse feedback.

Edge-Triggered D Flip-Flop

EDGE-TRIGGERED FF: Updates output only on a clock edge, ignoring input changes at

other times.

Negative-edge triggered: Updates on falling clock.

Positive-edge triggered: Updates on rising clock (via an inverter on C).

Remark: Simplifies input to a single D line, avoiding forbidden states and reducing

delay.

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 2/7

Guest
Rectangle

Standard Symbols & Direct Inputs

STANDARD STORAGE SYMBOLS:

D-Flip-Flop: Single data input, clock, Q/Q̅ outputs.

S-R Flip-Flop: Separate S and R inputs (forbidden high-high combination).

DIRECT INPUTS: Asynchronous Set (Sₐ) and Reset (Rₐ) for initialization outside

clocked operation.

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 3/7

Guest
Rectangle

Sequential Circuit Analysis

General Model

SEQUENTIAL CIRCUIT MODEL:

State Variables: Stored in flip-flops (vector S(t)).

Next State: S(t+1) = f(S(t), X(t)).

Outputs: Y(t) = g(S(t), X(t)).

Analysis Example

Given: Input x(t), state bits A(t), B(t), output y(t).

Solution Steps:

1. Derive next-state and output Boolean expressions.

2. Construct the state-table with Present State, Input, Next State, Output.

3. Simplify expressions if desired.

​ ​

A(t + 1)

B(t + 1)

y(t)

= A(t)x(t) + B(t)x(t)

= A (t)x(t)′

= x (t) (B(t) + A(t))′

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 4/7

Guest
Rectangle

State-Table & State-Diagram

STATE TABLE: Lists all Present State & Input combinations with corresponding Next

State & Output.

Columns: Present State | Input | Next State | Output

STATE DIAGRAM: Directed graph where nodes are states; arcs labeled

“input/output” show transitions.

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 5/7

Guest
Rectangle

State-Table Characteristics

STATE-TABLE CHARACTERISTICS:

Divided into four sections: Present State, Input, Next State, Output.

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 6/7

Guest
Rectangle

Treats Present State & Input as “inputs” to the truth table; Next State & Output as

“outputs.”

Enables systematic enumeration of all behavior for design and verification.

Final Summary & Takeaways

Latch vs. Flip-Flop: Edge-triggered FFs eliminate the 1’s-catching issue inherent in

level-sensitive latches.

Master-Slave vs. Edge-Triggered: Master-slave uses back-to-back latches; edge-

trigger updates only on a clock transition.

Analysis Workflow:

1. Write state equations.

2. Build the state table.

3. Draw the state diagram.

Key Pitfalls:

Omitting asynchronous resets leads to undefined start states.

Mislabeling clock edges causes timing failures.

Failing to enumerate all table entries can hide invalid or unused states.

10/1/25, 3:04 PM 14. Flip-Flops & Sequential Circuit Analysis

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/14%20Flip-Flops%20&%20Sequential%20Circuit… 7/7

Guest
Rectangle

15. Finite State Machines: State
Diagrams, Models, and
Representations

1. State Diagrams

1.1 Definition & Components

STATE DIAGRAM: Graphical FSM representation where:

Each state is a circle labeled with a state name.

Directed arcs show transitions from Present State → Next State.

Labels on arcs indicate the input causing that transition.

Output labels appear either:

On each circle (Moore): output depends only on state.

On each arc (Mealy): output depends on state + input.

1.2 Small vs. Large Circuits

Small: State diagrams are intuitive and easier to follow than tables.

10/1/25, 3:04 PM 15. Finite State Machines: State Diagrams, Models, and Representations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/15%20Finite%20State%20Machines%20State%20… 1/3

Guest
Rectangle

Large: Diagrams become cluttered; tables or code may be preferable.

2. Moore & Mealy Models

2.1 Moore Model

MOORE FSM: Outputs are a function only of the current state.

Output label placed inside each state circle.

2.2 Mealy Model

MEALY FSM: Outputs are a function of state & input.

Output label placed on each transition arc (“input/output”).

2.3 Mixed Models

In practice, designs sometimes mix Moore and Mealy conventions.

3. Example Diagrams & Tables

3.1 Example State Diagrams

Top: Mealy diagram with arcs labeled “x=1 / y=1”, “x=0 / y=0”, etc.

Bottom: Moore diagram with circles labeled “A/0”, “B/1”, etc.

