A

ELEC205

Digital Systems Design
COURSE NOTES

Aykhan Ahmadzada

Koc University

© 2025 AYKHAN AHMADZADA

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means—electronic, mechanical,
photocopying, recording, or otherwise—without prior written permission
from the author.

This work is a personal academic compilation created for educational
purposes as part of the ELEC205 (Digital System Design) course at Ko¢
University.

Compiled in Istanbul, Turkey.

Guest
Rectangle

ELEC205

4
4
4

4
4
4
4
4
4
4
4
4

1. Introduction to Digital Devices

2. Binary numbers, Unsigned addition/subtraction, Two’s complement system

3. Multiplication, Division, and Binary-Coded Decimal in Digital Systems

4. Combinational Digital Systems and Boolean Algebra

5. Boolean Function Representations and Circuit Optimization

6. Karnaugh Maps and Boolean Function Optimization

7. Karnaugh Map Simplification & Prime Implicant Optimization

8. Digital Logic Optimization and Karnaugh Map Techniques

9. Exclusive OR, Adder Circuits, and Digital Addition

10. Digital Decoders: Architecture, Expansion, and Applications in Circuit Design

11. Encoders, Selecting Functions and Multiplexers

12. Solutions for Midterm Sample Questions

Guest
Rectangle

®* B F B K F B F B K F B H

13. Sequential Logic and Memory

14. Flip-Flops & Sequential Circuit Analysis

15. Finite State Machines: State Diagrams, Models, and Representations

16. FSM Design & Sequence Detection

17. State Assignment & Minimization

18. Sequential-Circuit Fundamentals & Flip-Flops

19. Registers & Bus-Based Transfer Structures

20. Registers and Register Transfer Operations

21. Counters, Shift Registers, and Serial Transfer

22. Programmable Computer and Control Unit

23. Algorithmic State Machines and ASM Design

24. Design Examples

25. Final Exam Review

Guest
Rectangle

1. Introduction to Digital Devices

Objective: This note covers the topics from ELEC 205 Week 1 (Slides 9-36), focusing on
the transition from analog to digital systems, fundamental digital devices, and an
introductory multiplexer (MUX) design example.

What is Digital? (Analog vs. Digital)

Digital systems operate on discrete (individually separate and distinct) signals—typically
0s and 1s—in contrast to the continuous range of analog signals. Understanding the
interplay between analog and digital is crucial for modern electronic design.

Analog vs. Digital Signals
Real-world signals (such as sound waves) are analog and vary continuously. Digital

systems sample these signals at discrete intervals.

(NYQUIST-SHANNON) SAMPLING THEOREM: If you sample an analog signal at a
rate at least twice its highest frequency component, you can fully reconstruct it from
these samples. This minimum sampling rate is called the Nyquist rate.

Frequency: the number of waves that pass by each second, and is measured in Hertz
(Hz).

Physical Storage of 0s and 1s

Guest
Rectangle

e BumpsonaCD

e Magnetic domains on a hard disk

e Charge in flash memory transistors
e Flip-flops in integrated circuits

Although hardware at the transistor level is analog, digital abstraction ensures signals are
treated as purely "HIGH" (1) or "LOW" (0).

Analog and Discrete Sinusoidal Signals

1.00 - - Analog Signal
® Discrete Signal

0.75 -

0.50

0.25

0.00

Amplitude

-0.25 |

-0.50 -

—-0.75 F

-1.00 -

I I I i I I i I I
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

Everyday Examples

e Analog TV vs. Digital TV: Digital TV encodes images as binary data frames, while
analog TV uses continuously modulated waves.

e CD Audio: Music is stored as samples at 44.1 kHz, each sample represented by bits.

e Cell Phones: Convert voice to digital signals, process internally, then convert back to
analog for playback.

Digital Systems and Applications

Guest
Rectangle

A digital system takes binary data as input, performs logic or arithmetic on it, and
outputs new binary data. In practice, an ADC (Analog-to-Digital Converter) fronts the
system for input, and a DAC (Digital-to-Analog Converter) follows it for output.

Examples of Applications

1. Gaming Consoles: Controller inputs are converted to binary, processed by a
CPU/GPU, then sent to a display or speakers (digital or analog output).

2. Personal Computers: Keyboard and mouse signals are interpreted digitally,
processed, and output to a monitor or speaker.

3. Cell Phones: Convert audio to packets of digital data, process and store them, and
finally reproduce audio signals.

« GAMING
I\ N ! ! \ L)
L4 > | L) L
Inputs V V) ‘Outputs

Benefits of Digital Systems

BENEFITS:
e Reproducibility: Digital copying does not degrade quality.

e Ease of Design: Logical operations (AND, OR, NOT) are simpler conceptually than
continuously variable signals.

Guest
Rectangle

¢ Flexibility & Programmability: Can be updated/reconfigured using firmware or
hardware description languages (HDLs).

e Speed: Modern transistors switch in picoseconds, enabling rapid processing.
e Economy: Highly complex functionality on tiny chips.

e Advancing Technology: Each new generation of semiconductor technology

brings higher performance at lower cost.

Digital Computer Architecture
A basic digital computer typically includes:
e Memory: Stores both instructions and data.
e Datapath: Executes arithmetic and logical operations.
e Control Unit: Directs the flow of data and orchestrates operations.

e CPU: Combines control and datapath, often featuring a Floating Point Unit (FPU)
for specialized arithmetic and a Memory Management Unit (MMU) for handling
caches and memory addressing.

Storage Unit

Secondary
Storage
Data—»| MPUL | 0] ¢
it Output Infor-
' Primary e o
' Storage Unl:c mation
= E
: "
: :
E Control ;
‘:ll'-----.---. Ul'!it ------------ :
; . (CU)
Block diagram of computer ;
Arithmatic and
Logical Unit » Data flow
(ALU) sessees (ontrol flow

Central Processing

Guest
Rectangle

Constructing Digital Systems

DIGITAL SYSTEM: Inputs (binary) — Processing (logic or arithmetic) — Outputs
(binary)

The high-level design flow involves specifying the required behavior, then transforming it
into logical components. Modern workflows use simulators and HDLs to validate designs

before hardware fabrication.

Analog

Mixed-Signal
Mixed-Technology Digital

Specification

Fabrication Fabrication

Specification

- System Gate-Level Checkerboard] o
2 _ _ Simulation Simulation Verification §
% simulaton Parasitic Parasitic &
2 Functional b - o
2 Simulation Extraction Extraction =
?u T {Interconnect (Mutiple £
) Partitioning RTL Timing) Interconnect g
2 . . Issues) &

Simulation Bl 4 455-
1st-Order _ . Ace an Block
Block Details Synthesis Route Interconnect

Mapping to Predefined Design

Full-

Ind-Order Transistor-Level System
Block Details Blocks Functional
Verification

MNth-Order
Block Dretails

Block Physical Design

Maoxdel
Calibration

Digital Devices (Gates and Memory)

Basic Gates

AND, OR, and NOT form the foundational building blocks of any digital logic design.
Combinational circuits are built exclusively from these gates or their derivatives.

COMBINATIONAL CIRCUIT: A circuit whose output depends solely on its current
inputs, with no internal storage. (no memory!)

Memory Elements

I FLIP-FLOP: A 1-bit storage device that latches data on a clock edge.

Guest
Rectangle

SEQUENTIAL CIRCUIT: Combines gates and flip-flops so that outputs depend on
current inputs and previously stored states (past inputs). (with memory!)

Sequential circuits can implement counters, shift registers, and entire finite state
machines.

Combinational v/s Sequential Logic Circuits

8 5
E'_’ Combinational — ‘g_
o @ E— — < 3 - Logic Circuit o
3_% _r’ Combinational _!_’ % :O
f .g ! Logic Circuit ! % -g
= > 1) v o5
Memory Elements

Combinational Logic Circuit Sequential Logic Circuit

WWW.ELECTRICALTECHNOLOGY.ORG

Electronic and Software Aspects

All gates and flip-flops are physically analog (transistors, resistors, capacitors), but
operate within defined voltage levels to represent 0 or 1. Designers rely on:

e CAD Tools & Simulators: For schematic-based or HDL-based design entry.

e HDLs (VHDL, Verilog, SystemVerilog): For specifying either the behavior
(dataflow/behavioral style) or structure (gate-level) of a design.

HDL: VHDL is a hardware description language (HDL) that is used to describe the
structure and behavior of digital systems and circuits.

Digital Design Levels (MUX Example)

Multiplexer (2-Input MUX)

A multiplexer (MUX) selects one of its inputs to pass through to the output.

Guest
Rectangle

MULTIPLEXER: A device that outputs one of several data inputs, controlled by a select
signal.

Multiplexers

»> Tt is combinational circuit that selects binary information

from one of many input lines and directs it to o/p line.

»> It is simplya DATA SELECTOR

Truth Table
s A B z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0

1 1 1 1

WhenS=0,Z=A.WhenS=12Z=B.

Gate-Level Diagram

Guest
Rectangle

» Gate level logic diagram (schematic):

A

e

HDL (VHDL) Example

library IEEE;
use IEEE.std logic _1164.all;

entity Vlimux 1is

port(
A, B, S : in STD_LOGIC;
z : out STD_LOGIC
)

end Vimux;

architecture Vimux_arch of Vimux is
begin

-- Dataflow style

Z <= A when S = '0' else B;
end Vlimux_arch;

This example demonstrates how designers can describe hardware behavior at a higher
level. A gate-level variant would instantiate specific AND, OR, and NOT components

Guest
Rectangle

directly.

Why Digital Wins: Precision, Stability, and Efficiency

Even though the physical world operates in an analog way—like sound waves,
temperature changes, and light brightness—modern technology increasingly relies on
digital systems because they offer precision, reliability, and efficiency that analog
cannot always provide.

Analog signals are continuous and can take infinite values, but they are also vulnerable
to noise and degradation. That's why, when you listen to an analog radio, you
sometimes hear that "dzzzzzz" noise—it's interference corrupting the signal. Over time,
copying an analog signal (like a cassette tape) causes it to lose quality, whereas digital
signals remain unchanged no matter how many times they are copied.

However, some things still feel analog, even in digital systems. For example, when you
adjust the brightness of your iPhone’s flashlight, it seems like a smooth change, but
the LED is actually flickering on and off rapidly using Pulse Width Modulation (PWM).
This is how digital systems simulate the behavior of analog while still keeping the
benefits of binary operation.

One key feature of digital devices is that they either work perfectly or not at all. Since
digital signals are based on 1s and 0s, there’s no gradual loss of quality. A radio station
using digital transmission either delivers a clear signal or nothing at all—there’s no static
like in analog radio. The same applies to digital files, which either open perfectly or
become completely unreadable if corrupted.

In the end, digital doesn't replace analog completely—it refines and optimizes it. We
still live in an analog world, but digital technology helps us process, store, and transmit
information more efficiently, making it clearer, more reliable, and easier to manipulate.

Self Test

#8 Self-Test: Lecture 1

Guest
Rectangle

2. Binary numbers, Unsigned
addition/subtraction, Two’s
complement system

Objective: This note covers the topics from ELEC 205 Week 1 (Slides 37-57), focusing on
number systems (binary, octal, hexadecimal), two's complement, and various binary
arithmetic operations.