3.2 Example State Tables

Present Next State (x=0) Next State (x=1) Output (x=0) Output (x=1)

0 0 1 0 0

1 0 2 0 1

Present Next State (x=0) Next State (x=1) Output

A/0 B A 0

B/1 B C 1

Final Summary & Takeaways

10/1/25, 3:04 PM 15. Finite State Machines: State Diagrams, Models, and Representations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/15%20Finite%20State%20Machines%20State%20… 2/3

Guest
Rectangle

State diagrams provide intuitive FSM visualization; use tables when diagrams grow

complex.

Moore vs. Mealy: Choose based on timing and output-dependence requirements.

Design workflow: Follow the six-step procedure to go from spec → implementation

→ verification.

10/1/25, 3:04 PM 15. Finite State Machines: State Diagrams, Models, and Representations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/15%20Finite%20State%20Machines%20State%20… 3/3

Guest
Rectangle

16. FSM Design & Sequence
Detection

Sequential-Circuit General Model

MODEL:

State vector S(t) stored in flip-flops.

Next state S(t+1) = f(S(t), X(t)).

Outputs Y(t) = g(S(t), X(t)?)

Six-Step Design Procedure

1. Formulation: Draw state diagram or table from specification.

2. State Assignment: Map each abstract state → binary code.

3. Obtain State Table: List Present State, Input → Next State, Output.

4. Obtain Equations:

(a) Flip-flop input equations from Next State entries.

(b) Output equations from Output entries.

10/1/25, 3:04 PM 16. FSM Design & Sequence Detection

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/16%20FSM%20Design%20&%20Sequence%20D… 1/3

Guest
Rectangle

(c) Optimize via Karnaugh maps or Boolean simplification.

5. Technology Mapping: Implement equations with gates & actual FFs.

6. Verification: Confirm FSM behavior matches original spec.

Case Study: Sequence Recognizer (1101)

Problem Statement

TASK: Output 1 whenever the input sequence “1101” appears (including overlaps).

Mealy Implementation

State Diagram

States A→B→C→D track partial matches.

Output 1 on transition that completes “1101”.

State Table

Present x=0 → (Next, y) x=1 → (Next, y)

A (A, 0) (B, 0)

B (A, 0) (C, 0)

C (D, 0) (C, 0)

D (A, 0) (B, 1)

Moore Implementation

Extended State Diagram

Add extra state E to produce output 1 in Moore style.

Outputs on circles: A/0, B/0, C/0, D/0, E/1.

Moore State Table

State Code x=0 → Next x=1 → Next Output

A 000 A B 0

10/1/25, 3:04 PM 16. FSM Design & Sequence Detection

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/16%20FSM%20Design%20&%20Sequence%20D… 2/3

Guest
Rectangle

State Code x=0 → Next x=1 → Next Output

B 001 A C 0

C 011 D C 0

D 010 A E 0

E 110 A C 1

Unused-State Handling

MINIMAL RISK: Redirect illegal/unused codes → safe (reset) state.

MINIMAL COST: Treat unused entries as “don’t cares” to simplify logic, but risk

undefined behavior if ever entered.

Summary

Sequence recognizer: Illustrates both Mealy (compact, output on arc) and Moore

(requires extra state) designs.

State assignment: Heuristic choices can greatly affect hardware cost and reliability.

Unused states: Must be handled deliberately to avoid metastability or safe-mode

failures.

10/1/25, 3:04 PM 16. FSM Design & Sequence Detection

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/16%20FSM%20Design%20&%20Sequence%20D… 3/3

Guest
Rectangle

17. State Assignment &
Minimization

Obtain State & Output Equations

1. State/Output Table

Present State Code (Q₁Q₂Q₃) Next State (x=0) Next State (x=1) Output (y)

A 000 A (000) B (001) 0

B 001 A (000) C (011) 0

C 011 D (010) C (011) 0

D 010 A (000) E (110) 0

E 110 A (000) C (011) 1

Remark: From this table, derive for each flip-flop input the Boolean equation in terms

of Q₁, Q₂, Q₃, and x, and the output y = g(Q₁,Q₂,Q₃,x).

Decomposed State Assignment

DECOMPOSED STATE ASSIGNMENT:

10/1/25, 3:04 PM 17. State Assignment & Minimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/17%20State%20Assignment%20&%20Minimizatio… 1/4

Guest
Rectangle

Minimal Risk: Unused (illegal) codes → safe/reset state on occurrence.

Minimal Cost: Mark unused codes as “don’t care” in next-state logic to simplify

equations (assumes they never occur).

State Minimization

1. Purpose

STATE MINIMIZATION: Reduce gates or flip-flops by merging equivalent states.