Number Systems

A number system defines how numeric values are represented. In digital electronics, we
commonly use binary (base 2), but other bases such as octal (base 8) and hexadecimal
(base 16) are also helpful.

Guest
Rectangle

Numbering System
System Base | Digits

Binary 2 0,1
Octal 8 0,1,2,3,4,5,6,7
Decimal 10 |0,1,2,3,4,5,6,7,8,9

Hexadecimal | 16 |0,1,2,3,4,5,6,7,89,A,B,C,D,EF

Octal and Hexadecimal Numbers

Octal (base 8) digits cover 0 to 7, each corresponding to three bits in binary. Hexadecimal
(base 16) digits span 0 to 9 and A to F, each corresponding to four bits in binary.
Converting between binary and hex is straightforward by grouping bits in fours; octal
uses groupings of three bits.

OCTAL DIGIT: Uses 3 bits (e.g., 1015 = 5g).
HEXADECIMAL DIGIT: Uses 4 bits (e.g., 10109 = Aq).

These systems give concise shorthand for large binary strings, useful in debugging,
memory addresses, and processor instructions.

Positional Number System Conversions

Numbers in any base 7 are interpreted by positional notation. For digits to the left of the
radix point, powers of 7 increase from right to left; for digits to the right, powers of r are
negative.

1. Base-r to Decimal: Multiply each digit by 7P°!%°" and sum the results.

2. Decimal to Base-r: Repeatedly divide by 7, keep track of remainders, and reverse
them at the end.

EXAMPLE: Converting 179 to binary:
1. 179 = 2 = 89 remainder 1
2. 89 + 2 = 44 remainder 1

Guest
Rectangle

-
8

.44 + 2 = 22 remainder 0

. 22 + 2 = 11 remainder 0

. 11 + 2 = 5 remainder 1

. 5+ 2 = 2remainder 1

. 2+ 2 = 1remainder 0

. 1+ 2 = Oremainder 1 (MSB)

Reverse remainders —» 101100115.

Additional Example

Convert 3004 to octal:
300 +— 8 = 37 remainder 4
o 37 + 8 = 4 remainder 5

(o}

(¢]

4 + 8 = 0 remainder 4 (MSB)

o

Result: 454g.

Addition and Subtraction of Binary Numbers

Binary addition and subtraction are analogous to decimal, except the base is 2.

BINARY ADDITION: 1 + 1 = 105. If both bits are 1, produce a sum bit of 0 and carry
out 1.

BINARY SUBTRACTION: 1 -1 =0, but 0 - 1 requires borrowing from a more
significant bit.

Additional Examples

Addition: 10115 (11 in decimal) + 10004 (8 in decimal) = 100115 (19 in decimal)

Guest
Rectangle

* Addition
101111000

X 190 10111110

Y 141 10001101

+
X+Y 331 101001011

—|l=l=l=|loc|lo|loc|o i
£
—|l—lo|la(~|~|c|o
—lo|l—=|o|~|c|~]|c P
—|=|=lo|=|c|lo|c i
—lalal~lo|~|~|o B
Ll BN e AR R el e 5
[]
—lola|l~|co|~|~]|c§=

e Subtraction: 10115 (11in decimal) — 10004 (8 in decimal) = 00115 (3 in decimal)

* Binary subtraction: (borrow, difference bits)

Y Cou S Bou [}]

Bout 001111100 o 10 10 10 10 190 10
0 0 1 0 1 1 1

Minuend X 229 11100101 S —To To 1 o T
Subtrahend Y 46 00101110 0 1 1|1 0 0 0
- 1 0 0 0 1 1 1

Difference X-Y 183 10110111 (o Jt gt jo 1t [0
1 1 0 1 0 0 0

1 1 1 1 1 1 1

— Use binary subtraction to compare numbers.
— If X-Y produces a borrow out at the most significant bit, then X is less than Y.

Representation of Negative Numbers

Various methods can represent signed integers in binary:

SIGNED-MAGNITUDE: A sign bit plus magnitude bits.
ONE’'S COMPLEMENT: Flip (invert) all bits to represent negative.
TWO'’S COMPLEMENT: Invert bits and then add 1 for negative.

Two's complement is most common because it simplifies hardware for
addition/subtraction.

Signed-Magnitude System

Guest
Rectangle

The most significant bit (MSB) is the sign: O for positive, 1 for negative. The rest of the bits
store the magnitude. Though intuitive, arithmetic operations are more complex
compared to two's complement.

Sighed-Magnitude System

* MSB: sign bit, 0:plus, 1: minus

01010101, = +85,, 11010101, = -85,
01111111, =+127,, 11111111,=-127,,
00000000, = +0, 10000000, = -0,

— n-bit signed integer lies within —(2"1-1) through +(2"-1) with
two representations of zero.

Diminished Radix Complement System

(r — 1)’S COMPLEMENT: For an n-digit number N, (r™ — 1) — N.In binary (r =
2), this is one's complement, created by flipping all bits.

The diminished radix complement system is a way of representing negative numbers
by subtracting a number from the largest possible value in a given number system.

Guest
Rectangle

* Given a number N in radix r having n digits
* The (r-1)’s complement of N is defined as: (r"—1) - N

* For binary, one’s complement of Nis: (-N)=(2"-1)-N

Forn=4
-0001=1111-0001=1110
-0101=1111-0101=1010

Complement Number Systems

Complement systems allow negative numbers to be handled using the same addition
logic as positive numbers.

RADIX COMPLEMENT: For base 7, the complement is 7 — N. In binary, 2" — N
(two's complement).

» Taking the complement is more difficult than changing the sign, but
in complement system add/subt are easier.

* Radix complementofN: (-N)+N=r" =2 (-N)=r"—=N
where N is an n-digit number

— If N is between 1 and r"-1 then (-N) is between r*-1 and r"- (r"-1) = 1

— When N=0, (-N) is r", which is (n+1) digits, hence (-N) is also 0.

Two's Complement System
1. Invert (one's complement).

2. Add 1.

Guest
Rectangle

TWO'’'S COMPLEMENT: — NV is 2" — N. This avoids having two representations for
zero and simplifies arithmetic.

e Range for n bits: —2" ! through +2" 1 — 1.

* Radix complement for binary numbers

N: n bit binary number
(-N)=2"-N=(2"-1)-N+1

17,0 = 00010001, 0000,
11101110 111
+] + 1
11101111, =-1710 10000,

Additional Example

e Convert -6 to 8-bit two’'s complement:
1. +6 = 0000 0110.
2. Flip bits - 1111 1001.
3. Add1- 1111 1010 (final representation of -6).

Signed Number Systems

SIGNED NUMBER SYSTEMS:
e Signed-Magnitude (clear sign bit, complex arithmetic)
e One's Complement (invert bits for negative)

e Two's Complement (dominant standard, single zero, consistent
addition/subtraction)

Guest
Rectangle

Let's consider n-bit binary number:A=a_,a_, ..

4]

* Sign-Magnitude System (-(2"*-1)to (2™*-1))

— Sign:a_, (MSB); a,_,= 0 positive, a_,= 1 negative

— Magnitude: a_, ..a, a,
* One's Complement System (-(2"-1) to (2™-1))

— Negation is represented with bitwise NOT

s (-A)=(2"-1)-A= a'n_1 a'n_2 ...EI'1 alo ; (+1=0001, -1=1110)
* Two's Complement System (-(2"?) to (2"-1))

— Decimal value of A is represented as:

« A=-2""a_ +2™a_ _+..2%, +2%,
— Satisfies (-A)+A=2" > (-A)=2"-A=(2"-1)-A+1

3-Bit Number Examples
When n = 3, two's complement ranges from —4 (1005) to +3 (0115).

Unsigned Signed One's Two's
Magnitude Complement Complement
000 0 0 0 0
001 1 1 1 1
010 2 2 2 2
011 3 3 3 3
100 4 -0 -3 -4
101 5 -1 -2 -3
110 6 -2 -1 -2
111 7 -3 -0 -1

Additional Example

Guest
Rectangle

Signed- One’s Two's

Binary s Eee Magnitude Complement Complement
100 4 -0 -3 4
101 5 -1 2 -3
10 6 -2 g 2
M 7 -3 (or -0) -0 (or -0) =1

Addition in Two’s Complement

Perform regular binary addition. A negative operand is already stored in two's
complement form.

EXAMPLE: —3 + 1 in 4-bit two's complement
e —3-1101,
e +1-0001,
e Sum = 11105 (-2 in decimal)

Check for overflow when results exceed [—2”_1, on—1 _ 1].

Additional Example
e —4 4+ 2in4-bit:
o —4 = 1100,
o 2=10010,
o Sum=11105 - (-2)

Subtraction in Two's Complement

To subtract Y from X, compute X + (—Y'). Negative numbers are formed via two's

complement.
Additional Example
e 5 — 6in4-bit:
o 5 =0101,

Guest
Rectangle

o 6 = 0110,
o —6 =1001, +1 = 1010,
o 0101 41010 = 11115 = (-1)

1. Unsigned System

e Represents only non-negative numbers.
e All bits contribute to the numerical value.
e Therangeis from 0 to 2" — 1 for an n-bit system.
e Example (4-bit system):
o Binary: eeee to 1111
o Decimal equivalents: ¢ to 15

There is no concept of negative numbers in an unsigned system.

2. Signed Systems (Different Complement Methods)

A. Signed Magnitude
e The leftmost bit (MSB) is the sign bit.
o o = positive
o 1 = negative
e The remaining bits represent the magnitude.
e The range for an n-bit systemis — (2" — 1) to +(2""1 — 1).
e Example (4-bit system):
O o111 = +7
o 1111 = -7
o Problem: Two representations of zero (eeee and 100), which makes arithmetic

operations complicated.

B. One’s Complement (Diminished Radix Complement)

Guest
Rectangle

¢ Negative numbers are represented by flipping all bits.

e The range for an n-bit system is —(2’”*1 —1)to +(2”*1 —1).

e Example (4-bit system):

O 111 =
O 1000 =
O peed =
o 1111 =

+7

-7

+0

-0 (Problem: Two zeros, which complicates arithmetic)

C. Two’'s Complement (Radix Complement)

¢ Negative numbers are found by flipping all bits and adding 1.

o The range for an n-bit systemis —2" 1 to +(2""1 — 1) .

e Example (4-bit system):

O e111 =

O 1001 =

+7

-7

o Only one zero (@222), solving the double-zero issue.

o Arithmetic works smoothly, making it the standard for modern computers.

Key Differences Between Signed and Unsigned Systems

Feature

MSB Role

Range (4-bit)

Negative
Representation

Zero
Representation

Arithmetic
Simplicity

Unsigned

Part of the
magnitude

@ to 15

Not supported

o000 (0 only)

Simple but no
negatives

Signed
Magnitude

Sign bit (0 = +,1

Flip MSB

o000 (+0), 1000
(-0)

Complex

One's
Complement

Sign bit (0 = +,1

Flip all bits

o000 (+0), 1112
(-0)

Complex (double
Zero)

Two's
Complement
Signbit (0 =+,1=
-)

-8 to +7

Flip all bits and
add 1

oooo (only one
Zero)

Efficient
(modern

Guest
Rectangle

standard)

¢ Unsigned numbers are simple but cannot represent negatives.

¢ Signed numbers use different methods, with two’s complement being the most
practical and widely used because it avoids double-zero issues and simplifies
arithmetic.