2. Equivalent States

EQUIVALENT STATES: Two states are equivalent if, for every input sequence, they

produce identical outputs and transition to equivalent next states.

3. Strategy

Partition states by output behavior under x=0/1.

Iteratively refine partitions until no further splits occur.

Merge equivalent states in the state table/diagram.

State-Minimization Example

1. Original Table

Present x=0 → Next, y x=1 → Next, y

A A,0 B,0

B C,0 D,0

C A,0 D,0

D E,0 F,1

E A,0 F,1

F G,0 F,1

G A,0 F,1

2. Identify Equivalences

10/1/25, 3:04 PM 17. State Assignment & Minimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/17%20State%20Assignment%20&%20Minimizatio… 2/4

Guest
Rectangle

E ≡ G (same outputs/transitions)

F ≡ D

3. Reduced Table

Present x=0 → Next, y x=1 → Next, y

A A,0 B,0

B C,0 D,0

C A,0 D,0

D/F D,0 D,1

E/G A,0 D,1

Post-Minimization Steps

1. Draw Reduced State Diagram with merged states.

2. Assign Codes to reduced states (e.g., binary or one-hot).

3. Derive New Equations for D-inputs and y from the reduced table.

4. Optimize Logic using Karnaugh maps or Boolean simplification.

Final Summary & Takeaways

State/Output Table → Equations: Systematic derivation for each flip-flop and

output.

Unused-State Handling: Choose minimal risk (redirect) or minimal cost (don’t

cares).

Minimization Workflow:

1. Partition by output behavior.

2. Refine by next-state equivalence.

3. Merge equivalent states → reduced FSM.

4. Redesign logic for improved area/performance.

Common Pitfalls:

10/1/25, 3:04 PM 17. State Assignment & Minimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/17%20State%20Assignment%20&%20Minimizatio… 3/4

Guest
Rectangle

Neglecting unused codes can cause undefined behavior.

Failing to fully refine partitions may miss further merges.

Reassigning codes without considering transition adjacency can increase logic

complexity.

10/1/25, 3:04 PM 17. State Assignment & Minimization

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/17%20State%20Assignment%20&%20Minimizatio… 4/4

Guest
Rectangle

18. Sequential-Circuit
Fundamentals & Flip-Flops

1. Sequential-Circuit Model

SEQUENTIAL CIRCUIT MODEL:

State vector S(t) stored in an array of flip-flops.

Next state S(t+1) = f(S(t), X(t)), a Boolean function of current state and inputs.

Outputs Y(t) = g(S(t), X(t)), a Boolean function of state (and sometimes inputs).

2. Latches & Flip-Flop Architectures

2.1 Latch Timing Problem

LATCH-TIMING PROBLEM: In a level-sensitive D-latch, when clock C = 1 the feedback

path Q→D allows multiple toggles within one pulse, causing oscillation.

2.2 Master-Slave Flip-Flop

MASTER-SLAVE FF: Two back-to-back latches; master enabled when C = 1, slave when

C = 0.

10/1/25, 3:04 PM 18. Sequential-Circuit Fundamentals & Flip-Flops

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/18%20Sequential-Circuit%20Fundamentals%20&… 1/4

Guest
Rectangle

Breaks feedback loop—Q updates once per cycle.

2.3 Edge-Triggered Flip-Flop

EDGE-TRIGGERED FF: Updates output only on a clock transition (rising or falling),

ignoring input while clock is steady.

3. JK Flip-Flop

BEHAVIOR: Like S-R FF but allows J=K=1, which toggles Q.

Characteristic Table

J K Q(t) Q(t+1) Operation

0 0 0 0 Hold

0 0 1 1 Hold

0 1 0 0 Reset

0 1 1 0 Reset

1 0 0 1 Set

1 0 1 1 Set

1 1 0 1 Toggle

1 1 1 0 Toggle

Characteristic Equation:

Excitation Table

Q(t) Q(t+1) J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Q(t + 1) = J ​ +Q(t) Q(t) K

10/1/25, 3:04 PM 18. Sequential-Circuit Fundamentals & Flip-Flops

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/18%20Sequential-Circuit%20Fundamentals%20&… 2/4

Guest
Rectangle

4. T Flip-Flop

BEHAVIOR: Single input T toggles Q when T = 1; holds when T = 0.

Characteristic Table

T Q(t) Q(t+1) Operation

0 0 0 Hold

0 1 1 Hold

1 0 1 Toggle

1 1 0 Toggle

Characteristic Equation:

Excitation Table

Q(t) Q(t+1) T

0 0 0

Q(t + 1) = T ⊕ Q(t)

10/1/25, 3:04 PM 18. Sequential-Circuit Fundamentals & Flip-Flops

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/18%20Sequential-Circuit%20Fundamentals%20&… 3/4

Guest
Rectangle

Q(t) Q(t+1) T

0 1 1

1 0 1

1 1 0

Final Summary & Takeaways

FSM Model: Defined by next-state function f and output function g stored in flip-

flops.

Latch vs. FF: Edge-triggered FFs solve level-sensitive feedback issues.

JK & T FFs: Characterize with tables and equations; excitation tables guide input

design.

10/1/25, 3:04 PM 18. Sequential-Circuit Fundamentals & Flip-Flops

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/18%20Sequential-Circuit%20Fundamentals%20&… 4/4

Guest
Rectangle

19. Registers & Bus-Based
Transfer Structures

1. Registers & Design Models

1.1 Register Definition

REGISTER: A collection of binary storage elements (flip-flops) that holds an n-bit

vector. Can be defined by a state table, but typically treated as a storage vector for

data movement and simple processing.

2. Register-Storage & Load Control

2.1 Expectations vs. Reality

EXPECTATIONS: Register holds data across clock cycles; loading must be controlled.

REALITY: A plain D-FF register loads on every clock edge.

2.2 Load Control Techniques

1. Clock Gating

10/1/25, 3:04 PM 19. Registers & Bus-Based Transfer Structures

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/19%20Registers%20&%20Bus-Based%20Transfe… 1/5

Guest
Rectangle

CLOCK GATING: AND the global clock with a Load signal to enable loading only

when Load=1.

Problem: Gated clocks introduce skew and timing hazards.

2. Load-Controlled Feedback

FEEDBACK CONTROL: Keep clock free; use a 2:1 multiplexer on each D-input to

select between current Q (hold) or new input (load).

Benefit: Eliminates clock skew; cost is extra MUX logic.

3. Register-Transfer Operations & Notation

3.1 Register-Transfer Concept

REGISTER TRANSFER OPERATION: Movement or processing of data between

registers under control signals; each elementary step is a microoperation.

3.2 Notation

Register name: Rₙ, PC, IR

Bit range: R(7:0), PC(H), PC(L)

Transfer arrow: R₁ ← R₂

Parallel ops: R₁ ← R₂, R₃ ← R₄

Memory reference: R₀ ← M[AR]

4. Conditional Transfers

CONDITIONAL TRANSFER: K₁: (R₂ ← R₁) executes only if control K₁ = 1.

Example timing: only one clock edge with K₁=1 causes the move.

5. Microoperations

5.1 Categories

Types:

10/1/25, 3:04 PM 19. Registers & Bus-Based Transfer Structures

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/19%20Registers%20&%20Bus-Based%20Transfe… 2/5

Guest
Rectangle

Transfer: move data between registers

Arithmetic: add, subtract, increment, etc.

Logical: bitwise OR, AND, EXOR, NOT

Shift: logical/arithmetic left/right

5.2 Arithmetic Microoperations

Symbolic Description

R₀ ← R₁ + R₂ Addition

R₀ ← R₁′ One’s complement

R₀ ← R₁′ + 1 Two’s complement

R₀ ← R₂ – R₁ Subtraction

R₀ ← R₀ + 1 Increment

R₀ ← R₀ – 1 Decrement

5.3 Logical Microoperations

Symbolic Description

R₀ ← R₁′ Bitwise NOT

R₀ ← R₁ ∨ R₂ Bitwise OR

R₀ ← R₁ ∧ R₂ Bitwise AND

R₀ ← R₁ ⊕ R₂ Bitwise EXOR

Example: For R₁=1010 1010 and R₂=1111 0000, compute all four operations.

5.4 Shift Microoperations

Symbolic Description

R₀ ← SL R₁ Shift left (zero-fill)

R₀ ← SR R₁ Shift right (zero-fill)

6. Transfer-Structure Architectures

10/1/25, 3:04 PM 19. Registers & Bus-Based Transfer Structures

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/19%20Registers%20&%20Bus-Based%20Transfe… 3/5

Guest
Rectangle

6.1 Multiplexer-Based Transfers

MUX-BASED: Each register input has a dedicated MUX to select its source.

6.2 Bus-Based Transfers

BUS-BASED: A shared bus driven by a single MUX or by multiple 3-state drivers; feeds

many registers.

6.3 Dedicated vs. Shared Structures

Dedicated MUX: Highly flexible, high hardware cost.