¢ Diminished Radix Complement (One’s, Nine's, Three’s, etc.)
o Found by subtracting from the highest possible value minus 1.
o Has two representations of zero.

¢ Radix Complement (Two’s, Ten's, Four’s, etc.)
o Found by subtracting from the full radix power.

o Has only one zero representation, making it more practical for arithmetic.

Complement Comparison Table

Diminished Radix Radix
Base Formula Formula
Complement Complement
T 1
Binary (2) One's Complement (2" —1) — N o 2" - N
Complement
. ., n Ten's n
Decimal (10) Nine's Complement (10" — 1) — N 10" — N
Complement
Three’ Four’
Quaternary (4) rees (4" —-1)— N ours 4" — N
Complement Complement

Binary Multiplication
Unsigned multiplication uses shift-and-add. Two’'s complement multiplication extends

this approach while managing sign bits.

BINARY MULTIPLICATION: Multiply partial products, each shifted by the position of
the bit in the multiplier.

Guest
Rectangle

110101 , -

X 101 X 5
I 265

LT 1
110101

0000000
+11010100

100001001

Additional Example

e 3 X 2inbinary (unsigned):
o 3 =0011,
o 2=0010,
o Multiply partial products:
= 1(LSBof2) - 0011
= Next bitis 0 - 0000, shifted
= Sum = 01105 (6 in decimal)

Binary Division

Binary division often uses shift-and-subtract. For signed numbers, adjust for sign before
or after the division.

Guest
Rectangle

00100111 39

101)T1000011
0T W 57105

1000
=101

0111
~101]
0101
—101
000

Additional Example
e 14 + 2inbinary:
o 14 =11105,2 = 0010,.

o Perform repeated shifting and subtracting until the final quotient is found (
01115) = 7, with remainder 0.

Binary-Coded Decimal (BCD)

BCD encodes each decimal digit (0-9) into a 4-bit binary code (0000 to 1001). Any 4-bit
pattern above 1001 is invalid in standard BCD.

I BCD: 0111 (7)is valid, 1010 (10) is not valid for a single decimal digit.

BCD Addition
If a 4-bit sum exceeds 9 (10015), add 6 (01105) to adjust the digit and manage any carry.

Additional Example

Guest
Rectangle

e Add 44 and 89 in BCD:
o 44 -01000100
89 - 10001001

(o}

(¢]

Initial sum = 1 0011 1111 (not corrected)

o

Adjust each nibble > 1001 by adding 0110

o

Final correct BCD result =133 (133 =0001 0011 0011 in BCD)
Big-Endian Binary Byte

MSbit LSbit

O 1 0 0]1 1 0 1

Upper Nibble Lower Nibble

Why is BCD (Binary-Coded Decimal) Used?

BCD (Binary-Coded Decimal) is used primarily in applications where decimal
precision is important. Instead of storing numbers in pure binary, BCD represents each
decimal digit separately using a 4-bit binary equivalent. BCD is not memory-
efficient. It wastes storage compared to pure binary. BCD is easy to encode and
decode.

Self Test

#R Self-Test: Lecture 2

Guest
Rectangle

3. Multiplication, Division, and
Binary-Coded Decimal in Digital
Systems

This note covers the full range of arithmetic operations in digital systems, including both
multiplication and division for signed and unsigned numbers, as well as an in-depth look
at Binary-Coded Decimal (BCD).

Multiplication in Digital Systems

Multiplication in digital systems can be performed on both unsigned and signed
numbers. The underlying mechanism is typically based on the shift-and-add algorithm.

Unsigned Multiplication

For unsigned numbers, multiplication is conceptually similar to decimal multiplication
but performed in binary. The basic idea is:

e Shift: For each bit in the multiplier, shift the multiplicand by the appropriate number
of positions.

e Add: Sum the shifted multiplicands where the corresponding bit of the multiplier is 1.

Guest
Rectangle

Example: Multiply 10115 (11in decimal) by 01015 (5 in decimal).

e Multiply each bit of the multiplier by the multiplicand and shift accordingly.

e Add the resulting partial products to obtain the final product.

BinCIrg MUHlleCOilon THE MATH EXPERT

1T 1 1 0 1 -<—— Multiplicand
x 1 0 0 1 =<—— Multiplier

—

11101
Add all the partial 70000 0(X-
products —
50000 0& 0|
0

+1 11 1 @_*__9 i > Place Holders

FinalProduet—— 1 0 O O 0O O 1 0O 1 1) — Denotes a carry over

]

«— Partial Products

Rules of Binary Multiplication
0x0-0,0x1=0,1x0-0,1%x1=1
Rules of Binary Addition
0+0-0,0+1-1,1+1=10,1+1+1-1

Signed Multiplication

For signed numbers, the typical method is to use two’s complement representation. The
same shift-and-add procedure is applied, but extra care is needed to:

¢ Sign Extend: Ensure that when shifting, the sign bit is correctly extended.
e Adjust: Interpret the final result as a two's complement number.

e Two's Complement Correction: If the multiplicand is negative, the last partial
product must be converted to its two's complement form to maintain correctness.

Guest
Rectangle

Key Point: The algorithm for signed multiplication is similar to unsigned multiplication,
but the hardware or software must handle sign bits appropriately, ensuring that negative

partial products are correctly processed using two's complement conversion when
necessary.

Multiplication of Signed Binary Numbers

011
111

011
11X

1 XX

m) -35

2s Complément 0

Multiplication of Signed Binary Numbers

011
00

1
0

0
0
0 X
X

; 2s Complement

01 mp 35

2. Division in Digital Systems

Guest
Rectangle

Division is the inverse of multiplication and, like multiplication, is performed differently
for unsigned and signed numbers.

Unsigned Division
Unsigned division is generally carried out by a shift-and-subtract method:
o Shift: Align the divisor with the dividend's most significant bit.

e Subtract: Subtract the divisor (or its shifted version) from the dividend if it fits;
record a 1in the quotient.

e Repeat: Continue the process by shifting and subtracting until all bits are processed.

Example: Dividing a binary number by another using repeated subtraction and shifts.
Binary Division

011010 =) Quotient

11010011100 11010 == 26
1101 10011100 == 156

110

00110 156 + 6 = 26
110

0000 ‘ Remainder

Signed Division
For signed division using two's complement representation, the algorithm typically
involves:

e Determining the Sign: The sign of the result is the product of the signs of the
dividend and divisor.

e Converting to Unsigned: Temporarily convert both numbers to their absolute
(unsigned) values.

Guest
Rectangle

¢ Performing Division: Use the unsigned division algorithm.
e Restoring the Sign: Apply the appropriate sign to the quotient.

Considerations: Care must be taken to handle cases like division by zero and the edge
case where the dividend is the minimum representable value.

3. Binary-Coded Decimal (BCD)

Binary-Coded Decimal (BCD) is a method of representing decimal numbers in which each
digit is stored as its own 4-bit binary number. This is especially useful in applications
where decimal precision is critical (e.g., financial calculations).

Representation

e Standard BCD: Each decimal digit (0 through 9) is represented by a 4-bit binary
code.

o For example, the decimal number 93 is represented as:

9 — 1001, 3 — 0011, s093is1001 0011 in BCD.

Operations in BCD

Arithmetic operations in BCD (addition, subtraction) are performed digit by digit.
However, if the result of a digit addition exceeds 9 (1001 in binary), a correction must be
applied:

e Correction Rule: If the sum of a digit exceeds 9, add 6 (0110 in binary) to that digit
and propagate the carry to the next higher digit.

Example of BCD Addition:

Add 44 and 89 in BCD:
e Represent 44 as: 0100 0100
e Represent 89 as: 1000 1001
e Add corresponding digits:

o Right nibble: 0100 + 1001 = 1101. Since 1101 (13) is greater than 9, add 0110
toget 1101 4 0110 = 10011 (carry 1, result digit 0011).

Guest
Rectangle

o Left nibble: 0100 + 1000 + carry 1 = 0100 + 1000 + 0001 = 1101.
Again, 1101 (13) is greater than 9, so add 0110 to get 1101 + 0110 = 10011
(carry 1, result digit 0011).

e The final BCD result must be adjusted to reflect the carried digits appropriately. (The
exact BCD representation would depend on the method used, ensuring the final
answer has the correct number of significant digits based on the lowest precision
input.)

Importance of BCD

BCD is crucial in systems where decimal accuracy matters because it avoids rounding
errors that can occur when converting between binary and decimal. Although it is less
space-efficient than pure binary, its simplicity in representing decimal digits makes it
valuable in financial and commercial applications.

6 6 1 1 0 «— BCD for 6
+ 8 1 0o 0 O « BCD for 8
14 1 1 1 0 « Invalid BCD number
= 0 1 1T @ +— Add 6 for correction
0o 0 0 1 0 1 0 0
« BCD for 14
S 1 2
Summary

This note has covered:

e Multiplication: Both unsigned and signed (using two’'s complement), focusing on
the shift-and-add method and the handling of sign bits.

¢ Division: Both unsigned (via shift-and-subtract) and signed division (including
conversion to absolute values and sign correction).

¢ Binary-Coded Decimal (BCD): Representation of decimal digits in 4-bit groups, the
rules for BCD arithmetic, and the importance of maintaining decimal precision.

Guest
Rectangle

Understanding these operations is essential for designing efficient digital systems,
especially in contexts where arithmetic accuracy and data representation are critical.

Self Test

#R Self-Test: Lecture 3

Guest
Rectangle

4. Combinational Digital Systems
and Boolean Algebra

This note covers topics from combinational digital systems to Boolean algebra, as
presented in the lecture slides (23 to 57). It includes detailed explanations of digital logic
circuits, basic gate functions, multi-input systems, and key Boolean algebra theorems
and properties.

Combinational Digital Systems

Combinational digital systems are circuits where the output depends solely on the
current inputs, with no memory elements. They contrast with sequential systems, where
past inputs affect the current output.

COMBINATIONAL DIGITAL SYSTEM: A system in which the output is determined
only by the current combination of inputs.

Key Points:
e No storage or memory; all operations are instantaneous.

e Used for arithmetic operations, data routing, and signal processing.

Guest
Rectangle

e Fundamental building blocks for more complex circuits like adders, multiplexers, and
decoders.

= O

= Combinational Digital Systems

Let’s complicate things a little bit:
Two inputs, one output ﬂ

00,0 O O 1 1 0 1 1
01/0 0 1 1 0 1 0 1
10 0 0 1 1 0 1 0 1
11/ 0 1 1 0 0 0 1 1

f;=0 fy=xy fi=x+y f=(xy)’ fo=(x+y)" fe=x@y f=(xDy) fg=1
X

SN -
DD D D D>
V'al‘ue AND OR NAND NOR XOR XNOR Value
Fixing Fixing 25

Logic Gates

AND Gate
¢ Function: Outputs 1 only if both inputs are 1.

e Algebraic Expression: f =z - y

Guest
Rectangle

e Truth Table:

X y -y
0 0 0
0 1 0
1 0 0

AND GATE: A basic digital logic gate that produces an output of 1if and only if all its
inputs are 1.

@eYWus

B — Output

OR Gate

e Function: Outputs 1if at least one input is 1.
e Algebraic Expression: f = = + y

e Truth Table:

o O
o
o

OR GATE: A logic gate that outputs 1if one or more of its inputs are 1.

Guest
Rectangle

[@EYUs

Y=A+B

NOR Gate

e Function: Outputs 1 only if all inputs are O (i.e., the complement of OR).
e Algebraic Expression: f = (z + y)’

e Truth Table:

X y f
0 1
0 1 0
1 0 0
1 1 0

NOR GATE: A logic gate whose output is the complement of the OR gate's output.

AT

NAND Gate

¢ Function: Outputs 0 only if all inputs are 1 (i.e., the complement of AND).

e Algebraic Expression: f = (z - y)’

Guest
Rectangle

e Truth Table:

X y f
0 0 1
0 1 1

NAND GATE: A gate that outputs the inverse of the AND gate’s result.

O EACER

B — Output

XOR Gate

e Function: Outputs 1if the inputs are different.
e Algebraic Expression: f =z Dy = (z-y) + (T - y)

e Truth Table:

o O
o

XOR GATE: An exclusive OR gate that outputs 1 when the number of 1's in the inputs is
odd.

Guest
Rectangle

@Byys

A Y
Input
5 Qutput

XNOR Gate

e Function: Outputs 1if the inputs are the same.
e Algebraic Expression: f = (z @ y)’

e Truth Table:

X y f
0 1
0 1 0
1 0 0

XNOR GATE: A gate that produces an output of 1 when both inputs are equal; it is the
complement of the XOR gate.

[BBYJUS
A Y
Input
B Qutput

Combinational Digital Systems

Guest
Rectangle

These systems are built using logic gates. They produce an output solely based on the
current inputs.

¢ Simple Two-Input Systems: Basic circuits that perform operations like AND, OR,
and XOR.

e Multi-Input Systems: Systems with more than two inputs can be built by combining
two-input gates.

e Design Strategies:
o Sum of Products (SoP): Expresses the function as an OR of minterms.

o Product of Sums (PoS): Expresses the function as an AND of maxterms.

COMBINATIONAL DIGITAL SYSTEM: A circuit where the output is a function solely
of the current input values, with no memory element.

D [ATE
- >
v =D —
) | —F2
4 / —L/
(a) F2 =x’y’'z + X’yz + xy’
X \
> —__/
F2
>)
z ¥ 4

(b) F2 =xy’ + X’z

Three-Input Systems

Guest
Rectangle

When designing systems with three or more inputs, the complexity increases, but the
principles remain the same.

e Example: A three-input AND gate outputs 1 only when all three inputs are 1.
e Design Consideration: Ensure that the circuit is scalable by breaking down the logic

into simpler two-input operations if necessary.

THREE-INPUT SYSTEM: A digital logic circuit that accepts three binary inputs and
produces an output based on a specified Boolean function.

3 Input AND Gate
TRUTH TABLE

INPUTS OuUTPUT

AND Gate W x X =

8] 0 0 8]

w4 0 O 1 0
b I - il] 1 0 0
) - S] 1 1 0
1 0 0 0

1 o 1 0

1 1 0] 0

1 1 1 1

General Approach for Building Combinational Digital
Systems

The design of combinational circuits generally follows these steps:

Define the Boolean function using truth tables.

Express the function in standard forms, such as SoP or PoS.

Use Boolean algebra to simplify the expression.

Implement the simplified expression using basic logic gates.

Guest
Rectangle

DESIGN APPROACH: Use Boolean algebra and standard forms (SoP or PoS) to design
efficient combinational circuits from basic gates.

Boolean Algebra

Boolean algebra is the mathematical foundation of digital logic. It uses a set of variables
that take on values from {0, 1} and is governed by specific operations and laws.
Basic Operations

e AND (-)

e OR(+)

e NOT ()

BOOLEAN ALGEBRA: A branch of algebra dealing with binary variables and logical
operations.

AND OR XOR
l:-:n x|y FIlxly F
o1 oo|lo oo|lo o0 0o
1| o sliilo) Moifdbe Fol
1 00 o e
’|>°’111 1 11 1 10
— _— —
= >3 >-T) >

Boolean Algebra Theorems

Identities and Null Elements

Guest
Rectangle

e Identity Laws:
x+0=zandx-1==2

e Null Laws:

r+1=1andz-0=0

IDENTITY AND NULL LAWS: Fundamental rules that simplify expressions by defining
the effect of adding 0 or multiplying by 1, and their opposites.

Idempotency and Complements
e Idempotent Laws:
r+r=rxrandr-r =21
e Complement Laws:
z+x' =landz-2' =0
IDEMPOTENCY: The property that combining a variable with itself does not change
its value.

COMPLEMENT: A variable's complement is the opposite value (if z = 0, then 2’ = 1;
ifz =1,thenz’ = 0).

Involution and Commutativity
¢ Involution:
(') ==
e Commutativity:
rTt+y=ytrandxr-y=y-x
e Associativity:

z+(y+z)=(z+ty)tzandz-(y-2)=(z-y) 2

INVOLUTION: The principle that taking the complement twice returns the original
value.

Guest
Rectangle

Name AND form OR form
|dentity law 1A=A 0O+A=A
Null law DA=0 1+A=1
|dempotent law AA =A A+A=A
Inverse law AA=0 A+A=1
Commutative law | AB = BA A+B=B+A
Associative law (AB)C = A(BC) (A+B)+C=A+(B+C)
Distributive law | A + BC = {A +B)(A+C) |AB+C)=AB+AC
Absorption law AA +B) = A+AB=A
De Morgan's law | AB=A + E A+B=AB

More Theorems and Distributive Properties

e Distributive Laws:
z-(y+z)=(z-y)+(z-2)
z+(y-2)=(zr+y) (x+2)

e Absorption Laws:
z+ (z-y) ==
z-(z+y) ==
DISTRIBUTIVE AND ABSORPTION LAWS: Rules that allow the reorganization and

simplification of Boolean expressions.

DeMorgan'’s Equivalences and Duality

DeMorgan'’s Equivalences
c @ y) =2 +y
¢« @ty =2y

Guest
Rectangle

DE-MORGAN'’S LAWS: Fundamental transformations that allow the complement of a
conjunction to be expressed as the disjunction of the complements, and vice versa.

De Morgan's Law

Bubbled AND

Bubbled OR

Duality Principle

The duality principle states that every Boolean expression remains valid if you swap AND
with OR and 0 with 1 throughout the expression.

DUALITY: The principle that the dual of any Boolean expression (by interchanging +
and -, and swapping 0 and 1) is also valid.

Extension to N-Variable Theorems

Boolean algebra extends naturally to functions of n variables:
e Theorems such as:

/ / !/ !/
($1+$2++xn) :xl.w2...xn

/ / !/ /
(x1-@o-+xp) =@y + 29+ -+,

e These generalize the two-variable cases to functions with many inputs.

Guest
Rectangle

NOTE: N-variable theorems are critical when designing complex digital circuits that
involve multiple inputs.

Back to Our Earlier Example

In earlier slides, a Boolean function was presented and simplified using the Sum of
Products (SoP) approach. Although we are excluding the detailed minterm/maxterm
representations beyond slide 57, it is important to understand that:

e SoP (Sum of Products) expresses a Boolean function as an OR of multiple AND
terms.

e This method is widely used to implement digital circuits.

e The simplified expressions allow for efficient hardware implementations using basic
gates.

SUMMARY: Using Boolean algebra, any Boolean function can be systematically
simplified and implemented using a combination of logic gates, ensuring efficient
digital circuit design.

Summary

This study material has covered:

e Combinational Digital Systems: The basis of digital circuits with outputs
depending solely on current inputs.

¢ Logic Gates: Detailed discussion of AND, OR, NOR, NAND, XOR, and XNOR gates,
including their functions and truth tables.

e Multi-Input Systems: How combinational systems extend to three or more inputs.

e Design Approaches: Using Boolean algebra to express functions in standard forms
such as Sum of Products (SoP) and Product of Sums (PoS).

¢ Boolean Algebra: Fundamental theorems, identities, and properties (including
idempotency, complements, DeMorgan’s Laws, duality, and distributivity).

e Extension to N-Variable Functions: Generalizing Boolean expressions for more
complex systems.

Guest
Rectangle

Understanding these topics is crucial for designing and optimizing digital systems, as
well as for simplifying and implementing logical functions in hardware.

Self Test

#R Self-Test: Lecture 4

Guest
Rectangle

5. Boolean Function
Representations and Circuit
Optimization

Objective & Scope

This note covers key topics from slides 14 to 49, focusing on methods to represent and
optimize Boolean functions and digital circuits. Topics include:

e Sum of Products (SOP) and Product of Sums (POS) approaches

e Comparison between SOP and POS representations

e Standard forms using minterms and maxterms

e Alternative representations and algebraic simplifications

e Circuit optimization criteria such as literal cost and gate input cost

This note is designed to provide a clear, comprehensive understanding of these
fundamental digital design concepts.

Sum of Products (SOP) Approach

Guest
Rectangle

SOP Approach: A method of representing Boolean functions where the function is
expressed as a sum (OR) of product (AND) terms, each called a minterm.

e Minterms:

MINTERM: A product term in which all variables appear exactly once (either
complemented or uncomplemented). For a two-variable function, the minterms
are:

XY, XY, XY, Xy

e Example (Two-Input System):

Consider a function f defined by the truth table:

X y f
0 0 1
0 1 1
1 0 0

1 1 1

This function can be represented as:
f=mo+my +mg3

where each m; is a minterm corresponding to the input combination.

Guest
Rectangle

pample L xy |

f=my+ m, + m;,

<
—ry

f=xy' +x’y +xy

XI
7
y_

= = O O
L O +—» O
R O R R

v 1 - £
X
y

Product of Sums (POS) Approach

POS Approach: An alternative representation where the Boolean function is

exp

ressed as a product (AND) of sum (OR) terms. Each sum term is called a maxterm.

¢ Maxterms:

MAXTERM: A sum term that contains every variable exactly once (in
complemented or uncomplemented form). For a two-variable function, the
maxterms are:

X+Y, X+Y, X' +Y, X' +Y’

e Example (Two-Input System):

For a function defined by:

X

0
0

y f
0 0
1 1
0 1

Guest
Rectangle

The POS representation may be obtained by first determining the maxterms for the
outputs that are 0 and then forming the product.

* Going back to the XOR function

* Apply the bubble trick! “-“

<

f=(x+y) - (X'+y’) 0 0 0
X o 1 1
! 1 0 1

— f 1 1 0
o

SOP vs. POS Representations
e Comparison:
o SOP (Sum of Products): Uses minterms; generally leads to an OR of AND terms.

o POS (Product of Sums): Uses maxterms; results in an AND of OR terms.

Key Observation: For any Boolean function, the SOP and POS representations are
duals of each other. The duality can be obtained by swapping ANDs with ORs, 0's with
1's, and variables with their complements.

e Example (XOR Function):

The XOR function can be expressed in SOP form as:
f=2y+ay
Its equivalent POS form can be derived as:

f=+y) (' +9)

Guest
Rectangle

This dual representation is useful when designing circuits using only NAND or NOR
gates.