Shared Bus + MUX: Lower cost, limited simultaneous transfers.

Shared Bus + 3-State Buffers: Further cost reduction, drivers must tri-state when

not active.

7. Three-State Buffers & Hi-Z Logic

7.1 Hi-Impedance Outputs

Hi-Z: “Open-circuit” state that allows multiple drivers to share a bus safely. When

output = Hi-Z, it neither drives 0 nor 1.

7.2 3-State Buffer

Behavior:

EN = 0: OUT = Hi-Z

EN = 1: OUT = IN

Variations: bubbles invert IN or EN.

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1

7.3 Bus Contention & Resolution

10/1/25, 3:04 PM 19. Registers & Bus-Based Transfer Structures

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/19%20Registers%20&%20Bus-Based%20Transfe… 4/5

Guest
Rectangle

Rule: On a shared wire, at most one 3-state driver may be enabled; all others must be

Hi-Z.

Valid combinations for two drivers B₁, B₀:

(0, Hi-Z) → 0

(1, Hi-Z) → 1

(Hi-Z, 0) → 0

(Hi-Z, 1) → 1

(Hi-Z, Hi-Z) → Hi-Z

Final Summary & Takeaways

Registers are n bit state vectors realized by D-FF arrays.

Load control achieved via clock gating or input MUXes.

Register-transfer notation formalizes data movement and processing.

Microoperations provide elementary arithmetic, logic, and shift functions.

Transfer structures trade off flexibility vs. hardware cost: dedicated MUX, shared bus,

3-state.

Hi-Z logic enables bus sharing; only one driver active at a time is safe.

10/1/25, 3:04 PM 19. Registers & Bus-Based Transfer Structures

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/19%20Registers%20&%20Bus-Based%20Transfe… 5/5

Guest
Rectangle

20. Registers and Register
Transfer Operations

Register Fundamentals

Definitions

REGISTER: A collection of binary storage elements storing a vector of bits.

MICROOPERATION: An elementary operation (e.g., load, shift) performed on register

contents.

Four-Bit Register Examples

Parallel Load Register: All bits load simultaneously from inputs.

Shift Register: Bits shift left or right by one position per clock.

10/1/25, 3:04 PM 20. Registers and Register Transfer Operations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/20%20Registers%20and%20Register%20Transfer… 1/4

Guest
Rectangle

Register Transfer Architectures

Dedicated MUX-Based Transfer

Each register input has its own multiplexer, allowing arbitrary source-to-destination

moves in one cycle.

10/1/25, 3:04 PM 20. Registers and Register Transfer Operations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/20%20Registers%20and%20Register%20Transfer… 2/4

Guest
Rectangle

Bus-Based Transfers

Multiplexer Bus: Single bus with a large multiplexer at the driver side, limiting

simultaneous transfers.

Three-State Bus: Uses tri-state buffers on each register output sharing a common

bus.

10/1/25, 3:04 PM 20. Registers and Register Transfer Operations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/20%20Registers%20and%20Register%20Transfer… 3/4

Guest
Rectangle

Final Summary & Takeaways

Registers store and process data via microoperations.

Transfer architectures trade flexibility (dedicated MUX) for cost (bus-based).

Shift registers support serial data movement with minimal hardware.

10/1/25, 3:04 PM 20. Registers and Register Transfer Operations

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/20%20Registers%20and%20Register%20Transfer… 4/4

Guest
Rectangle

21. Counters, Shift Registers, and
Serial Transfer

Counters

Definitions

COUNTER: A register sequence that advances through a predefined state sequence

on clock pulses.

Ripple vs. Synchronous Counters

Ripple Counter: Clock feeds only LSB; toggling ripples through bits (not fully

synchronous).

Synchronous Counter: Common clock to all flip-flops; combinational logic

determines next state.

10/1/25, 3:04 PM 21. Counters, Shift Registers, and Serial Transfer

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/21%20Counters,%20Shift%20Registers,%20and%… 1/3

Guest
Rectangle

Counter Variants

Up/Down Counter: Counts up or down based on control input.

Modulo‑N Counter: Resets or loads on terminal counts to achieve non-power-of-

two sequences.

Parallel-Load Counter: Supports loading arbitrary values via parallel inputs.

10/1/25, 3:04 PM 21. Counters, Shift Registers, and Serial Transfer

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/21%20Counters,%20Shift%20Registers,%20and%… 2/3

Guest
Rectangle

Shift Registers and Serial Transfer

Shift Register Operations

Shift Left/Right (sl/sr): Moves bits toward MSB/LSB; new bit may be zero or provided

externally.