SOP POS =
f=xy+xy’ f=(x+y’) (xty) 000

f
X o
y | y

4o
5>
oD o

Standard Forms: Minterms and Maxterms

e Minterms:
o There are 2" minterms for an n-variable function.
o Every Boolean function can be expressed as the sum of its minterms.
o Missing minterms correspond to the complement function.
e Maxterms:
o There are 2" maxterms for an n-variable function.
o Every Boolean function can also be represented as the product of its maxterms.

o A function that includes all maxterms equals 0.

Standard Form Representations: A canonical SOP expression is written as f =
Ym(%), while a canonical POS expression is written as f = IIM (7).

Guest
Rectangle

e Example (Three-Variable Function):
For a function F'(z, y, z), one might have:

F=2x2'y2 +2'yz' + 2z + zyz

and its complement can be expressed using maxterms.

Alternative Representations and Algebraic Simplification
¢ Algebraic Simplification:

Boolean algebra theorems (e.g., absorption, DeMorgan's laws) are used to reduce
expressions, which directly leads to simplified circuits.

o Absorption Law Examples:
X+XY=X and X(X+Y)=X
o DeMorgan’s Equivalences:
(X-Y)=X"4Y" and (X+Y)=X"-Y'

e Applying the Bubble Trick:

A technique to derive the POS form from a given SOP form by complementing and
then re-complementing the function.

e Canonical to Simplified Form:

Starting with a canonical sum (or product) and then applying algebraic methods to
minimize the literal count, which directly impacts circuit cost.

Circuit Optimization: Literal and Gate Input Cost

e Optimization Goals:

Minimize the hardware cost (number of gates and inputs) while ensuring correct
logical functionality.

e Literal Cost (L):

Guest
Rectangle

LITERAL COST: The total number of literal appearances (variables and their
complements) in a Boolean expression.

e Gate Input Cost (G):

GATE INPUT COST: The total number of inputs to the gates used in the circuit
implementation. Sometimes, the cost with NOT gates is also considered (GN).

e Example:

For a circuit implementing
F =BD+ AB'C + AC'D'

the literal cost might be 8 if each variable appearance is counted. Gate input cost is
calculated by summing the inputs for each gate used.

e Choosing the Best Implementation:

A lower literal and gate input cost often means a simpler, more efficient circuit.
Designers may choose between alternative representations (SOP vs. POS) based on
these cost criteria.

S~ CostCriteria ExampIeA
. B :
. F=ABCHABC C N
L= & i

GN= bt~ \\

o

« F=(A+C)(B'+C)(A +B) iD_',

- DB
G= évD> — 97 TET__ DI—
Lo

(@]vvh=

GN= 7 L~ N\

49

Guest
Rectangle

Final Summary & Key Takeaways
e Representation Methods:
o SOP uses minterms and provides an OR of AND terms.
o POS uses maxterms and provides an AND of OR terms.

e Duality and Equivalence:
Understanding the duality between SOP and POS forms helps in converting and
optimizing Boolean expressions.

e Standard Forms:
Canonical forms using minterms and maxterms provide a systematic way to
represent any Boolean function, serving as a starting point for simplification.

e Circuit Optimization:

Techniques such as algebraic simplification, the bubble trick, and cost analysis (literal
and gate input cost) are crucial for designing efficient digital circuits.

This comprehensive note consolidates the key points from slides 14 to 49, equipping you
with the foundational knowledge to represent and optimize Boolean functions for digital

circuit design.

Guest
Rectangle

6. Karnaugh Maps and Boolean
Function Optimization

Objective & Scope

This note covers the use of Karnaugh Maps (K-maps) and related techniques for
optimizing Boolean functions and digital circuits. It focuses on:

e Understanding the basic structure and purpose of K-maps

e Using two-variable and three-variable K-maps for function representation
e Alternative map labeling for improved pattern recognition

e Combining squares (grouping) to simplify Boolean expressions

e Practical examples of K-map simplification and circuit optimization

This comprehensive note is intended to provide both the theoretical foundations and
practical applications needed for effective digital circuit design.

Karnaugh Maps (K-maps)

Karnaugh Map (K-map): A graphical tool that reorganizes a Boolean function'’s truth
table into a grid format where adjacent cells differ by only one variable. This structure

Guest
Rectangle

enables visual grouping (combining) of 1's to simplify Boolean expressions.

e Structure:
o Composed of squares, each representing a minterm.

o Cells are arranged so that adjacent ones (horizontally or vertically) differ by a
single bit (Gray code ordering).

o Can be viewed as a reorganized truth table or a warped Venn diagram.

A. SOP: - B. POS: -
B B B B B B
A 0 1 A 0 1
A0l AB AB A0l A+B A+B

A1l AB A.B A+B A+B

>

Uses of Karnaugh Maps

Key Uses:

o Simplification: Derive optimum or near-optimum SOP (Sum of Products) or POS
(Product of Sums) expressions.

e Optimization: Minimize the literal cost and gate input cost in circuit
implementations.

e Visualization: Make the relationships between minterms clear, thereby aiding in
the identification of simplification opportunities.

e Design: Serve as an instructive tool for manually optimizing small digital circuits
before applying computer-aided techniques.

Guest
Rectangle

Two-Variable K-Maps
e Basic Layout:

o A 2-variable K-map has 4 cells corresponding to the minterms for variables x and

y:
= mg: 'y’
= my 'y
= my:xy’
= M3y

e Adjacency:
o Cells adjacent either horizontally or vertically differ by only one variable.

o This property allows adjacent cells containing 1's to be grouped for
simplification.

N
AW Two Variable K-Maps
ws
* Minterm m, and minterm m, are “adjacent” y=0 | y=1
— They differ in the value of the variable y <=0 m, m,
o IR RS A S
 Similarly, —
_ 2 3
— Minterms m and m, differ in the x variable x=1 xy' Xy

— Minterms m, and m, differ in the x variable

— Minterms m, and m, differ in the y variable

K-Maps and Truth Tables

¢ Relationship:

o AK-map is simply a reordering of a truth table to expose adjacent minterm
groupings.

Guest
Rectangle

o This organization helps in directly translating truth table information into
simplified Boolean expressions.

e Representation:

o Values from a truth table are entered into the K-map, marking 1's for minterms
where the function is true.

o These marked cells are then grouped to form simplified product terms.

Input | Function
Values Value
(x,y) F(x,y) 0
o o' — = 1
00 a y y
01 b x=10 a b
10 c

S

[\

.,
]
»

K-Map Function Representation

%

y y

x 0 1 XN 0 1
My m ny my y

0 0 1 B
L, ity m, iy
X <1 1 X411 1 1
P
X
(a) xy (b)x +y

Three-Variable K-Maps

e Layout:

o A 3-variable K-map contains 8 cells.

Guest
Rectangle

o The arrangement is designed so that each cell is adjacent to those that differ by
a single variable change.

o Commonly, variables are ordered such that one dimension (e.g., rows) represents
one variable while columns represent the other two in Gray code order.

e Adjacency in 3-Variable Maps:

o Allows grouping of cells into rectangles containing 2, 4, or 8 cells (powers of 2)
for minimization.

o The map can be visualized as a cylinder or a torus where the edges wrap around,
preserving adjacency.

&%, Three Variable Maps

U

* Athree-variable K-map:

X

00 01 11 10

My my ms m; O] x'y'z" | x'y'z | x'yz

m, s ms mg
my ms my Mg X9l xy'z" | o'z | ayz | ayZ’

_—

(a) (b)

* Note that if the binary value for an index differs in one-bit position
(Gray code sequence), the minterms are adjacent on the K-Map

Alternative Map Labeling

Alternative Labeling: Adjusting the labels or ordering of variables in a K-map can
make certain groups more apparent. This includes:

e Changing the sequence of variable representation.

e Using different orientations to emphasize adjacent groupings.
e Purpose:

o Facilitates easier identification of common patterns.

Guest
Rectangle

o Enhances clarity in reading product terms from the map.

y y yz y
"SI X\ 00 01 11 10

ol0 1 3 2

x[14 5 |7 |6

—
Z

|

Combining Squares (Grouping)
e Concept:

o Grouping: The process of combining adjacent 1's (marked cells) in the K-map to
form larger rectangles.

o Goal: Reduce the number of literals (variables) in each product term.

¢ Grouping Guidelines:

o

Single Cell: Represents a minterm with all variables.
o Pair of Adjacent Cells: Can eliminate one variable.

o Four Adjacent Cells: Can reduce a term to a single variable or even represent a
constant.

o Edge Wrapping: Cells on the edges of the K-map are considered adjacent if
they wrap around.

Guest
Rectangle

&%, Three-Variable Maps
NS

« Topological warps of 3-variable K-maps that show all adjacencies:

Venn Diagram Cylinder
" X

Final Summary & Key Takeaways

e Karnaugh Maps (K-maps) are powerful tools for Boolean function optimization,
particularly effective for functions with a small number of variables.

¢ Two-variable and three-variable maps provide a structured method for visualizing
and simplifying Boolean expressions.

¢ Grouping (combining squares) reduces the number of literals in product terms,
thereby minimizing circuit complexity.

Guest
Rectangle

e Alternative labeling and visualization techniques help in recognizing patterns and
adjacencies that may not be immediately obvious.

e Practical Applications:

K-maps are used to derive simplified SOP and POS forms, which lead to lower literal
and gate input costs in digital circuit implementations.

This note consolidates the key concepts from slides 51 to 67, equipping you with a clear

understanding of how to apply K-map techniques for Boolean function optimization in
digital system design.

Guest
Rectangle

7. Karnaugh Map Simplification &
Prime Implicant Optimization

Objective & Scope

This note focuses on methods for simplifying Boolean functions using Karnaugh maps (K-
maps) and optimizing their representations through prime implicants. We cover
techniques for three-variable and four-variable K-maps, learn how to identify minterms
and maxterms, practice prime implicant extraction, and explore an optimization
algorithm to select a cost-effective solution. This material corresponds to slides 15 to 23.

Three-Variable Map Simplification

e Overview:
The goal is to use a 3-variable K-map to simplify a Boolean function by grouping
adjacent 1's.

e Key Concepts:

o Grouping adjacent cells in powers of 2 (1, 2, 4, ...) minimizes the number of literals
in the product terms.

o Simplified terms (prime implicants) are derived from these groups.

Guest
Rectangle

Simplification Principle: Group adjacent 1's in the K-map to form the largest possible
rectangles; each rectangle corresponds to a product term with fewer variables.

Three-Variable Map Minterms/Maxterms

¢ Minterms and Maxterms:

o Minterm: A product term where every variable appears exactly once (in true or
complemented form).

o Maxterm: A sum term that includes every variable exactly once.

e Usage in K-maps:
Minterms are used in the Sum of Products (SOP) representation; maxterms are used
in the Product of Sums (POS) representation.

e Example:
A function may be written as a sum of specific minterms extracted from the K-map,
or as a product of its maxterms.

Key Idea: Expressing a function in canonical form provides a starting point for
minimization via grouping.

Four-Variable Maps

¢ Introduction to Four-Variable K-Maps:
Four-variable K-maps extend the principles of 3-variable maps with 16 cells.

¢ Layout and Adjacency:
o Cells are arranged so that every adjacent pair differs by only one variable.
o Enables grouping of 1's into larger rectangles (groups of 2, 4, 8, or 16).

Note: Understanding four-variable maps is essential for functions of higher complexity,
as the same grouping principles apply.