Parallel-Load and Hold

Adding multiplexers enables select between shift, load, and hold operations in the

same register structure.

Serial Transfer Example

Serial Addition: Performs A ← A + B one bit at a time using two shift registers and a

single adder.

Final Summary & Takeaways

Counters derive from register structures with combinational next-state logic.

Synchronous design improves timing predictability over ripple counters.

Shift registers and serial operations trade throughput for hardware efficiency.

Parallel-load capability enhances flexibility for control applications.

10/1/25, 3:04 PM 21. Counters, Shift Registers, and Serial Transfer

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/21%20Counters,%20Shift%20Registers,%20and%… 3/3

Guest
Rectangle

22. Programmable Computer and
Control Unit

Datapath & Control

DATAPATH: Performs data transfer and processing operations, composed of a

register file, function unit (ALU, shifter), and buses.

CONTROL UNIT: Determines operation sequencing by generating control signals

from external inputs and status flags.

Control Inputs: External control signals and status outputs from the datapath.

Control Outputs: Signals enabling multiplexers, register loads, and function-unit

operations.

10/1/25, 3:04 PM 22. Programmable Computer and Control Unit

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/22%20Programmable%20Computer%20and%20C… 1/3

Guest
Rectangle

Control Unit Types

PROGRAMMABLE CONTROL UNIT: Features a program counter (PC), instruction

memory (ROM/RAM), and decision logic to fetch and decode microinstructions.

NON-PROGRAMMABLE CONTROL UNIT: Hardwired sequencer without instruction

fetch; suited to fixed-operation datapaths.

Datapath Components

REGISTER FILE: A bank of registers with multiplexed inputs for microoperations.

FUNCTION UNIT: ALU and shifter, with a function-select multiplexer (FS codes).

BUSES: Shared A, B, and D buses using either dedicated multiplexers or three-state

buffers.

Final Summary & Takeaways

Datapath comprises the register file, function unit (ALU/shifter), and shared buses to

move and process data.

Control Unit generates sequencing signals from external inputs and status flags to

orchestrate microoperations.

10/1/25, 3:04 PM 22. Programmable Computer and Control Unit

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/22%20Programmable%20Computer%20and%20C… 2/3

Guest
Rectangle

Control Inputs/Outputs: Inputs include external controls and datapath status;

outputs drive multiplexers, register loads, and function-unit operations.

Programmable vs. Non-Programmable:

Programmable Control Unit: Uses a PC and microinstruction memory for

flexible sequencing.

Non-Programmable Control Unit: Hardwired logic for fixed-operation control

with lower hardware overhead.

Datapath Components Recap:

Register File: Multiplexed inputs for microoperations.

Function Unit: ALU/shifter with function‐select codes.

Buses: Implemented via dedicated multiplexers or tri-state buffers to route data.

10/1/25, 3:04 PM 22. Programmable Computer and Control Unit

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/22%20Programmable%20Computer%20and%20C… 3/3

Guest
Rectangle

23. Algorithmic State Machines
and ASM Design

Algorithmic State Machines

ASM: A structured, flowchart-like method to specify states, decisions, and

microoperations in sequential circuits.

ASM Primitives

1. State Box (Rectangle): Denotes the current state and its register-transfer

operations.

2. Scalar Decision Box (Diamond): Branches on a single input condition (TRUE/FALSE).

3. Vector Decision Box (Hexagon): Branches on an n-bit input vector, with up to 2ⁿ

exit paths.

4. Conditional Output Box (Oval): Specifies outputs or actions triggered under

decision conditions.

ASM Blocks & Timing

10/1/25, 3:04 PM 23. Algorithmic State Machines and ASM Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/23%20Algorithmic%20State%20Machines%20and… 1/3

Guest
Rectangle

ASM BLOCK: A state box plus its connected decision and output boxes, representing

one control cycle.

ASM TIMING: Outputs are asserted during the state; register transfers occur on the

clock’s rising edge as the machine exits the state.

ASM Design Process

1. Identify States: Enumerate all functional states of the control unit.

2. Construct Flowchart: Use ASM primitives to map transitions, decisions, and

outputs.

3. Define Microoperations: Assign register transfers and control-word field values for

each state.

4. Implement Hardware: Translate the ASM into control logic or microprogram

memory.