Guest
Rectangle

/7 :
%&é‘& Four-Variable Maps

F{AF B!CJD)

Four Variable Terms

e Definition:
A “term” in a Boolean expression derived from a four-variable K-map.

¢ Grouping Effects:
o Asingle cell represents a minterm with 4 literals.
o A pair (2 cells) reduces one variable (3 literals remain).
o A group of four cells results in a term with 2 literals.
o Larger groups (e.g., eight cells) can reduce the term to a single literal.

e Optimization Impact:
Grouping reduces the literal count, lowering both the complexity and the hardware
cost of the resulting circuit.

Optimization Tip: Always look for the largest possible grouping to minimize the
expression.

Karnaugh-map Usage
¢ Procedure for Using K-Maps:

o Plot the function’s output (1's for true minterms) into the K-map.

Guest
Rectangle

o Circle or highlight the largest rectangular groups of 1's (the groups must contain
2°n cells).

o Translate each group into its corresponding product term.
e Benefits:

o Reduces the number of terms and literals.

o Provides a visual method for function minimization.

Usage Guidelines: The groups (or prime implicants) must cover all 1's in the map, and
overlapping groups can sometimes yield a more optimal solution.

Example of Prime Implicants

¢ Prime Implicant:
A group (rectangle) on the K-map that cannot be combined with adjacent groups to
form a larger group.

¢ Identification:
o Mark all groups of 1's.

o Identify which groups cover 1's that no other group covers (these are essential
prime implicants).

e Example Process:
For a given function on a 3-variable or 4-variable map, list all potential groups and
then narrow them down to prime implicants based on their coverage and size.

Remember: Prime implicants are the building blocks of a minimized Boolean
expression.

Guest
Rectangle

BEYUS

(1 17 No. of Implicants = 7

[1
ED """" @ p=(123456)
O— EPI = (1,4)

© SPI = (2,3,5,6)
@

ap

F= 0O+@+0G +@)

OR

F= ®+G) +(6) +@)

Optimization Algorithm
e Optimization Process:
1. Find all prime implicants: List every possible grouping on the K-map.

2. ldentify essential prime implicants: Determine which groups cover minterms
uniquely.

3. Select a minimum cost set: From the remaining non-essential prime implicants,
choose the ones that cover all minterms with the lowest overall cost (considering
literal and gate input costs).

e Selection Rule:
o Minimize overlap among selected prime implicants.

o Ensure each chosen prime implicant includes at least one minterm not covered
by another.

e Goal:
Obtain a simplified Boolean expression that minimizes hardware implementation
cost.

Guest
Rectangle

Optimization Insight: The algorithm ensures that the final solution is not only
logically correct but also cost-effective in practical circuit design.

Final Summary & Key Takeaways

e Karnaugh Maps are a powerful graphical tool for Boolean function simplification.

¢ Grouping in K-maps reduces the number of literals in an expression, which directly
lowers the complexity and cost of digital circuits.

¢ Prime Implicants represent the core simplified groups that cannot be further
combined.

e Optimization Algorithms help select the best combination of prime implicants,
balancing coverage and cost.

This note consolidates the key points from slides 15 to 23, offering a clear pathway from
K-map simplification to prime implicant optimization for effective Boolean function
reduction.

Guest
Rectangle

8. Digital Logic Optimization and
Karnaugh Map Techniques

Introduction

Digital systems often require optimized logic circuits to reduce complexity, lower
manufacturing costs, and improve performance. Simplification techniques such as
Karnaugh maps (K-maps) help transform complex Boolean functions into simpler, more
cost-effective forms. By applying systematic methods for grouping minterms and
leveraging selection rules, designers can minimize the number of required logic gates
and inputs.

Selection Rules and Prime Implicants

The foundation of K-map optimization lies in identifying prime implicants—groups of
adjacent 1s (minterms) that can be combined to form simplified product terms. A key
strategy involves:

e Choosing prime implicants that minimize overlap: Each selected implicant should
cover at least one minterm not shared with any other implicant.

¢ Ensuring minimal literal cost: The goal is to reduce the number of literals (variables
or their complements) in each product term, thus lowering the overall gate input

Guest
Rectangle

cost.

This selection rule is critical for deriving a final expression that is both optimal and
implementable with fewer gates.

Simplifying Four-Variable Functions

For functions defined over four variables, the Karnaugh map provides a clear visual tool
to group minterms:

¢ Grouping Adjacent Minterms: By forming groups (or rectangles) that contain 2, 4,
or 8 cells, the number of literals in each resulting product term is reduced.

e Extracting Simplified Expressions: Depending on how the groups are formed, you
can derive either a Sum-of-Products (SOP) or a Product-of-Sums (PoS) expression.

The process involves visually identifying the largest possible groups that cover all 1s in
the map while avoiding unnecessary overlap.

Converting to Product-of-Sums (PoS)

When a design requires a Product-of-Sums form—often for specific gate
implementations like NOR-only circuits—the following steps are used:

¢ Derive the Complement: First, express the complement of the function in SOP
form.

e Apply De Morgan’s Law: Complement the expression to convert it into PoS form.

This approach yields a PoS expression that can simplify the circuit design by reducing the
number of required gate inputs.

Techniques for Functions with More Variables

As functions grow to five or more variables, Karnaugh maps become more complex. To
manage this:

e Partition the Map: Divide the map into sections based on the value of one or more
variables. For example, a five-variable function may be split into two four-variable
maps corresponding to a variable being 0 or 1.

Guest
Rectangle

e Apply Standard Grouping: Within each partition, the usual grouping techniques are
used to combine adjacent minterms.

This segmentation enables the application of familiar two-level optimization techniques
even for higher-variable functions.

Incorporating Don’t Care Conditions

In many practical designs, certain input combinations never occur or their outputs are
irrelevant. These are marked as don’t care conditions:

¢ Flexible Grouping: Don't cares can be treated as either 0 or 1in the K-map, allowing
for larger groups that reduce the overall literal count.

e Cost Reduction: By including don't care cells in groups, the final logic expression
often has fewer terms and lower gate input cost.

For example, in a BCD (Binary-Coded Decimal) circuit, only the codes 0000 to 1001 are
valid. The remaining combinations (1010 to 1111) are don't cares, which can be used to
simplify the circuit.

Optimized Selection with Don’t Cares

Integrating don't care conditions into the selection process further enhances
optimization:

e Larger Prime Implicants: By including don't care cells, groups can be expanded,
which simplifies the final expression.

e Minimized Overlap: The selection rule is applied with the additional flexibility of
choosing groups that cover both required minterms and don’t care conditions.

This method leads to a design with even lower gate input costs and reduced overall
complexity.

Practical Application: 4-Bit Prime Number Detector

One practical application of these optimization techniques is the design of a 4-bit prime
number detector:

¢ Function Definition: The detector identifies prime numbers by outputting a high
signal when the 4-bit input corresponds to a prime number.

Guest
Rectangle

e Mapping Minterms: The function is defined by minterms corresponding to prime
numbers (e.g., 2, 3, 5, 7,11, 13). Using a K-map, these minterms are grouped and
simplified.

¢ Resulting Expression: The final simplified expression requires fewer gates, making
the detector both efficient and cost-effective.

Practical Application: 4-Bit BCD Prime Number Detector

Adapting a prime number detector for BCD inputs requires additional considerations:

e Valid Input Range: BCD inputs range from 0000 to 1001, so the K-map is constructed
only for these values.

e Handling Don’t Cares: Inputs outside the valid range (typically 1010 to 1111) are
marked as don't cares. These conditions are used to simplify the grouping on the K-
map.

e Optimized Design: The resulting logic function is simpler, ensuring the detector
works accurately within the decimal range while using minimal hardware resources.

Advanced Optimization Algorithms

The process of Boolean function optimization can be summarized by the following steps:

¢ Identify All Prime Implicants: List every possible grouping of adjacent 1s in the K-
map.

e Determine Essential Prime Implicants: Select those groups that cover minterms
which no other group covers.

e Select a Minimal Cover: Choose a combination of prime implicants that covers all
required minterms with minimal overlap.

e Calculate Gate Input Cost: Evaluate the final expression in terms of the number of
gate inputs required, aiming to minimize this cost.

These steps ensure that the final implementation is both optimal and efficient, balancing
simplicity with functionality.

Conclusion

Guest
Rectangle

Karnaugh map techniques are vital for simplifying Boolean functions in digital circuit
design. By carefully applying selection rules, managing don't care conditions, and
optimizing groupings in both SOP and PoS forms, designers can create circuits that are
not only functionally correct but also cost-effective and efficient. These methods
underpin many modern digital systems, contributing to better performance and reduced
resource usage in practical applications.

Guest
Rectangle

9. Exclusive OR, Adder Circuits,
and Digital Addition

Exclusive OR (XOR) Fundamentals

XOR: The Exclusive OR (XOR) operation outputs true only when the inputs differ. Its
Boolean expression is given by:

F=XY+X.Y

e Truth Table:

o o X
o
o

1 0 1
1 1 0

Remark: Some useful identities of XOR include:

e Xp0=X

Guest
Rectangle

XX =0

XeY=YoX

Xol=X’

Associativity: (X @ Y)dZ =X (Yo Z)=XoY 0 ~Z

N :
£%2 Exclusive OR

N
X
Remember Exclusive-OR or XOR gate? . F

XY xev
o 0 o
0 1 1

1 1 0

Applications of XOR in Digital Logic

Binary Addition and the Half Adder

HALF ADDER: A half adder is a digital circuit that adds two one-bit binary numbers. It
uses an XOR gate to compute the sum and an AND gate to generate the carry.

e Equations:

o Sum:
S=A®B

o Carry:

Guest
Rectangle

e Truth Table for Half Adder:

A B S=AoB C=A-B
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

N -
s Exclusive OR

Use of XOR Gate

Consider Binary Addition of Two One-Bit Numbers

. A | s | c | s

+ B

c S

=8 oo

0 0
0 1
1 0
1 1

o »Br »r O

S=APB A
C=AB Adder
o C

Extending XOR to Multi-Input Functions

MULTI-INPUT XOR: A multi-input XOR gate computes the parity (odd or even) of its
inputs. For example, a 3-input XOR function is defined as:

F=XoY®Z

and can be implementedas (X @ Y) & Z.

e Properties:

o The output is 1if an odd number of inputs are 1 (odd function).

Guest
Rectangle

o For a 4-input XOR, the output is 1if the number of ones is odd.

o The Exclusive-NOR (XNOR) function is the complement of XOR and outputs true
when the number of ones is even.

Remark: Multi-input XOR functions are widely used for parity checking and error
detection, although they may incur longer delay lines in large-scale implementations.

RN

I
s

Exclusive OR

Extending 2 input XOR gate to 3 input XOR gate

X
F= X9 Y 82
Y F
F= (X@ Y) ®2)
K-Map
vz
X o 01 1 10 F=XY'Z +XYZ +XYZ+ XY Z

Checker Board Pattern!