10/1/25, 3:04 PM 23. Algorithmic State Machines and ASM Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/23%20Algorithmic%20State%20Machines%20and… 2/3

Guest
Rectangle

10/1/25, 3:04 PM 23. Algorithmic State Machines and ASM Design

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/23%20Algorithmic%20State%20Machines%20and… 3/3

Guest
Rectangle

24. Design Examples

Greatest Common Divisor
Description

The Euclidean greatest common divisor (gcd) algorithm finds the largest positive integer

that divides two input values without a remainder. Mathematically:

gcd(a, a) = a

gcd(a, b) = gcd(a − b, b) if a > b

gcd(a, b) = gcd(a, b − a) otherwise

ASM Components

States:

1. IDLE

2. COMP

3. DONE

Registers: A, B

Inputs: X, Y, GO

Outputs: DONE (pulsed when result is ready), A (holds gcd result)

10/1/25, 3:04 PM 24. Design Examples

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/24%20Design%20Examples%201fc34575a83880… 1/3

Guest
Rectangle

Operation Sequence

1. IDLE

Wait for GO = 1, while loading initial values:

A ← X

B ← Y

When GO asserts, transition to COMP.

2. COMP

Compare A and B:

If A > B, then A ← A − B.

Else if B > A, then B ← B − A.

Repeat until A = B:

When A = B, that value is gcd(X, Y).

Transition to DONE.

3. DONE

Pulse DONE output (0→1) to indicate completion.

Hold A as final gcd.

Return to IDLE on reset or next GO pulse.

Guessing Game
Description

A simple interactive game where a rotating 1-of-3 LED pattern moves at ~5 Hz. The player

presses one of three push-buttons (G₁, G₂, G₃) to “guess” which LED is currently lit. If a

wrong button is pressed, an error LED is asserted. Play pauses until the button is released,

then resumes rotation.

ASM Components

Inputs: G₁, G₂, G₃ (push buttons)

Outputs:

10/1/25, 3:04 PM 24. Design Examples

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/24%20Design%20Examples%201fc34575a83880… 2/3

Guest
Rectangle

L₁, L₂, L₃ (1-of-3 rotating LED pattern)

ERR (red LED, asserted on wrong guess)

Clock Frequency: ~5 Hz for rotating pattern

Operation Sequence

1. Rotate Pattern

On each clock tick, shift the single “1” among L₁→L₂→L₃→L₁ in a circular fashion.

2. Guess Detection

If any Gᵢ is pressed:

Check if Lᵢ = 1.

If matched, do nothing (correct guess).

If unmatched, assert ERR = 1.

While Gᵢ remains pressed, halt rotation (pattern frozen).

3. Resume Play

Once the pressed button is released (Gᵢ = 0), clear ERR, then resume rotation

from current LED.

attachment:59059461-b0a4-4036-aa21-07f740164583:elec205-w14-s25.pdf

10/1/25, 3:04 PM 24. Design Examples

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/24%20Design%20Examples%201fc34575a83880… 3/3

Guest
Rectangle

25. Final Exam Review

Contents

1. Sequential Circuits Overview

2. Latches & Flip-Flops

3. Sequential Analysis & Design

4. Registers, Counters & Shift Registers

5. Algorithmic State Machines (ASMs)

6. Datapath & Control Basics

Sequential Circuits Overview

Definition: Outputs depend on current inputs and stored state.

Model:

Inputs (X) → Combinational Logic → Flip-Flops (state Q) → Output
s (Y)
 ↑
 └── Q feedback

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 1/7

Guest
Rectangle

Next-State Function: Q(t+1) = f(X(t), Q(t))

Output Function:

Mealy: Y(t) = g(X(t), Q(t))

Moore: Y(t) = h(Q(t))

Latches & Flip-Flops

1. SR Latch (NOR/NAND):

Stores 1 bit.

S=1 R=0 → Set (Q=1); S=0 R=1 → Reset (Q=0); S=R=0 → Hold; S=R=1 →

Forbidden.

2. Clocked SR Latch:

Gate S/R with clock C.

When C=1, latch is transparent; C=0, holds state.

3. D Latch:

Derived from SR latch: D=1 → Set; D=0 → Reset when C=1; C=0 → Hold.

4. Master–Slave & Edge-Triggered D FF:

Two latches in series: master enabled on C=1, slave on C=0.

Edge-triggered FF updates only on clock transition.

5. JK & T Flip-Flops:

JK: J=K=0 → Hold; J=1 K=0 → Set; J=0 K=1 → Reset; J=K=1 → Toggle.

T: T=0 → Hold; T=1 → Toggle.

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 2/7

Guest
Rectangle

Sequential Analysis & Design

1. Analysis Steps:

Given flip-flop type and logic, derive next-state and output equations.

Build a state table: (Present State, Input) → (Next State, Output).