Guest
Rectangle

[/ .
-§-“{é Exclusive OR
7\

How about 4 input XOR gate .-

w WX 00 01 11 10
X
F 00 0 1 0 1
Y
z o1 | 0 1 0
FFWOXDYSZ

11
F= (W@ XD Y) &2z

Checker Board Pattern Again! 10 1 0 | 0

XOR= Odd Function

Full Adder Circuit

FULL ADDER: A full adder is a digital circuit that adds three bits (two significant bits
and an input carry) to produce a sum and an output carry.

e Equations:

o Sum:
S=(A®B)aCy,
o Carry-out:
Cout = (A B) + (Cin - (A® B))
e Truth Table for Full Adder:

Cin S Cout

o o o »
o o w
o
o
o

Guest
Rectangle

A B C in S C’out

0 1 1 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

% £yl Adder

UN Ca
A
* How About Adding 3 bits: AB G,
+ B s =(A®B) ®C,
C, S C,= AB +C(,(ADB)

FULL ADDER

24

Larger-Scale Addition

Definition: Multi-bit addition (such as adding 32-bit numbers) is achieved by
cascading full adders. The least significant bit (LSB) is typically computed using a half
adder, while full adders are used for the remaining bits.

e Concept:
o Each full adder receives a carry input from the previous (less significant) stage.

o The final carry-out from the most significant stage represents an overflow if
present.

Guest
Rectangle

Remark: A 32-bit adder can be constructed by connecting 31 full adders in series after
a half adder for the LSB, resulting in a combinational circuit with 33 outputs (including
the final carry).

Conclusion

This comprehensive note has covered the critical concepts and applications of the XOR
operation in digital logic. Key takeaways include:

e The fundamental operation and identities of XOR.
e How XOR is used in designing half adders for binary addition.
e The extension of XOR to multi-input functions for parity checking.

e The construction and functioning of full adders, which are essential for multi-bit
addition.

e The overall architecture of larger-scale adders, which are fundamental in digital
system design.

Understanding these concepits is vital for designing efficient digital circuits and
performing accurate binary arithmetic operations.

Guest
Rectangle

10. Digital Decoders:
Architecture, Expansion, and
Applications in Circuit Design

32-Bit Adder Hardware

32-Bit Adder Hardware: A digital circuit designed to add two 32-bit binary numbers.
This hardware typically uses a half adder for the least significant bit and cascaded full
adders for the remaining bits, resulting in a 33-bit sum.

¢ Further Understanding:

o The design leverages modular construction to simplify complex arithmetic
operations.

o lItis a building block for larger adders, such as 64-bit adders, by combining two
32-bit units.

Larger Scale Subtraction

Larger Scale Subtraction: A method to subtract binary numbers by converting the
subtrahend to its two’'s complement and then adding it to the minuend.

Guest
Rectangle

e Further Understanding:

o This approach simplifies hardware design by allowing the use of an adder circuit
for both addition and subtraction.

o It minimizes the need for separate subtraction circuitry, reducing complexity and

cost.

Two’s Complement of B

Two’s Complement: A binary representation for negative numbers, obtained by
inverting all bits of a number and adding one.

e Further Understanding:

o Using two's complement simplifies the arithmetic operation by turning
subtraction into addition.

o lItis the standard method for representing signed numbers in most digital
systems.

32-Bit Subtractor

32-Bit Subtractor: A circuit that subtracts one 32-bit binary number from another
using the two's complement method.

e Further Understanding:

o It uses the same architecture as the 32-bit adder by first converting the
subtrahend into its two’s complement.

o The result includes a carry (or borrow) signal which can be used for error
detection or overflow checking.

4-Bit Adder/Subtractor

4-Bit Adder/Subtractor: A compact arithmetic unit capable of performing both
addition and subtraction on 4-bit numbers.

e Further Understanding:

Guest
Rectangle

o It typically incorporates a control signal to select between addition and
subtraction modes.

o This unit is often used in educational examples to illustrate basic binary
arithmetic and overflow conditions.

Overflow

Overflow: A condition that occurs when the result of an arithmetic operation exceeds
the maximum value representable with a given number of bits.
¢ Further Understanding:

o Inasigned 4-bit system (range [—8, 7]), overflow is detected when the carry into
the most significant bit differs from the carry out.

o Proper overflow detection is essential to ensure the integrity of arithmetic
operations in digital systems.

Decoders

Decoders: Combinational circuits that convert n-bit input codes into up to 2" unique
output lines.
e Further Understanding:

o They are crucial in digital systems for tasks such as memory addressing,
instruction decoding, and signal routing.

o Adecoder activates a single output corresponding to the binary value of the
input.

Guest
Rectangle

Decoder

N inputs Decoder M outputs

2N Combinations : Mg 2V

Binary 2-to-4 Decoder

Binary 2-to-4 Decoder: A specific decoder that takes 2 input bits and produces 4
unique outputs.

¢ Key Logic Equations:
o my = I{I
o my = I 1
o mg = LI
o mg =11
¢ Further Understanding:

o It forms the foundation for more complex decoding schemes and is often used
to demonstrate the basics of decoder operation.

Decoder

Decoder: A circuit that maps encoded input signals to a unique active output,
ensuring that only one output is activated at any time.

Guest
Rectangle

¢ Further Understanding:

o This functionality is essential for control and selection tasks in digital circuits,
such as activating memory cells or peripheral devices.

Addressing

Addressing: The process of selecting specific memory locations or devices using
decoder circuits.

¢ Further Understanding:

o Decoders translate binary addresses into specific enable signals that activate the
correct memory module or peripheral.

o Efficient addressing is critical for the performance of microprocessor-based
systems.

Applications of Decoder

Address Decoding

Micro processor 2to4
Decoder

Memory 3

ALL ABOUT ELECTRONICS

2-to-4-Decoder Logic Diagram

2-to-4-Decoder Logic Diagram: A schematic representation showing how two input
bits generate four outputs using logic gates.

Guest
Rectangle

¢ Further Understanding:

o The diagram visually explains the correlation between input combinations and
the activation of one unique output.

o ltis avaluable tool for understanding the internal workings of a basic decoder.

\|//
f% Decoder

MEMORY O

2-10-4
\ decoder MEMORY 1
0 [6 Yo
1 I Y1
Y2 EMORY 2
(T—en v3

MEMORY 3

Read Data from this Memory IC

Decoder Expansion

Decoder Expansion: A technique for constructing larger decoders (e.g., a 3-to-8
decoder) by using multiple smaller decoders (e.g., 2-to-4 decoders) with enable inputs.

¢ Further Understanding:

o This modular approach allows designers to scale decoder functionality without
increasing complexity exponentially.

o Itiswidely used in systems requiring a large number of unique output signals,
such as memory addressing.

Decoder Applications

Guest
Rectangle

Decoder Applications: Practical implementations of decoder circuits in digital
systems.

¢ Further Understanding:
o Memory Systems: Select different memory banks or rows.
o 1/0 Systems: Enable specific devices within a microprocessor environment.
o Instruction Decoding: Activate functional units based on the instruction code.

o Display Systems: Drive segmented displays (e.g., seven-segment displays).

Combinational Functions and Circuits

Combinational Functions and Circuits: Logic circuits where the outputs depend
solely on the current inputs, with no memory elements.

¢ Further Understanding:

o These circuits include decoders, encoders, multiplexers, and others that form the
backbone of digital system design.

o They are essential for performing arithmetic, data routing, and control logic,
ensuring that digital systems operate efficiently and reliably.

Guest
Rectangle

3 to 8 Decoder

Truth Table

[AfB|clE[Dof b1 |D2]0D3|
Decoder with Enable Input nnnnnnnn

3to8
Decoder 1

O

ALL ABOUT ELECTRONICS

Guest
Rectangle

11. Encoders, Selecting Functions
and Multiplexers

Encoders and Decoders

Encoders vs. Decoders

ENCODER: A circuit that converts multiple input signals into a compact binary
representation.

DECODER: A circuit that converts coded inputs into a one-hot output, effectively
reversing the encoding process.

Encoders are used to reduce the number of signal lines by representing the active input
with a binary code, while decoders expand a coded input into a set of distinct output
lines.

Guest
Rectangle

Encoder

2
Encoder N outputs

M inputs
Ms2N

ALL ABOUT ELECTRONICS

Binary Encoders

BINARY ENCODER: A device that takes 2" input lines and produces an n-bit binary
output corresponding to the active input.

For example, a 4-to-2 binary encoder translates 4 input lines into a 2-bit output.

Guest
Rectangle

4 line to 2 line Encoder

Truth Table

D2

4to2
Encoder

0
0
1
0

ALL ABOUT ELECTRONICS

4 line to 2 line Encoder

A=D2+D3
Truth Table
B=D1+D3

D2
A
B
D1

ALL ABOUT ELECTRONICS

D3| A

Priority Encoders

In real-world applications, more than one input may be active simultaneously. Priority
encoders resolve such conflicts by assigning higher priority to inputs with higher indices.

Guest
Rectangle

PRIORITY ENCODER: An encoder that outputs the binary code of the highest-priority

active input.
%uc Priority Encoder

[J TABLE 3-6
Truth Table of Priority Encoder

Inputs Outputs
D, D. D, D, A, A, Vv
0 0 0 0 X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 |
0 1 X X 0 1
1 X X X 1 1 1

Table 3-6 Truth Table of Priority Encoder

2
= Encoder
REQO
REQ 1
X
REQ 2 X
0
REQ 3

Guest
Rectangle

S~ Priority Encoder

Selecting Functions and Multiplexers

Multiplexers (MUX)

Guest
Rectangle

MULTIPLEXER: A combinational circuit that selects one of many input lines and
forwards the chosen input to a single output based on control signals.

Key points:
e Control Lines: An n-bit control input selects among 2" possible inputs.
e Example: A 4-to-1 multiplexer uses 2 control bits to select one input from four.

Multiplexers are crucial for routing data in digital systems and can simplify the
implementation of complex Boolean functions.

2 x 1 Multiplexer

Truth Table

ALL ABOUT ELECTRONICS

Guest
Rectangle

2 x 1 Multiplexer

Truth Table

»
ALL ABOUT ELECTRONICS

2 x 1 Multiplexer

ﬁY
Y=S DO+ S D1 e

ALL ABOUT ELECTRONICS

Combinational Circuit Implementation Using MUX
Multiplexers can be used to directly implement Boolean functions.

Example:

Guest
Rectangle

To implement the function
F(X,Y,Z)=> m(L,2,6,7)

a 4-to-1 multiplexer is used where the control lines select the appropriate input
corresponding to the minterms.

4 x 1 Multiplexer

Truth Table

Y= S1S0 DO+ S150 D1+S1S0D2 +S1S0D3

v

ALL ABOUT ELECTRONICS

Guest
Rectangle

4 x 1 Multiplexer

Y= S1S0 DO+ S1S0 D1+ S1S0D2 +S1S0D3

ALL ABOUT ELECTRONICS

Demultiplexers

DEMULTIPLEXER: The inverse of a multiplexer; it takes a single input and routes it to
one of many outputs based on control signals.

Demultiplexers are used in applications such as memory addressing and data
distribution, where a single source must be directed to one of several destinations.

Guest
Rectangle

Demultiplexer

Demultiplexer

One to Many Device

N

ALL ABOUT ELECTRONICS

Demultiplexer

M outputs
M=2N

ALL ABOUT ELECTRONICS

Final Summary & Takeaways

e Encoders convert multiple signals into a compact binary form, whereas decoders
expand coded inputs into distinct outputs.

Guest
Rectangle

Priority encoders handle multiple active inputs by assigning precedence, with
specific Boolean equations governing their behavior.

Multiplexers and demultiplexers are essential for data selection and distribution,
simplifying complex circuit implementations.