Draw state diagram (Mealy: arc labeled X/Y; Moore: state labeled /Y).

2. Design Procedure:

a. Specification → State Diagram (identify states, inputs, outputs).

b. State Assignment: Choose binary codes (Gray code often minimizes logic).

c. State Table: List all (PS, X) → (NS, Y).

d. Equations:

For D-FF: D_i = Q_i(t+1).

For JK: use excitation table to find J,K.

For T: T = Q ⊕ Q(t+1).

Output logic: depends on PS (Moore) or (PS+Input) (Mealy).

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 3/7

Guest
Rectangle

e. Simplify: Karnaugh maps or Boolean algebra.

f. Implementation & Verification: Map to gates/FFs, simulate/state-table check.

3. Example (Sequence Detector “1101”):

States: S0(no bits), S1(“1”), S2(“11”), S3(“110”).

Transitions labeled with input/output.

Assign codes (e.g., 00, 01, 11, 10); derive D1,D0 and y = Q1 · ¬Q0 · x.

Registers, Counters & Shift Registers

1. Registers:

n D-FFs storing n-bit word.

Microops: load, increment, decrement, bitwise NOT, logical/arithmetic ops via

ALU.

2. Transfer Structures:

MUX-Based: Each register input has a MUX to select source.

Bus-Based: One shared bus, each register output enabled via tri-state buffer.

3. Shift Registers:

SISO: Serial in → shift → serial out.

SIPO: Serial in → after n clocks, parallel outputs ready.

PISO: Parallel load → shift out serially.

PIPO: Standard register (parallel load/read).

4. Counters:

Ripple (Asynchronous): Clock drives LSB; each stage toggles on previous

output edge (slower).

Synchronous: All FFs share clock; next-state logic determines toggles.

Up/Down, Mod-m, BCD: Use combinational logic to reset or invert as needed.

Example: 4-bit synchronous up-counter with T-FFs: T_i = Q0 · Q1 · … · Q_{i-1}.

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 4/7

Guest
Rectangle

Algorithmic State Machines (ASMs)

ASM Chart Symbols:

1. State Box: Clocked microoperations inside.

2. Decision Box: Conditional test (Yes/No paths).

3. Conditional Output Box: Output action based on decision.

Steps to Build ASM:

1. Identify clocked actions and decisions.

2. Draw state boxes with microops.

3. Add decision diamonds for condition checks.

4. Label transitions (e.g., “if x=1 → next state; else → another state”).

5. Derive flip-flop/input equations from ASM.

Example (Euclid GCD):

IDLE: wait GO, load A←X,B←Y. → COMP

COMP: if A>B, A←A−B; else if A<B, B←B−A; else → DONE

DONE: DONE=1 for one cycle, then return to IDLE.

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 5/7

Guest
Rectangle

Datapath & Control Basics

1. Datapath Components:

Register File: Multiple registers with two read ports (Bus A, Bus B) and one write

port (Bus D).

Mux B: Select between register B or immediate.

ALU: Arithmetic/logic operations on Bus A and Mux B output.

Shifter: Shift/rotate operations on Bus B.

Mux F: Select ALU or Shifter output.

Mux D: Select between Mux F or external data for writing.

Status Flags: Z (zero), N (negative), C (carry), V (overflow).

2. Control Word Fields (example 16 bits):

[15–13] DA: Destination register (write).

[12–10] AA: Source for Bus A.

[9–7] BA: Source for Bus B.

[6] MB: 0→ register B, 1→ immediate.

[5–2] FS: ALU/Shifter function select.

[1] MD: 0→ Mux F, 1→ external data.

[0] RW: 1→ enable write to DA on rising clock edge.

3. Function Select (FS) Examples:

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 6/7

Guest
Rectangle

0000: F←A (pass A)

0010: F←A+B (add)

0100: F←A−B (subtract)

0110: F←A∧B (AND)

0111: F←A∨B (OR)

1010: F←shift right(B)

1011: F←shift left(B)

1100: F←0 (zero)

1101: F←1 (one)

4. Microinstruction Sequencing:

Control word loaded each cycle.

On clock: assert control signals → datapath executes ALU/Shifter → Mux D

selects data → if RW=1, write to register.

Next microaddress: either increment or branch based on flags/inputs.

10/1/25, 3:04 PM 25. Final Exam Review

file:///C:/Users/Aykhan/Downloads/ELEC205/ELEC205%2019d34575a83880aaa248c7c94c678a9c/25%20Final%20Exam%20Review%2020034575a… 7/7

Guest
Rectangle