Understanding these combinational circuits is critical as they form the foundation for
more advanced sequential logic and digital system design.

Guest
Rectangle

12. Solutions for Midterm Sample
Questions

Question 1: Number Representations and Arithmetic

Part (a): Converting Decimal Numbers to 6-Bit Representations
For a 6-bit system:

¢ Sign-Magnitude and 1's Complement have a range of —31to +31 (5-bit magnitude).

e 2's Complement has a range of -32 to +31.

1. Decimal 12

e Binary (Magnitude):
12 in binary (using 5 bits) is:

12 = 01100

e Sign-Magnitude:
Since 12 is positive, the sign bit is 0.

Sign-Magnitude: 001100 = 001100

Guest
Rectangle

¢ 1's Complement:
Positive numbers remain unchanged.

1’s Complement: 001100

e 2's Complement:
For positive numbers, it is the same as the standard binary representation.

2’s Complement: 001100

2. Decimal 19

e Magnitude in Binary:
19 in binary (5 bits):

19 = 10011

e Sign-Magnitude:
For negative numbers, set the sign bit to 1.

Sign-Magnitude: 110011 = 110011

¢ 1's Complement:
First, represent 19 in 6-bit positive form:

19 = 010011
Then, flip all bits:

1’s Complement: 010011 — 101100

e 2's Complement:
Add 1to the 1's complement:

2’s Complement: 101100 + 1 = 101101

3. Decimal 32

Guest
Rectangle

e Sign-Magnitude and 1's Complement:
The maximum magnitude representable is 31, so —32 is not representable in these
systems.

Sign-Magnitude: NA, 1’s Complement: NA

e 2's Complement:
For 6 bits, —32 is representable.
In 2's complement, the most negative number is represented by a 1 followed by all Os:

2’s Complement: 100000

Part (b): Arithmetic Operations in 8-Bit 2's Complement

Before performing arithmetic, we must sign-extend the given numbers to 8 bits.

Operation1: 1101 + 010111

e First Operand:
1101 (4-bit) has MSB =1, so it is negative.

In 4-bit 2's complement, 1101 represents:
— (16 — 13) = —3.
Sign-extend to 8 bits (replicate the sign bit):

1101 — 11111101.

e Second Operand:
010111 (6-bit) has MSB = 0 (positive).

Sign-extend to 8 bits by adding two zeros:
010111 — 00010111.

e Addition in 8-Bit 2's Complement:

Guest
Rectangle

11111101 (—3)
00010111 (23)
00010100 (20)

Result:

00010100 in 8-bit 2's complement, which equals decimal 20.

Operation 2: 0111 — 11101

e First Operand:
0111 (4-bit) is positive.

Sign-extend to 8 bits:

0111 — 00000111 (7).

e Second Operand:
11101 (5-bit) has MSB = 1 (negative).

Sign-extend to 8 bits (prepend three 1's):
11101 — 11111101 (—3) (in 5-bit 2’s complement, 11101 = —3).
e Subtraction:

7—(-3)=7+3=10.

Represent 10 in 8-bit 2's complement:
10 = 00001010.

Result:

00001010 in 8-bit 2's complement, which equals decimal 10.

Part (c): Left-Shift Multiplication and Overflow Detection
Concept:

Multiplying a number by 2 in 2's complement arithmetic is equivalent to shifting its
binary representation one bit to the left. This shift inserts a 0 at the least significant bit

Guest
Rectangle

and discards the bit that overflows from the most significant position.
Procedure:

1. Left Shift:
For an n-bit 2's complement number z, shifting left one bit gives a new binary
number that represents 2z (provided there is no overflow).

2. Example:
Consider the 8-bit number 00110110 (which is decimal 54).
Left shift by one bit:

00110110 — 01101100.

01101100 represents decimal 108, which is exactly 54 x 2.

3. Overflow Detection Rule:
Overflow occurs when the result of the shift cannot be represented within the fixed
number of bits.

OVERFLOW RULE: In 2's complement, overflow is detected if the sign bit (MSB) of
the original number does not match the sign bit of the shifted result.

For example, if a positive number (MSB = 0) becomes negative (MSB = 1) after

shifting, then overflow has occurred.

Question 2: Canonical forms, K-map optimization, and
hardware implementation using multiplexers

This section provides formal, step-by-step solutions for optimizing the Boolean function
F(A,B,C,D)=(A+C)(A+B+D)(A+C+ D)
with the don’t-care condition
d(A,B,C,D) =) m(9,10).

The problem is divided into four parts (a)—(d).

(@) Product-of-Maxterms Representation

Guest
Rectangle

Objective: Find the canonical product-of-maxterms form (M-form) of F'.

Approach:

A Boolean function F' in product-of-sums (POS) form is O if at least one of its factors is 0.
We analyze each factor to determine the conditions for F' = 0:

1. Factor1: A + C
Thisis 0 when both A = 0and C = 0, i.e.

A=1 and C =1.

This condition covers all minterms with A = 1 and C' = 1 (independent of B and

D).
2. Factor2: A+ B+ D
This is 0 when

A=0,B=0,D=0 = A=1 B=0,D=1.
Minterms: m(9) (for C = 0)and m(11) (for C' = 1).

(Note that m(11) is already included.)

3. Factor3: (A +C + D)

This is 0 when
A=0,C=0,D=0 = A=0,C=0,D=1.
Minterms: m(1) (for B = 0) and m(5) (for B = 1).

Union of all conditions:

The zeros of F' occur for minterms:
{1, 5,9, 10, 11, 14, 15}.
Thus, the product-of-maxterms (canonical POS form) is:

F =TIM(1,5,9,10,11, 14, 15).

Guest
Rectangle

(b) Optimized SOP Expression via 4-Variable K-Map
Given:

d(A,B,C,D) =) m(9,10) (don't cares)

F'is 0 for minterms {1,5,9,10,11, 14, 15}; hence, F' = 1 for the remaining
minterms:

{0,2,3,4,6,7,8,12,13}.

K-Map Setup:

We use the standard 4-variable K-map (rows: AB in Gray code order 00, 01, 11, 10;
columns: C'D in order 00, 01, 11, 10). The assignments are as follows:

¢ Row 00 (A=0,B=0):

o m(0) = 0000 : 1
o m(1l) =0001:0
o m(3) =0011: 1
o m(2) =0010: 1

e Row 01 (A=0,B=1):
o m(4) =0100: 1
o m(5) = 0101 : 0
o m(7) = 0111: 1
o m(6) = 0110 : 1

e Row 11 (A=1,B=1):
o m(12) = 1100 : 1
o m(13) = 1101: 1
o m(15) =1111: 0
o m(14) = 1110 : 0

e Row10 (A=1,B=0):

Guest
Rectangle

o m(8) =1000: 1

o m(9) = 1001 : X (don't care)
o m(11) = 1011: 0

o m(10) = 1010 : X (don't care)

Grouping for SOP:
1. Group1:

A 2x2 block covering cells in rows 00 and 01, columns 10 and 11 (minterms

m(2), m(3), m(6), m(7)).
Common: A = 0 (since rows 00 & 01) and C = 1 (columns 10 and 11).
Prime Implicant: A'C.

2. Group 2:
A vertical group in column 00 covering rows 00 and 01 (minterms 712(0) and m(4)).
Common: A =0, C =0, D = 0 (Bvaries).
Prime Implicant: A'/C'D"’.

3. Group 3:
A horizontal pair in row 11, columns 00 and 01 (minterms m(12) and m(13).
Common: A=1, B=1, C =0.
Prime Implicant: ABC".

4. Group 4:

A pair in row 10, columns 00 and (if we assign 1m(9) as 1) column 01 (minterm m(8)
and don't care m(9)).

Common: A=1, B=0, C =0.
Prime Implicant: AB'C".
Combining Groups:

Notice that Groups 3 and 4 can be combined:

Guest
Rectangle

ABC' + AB'C' = AC'(B+ B') = AC'.

Thus, the simplified SOP expression becomes:

F=AC+ACD + AC'.

KARNAUGH MAP SOLVER FOR FUNCTIONS

F=CD'+AC +AC

madformath.com

Further Simplification:

Factor A’ from the first two terms:
F=A(C+C'D)+AC.

Using the identity C + C'D’' = C + D’ (sinceif C = 0,then C'D’' = D’;if C =1,

the sum is 1), we obtain:

Guest
Rectangle

F=A'(C+ D"+ AC".

Gate Input Cost:
Counting literal occurrences:
e InA'(C+ D'):literals A’, C, D’ - 3inputs.
e In AC: literals A, C’ - 2 inputs.
e Final OR (summing two product terms) — 2 inputs.

Thus, an estimated total costis 3 + 2 + 2 = 7 inputs.

(c) Optimized POS Expression via 4-Variable K-Map
Objective:
Obtain the minimal product-of-sums (POS) expression for F' using the given don't cares.
Zeros of F':
From part (a), F' = 0 for minterms: {1, 5,9, 10,11, 14, 15}.
Treat the don't cares m(9) and m(10) as 0 to facilitate grouping.
K-Map Grouping for Zeros:
1. Group1:
Minterms m(1) (00,01) and m(5) (01,01).
Common values:
e A = 0 (bothrowshave A = 0),
e (' = 0 (column01gives C = 0),
e D=1.

Maxterm: For zeros, if a variable is 0 in all cells, include it in non-complemented
form; if 1, include its complement.

- A (since A = 0), C (since C = 0),and D’ (since D = 1).

Result: (A + C + D').

2. Group 2:

Common values:

Guest
Rectangle

e A=1,
e C=1,

Maxterm: A’ (since A = 1), C’ (since C' = 1).
Result: (A" + C").

3. Group 3:
Common values:
e A=1,
e B=0,
e D=1

Maxterm: A’ (since A = 1), B (since B = 0), D' (since D = 1).
Result: (A" + B + D').

Thus, the optimized POS expression is:
F=(A+C+D)A+C")A +B+ D"

Gate Input Cost: 11.

(d) Implementation Using a 4-to-1 Multiplexer and a Single
NOT Gate

Objective:
Implement F' (with don't cares) using only a 4-to-1-line multiplexer and one NOT gate.
Strategy:

We start with the simplified SOP form from part (b):
F=A(C+D')+ AC'.

This expression depends on A and one of C or D but not on B. We can choose select

lines such that the expression becomes independent of one variable.

Step 1: Choose Select Variables

Guest
Rectangle

Let's choose A and C as the select lines of the 4-to-1 multiplexer. Then the MUX will
implement F’ as:

F = fac(D),

with A and C' determining which data input is selected.
Step 2: Determine the Output for Each Combination of (A4, ()
Using the simplified expression:

e Case1: A =0
Then F' = (C + D').

o WhenC =0:F=0+D"=D"
o WhenC=1.F=1+D"=1.

e Case2: A =1
Then F' = C’ (independent of D).

o WhenC =0:C" = 1.
o WhenC =1:C" = 0.
Step 3: Assign Multiplexer Data Inputs

The 4-to-1 MUX has 4 data inputs corresponding to select line combinations (A, C') as
follows (using binary order 00, 01, 11, 10 where the order of bits is A (MSB) and C (LSB)):

e For(4,0)=00:A=0,C=0-F=D’.
e For(4,0)=01:A=0,C=1-F =1.
e For(A,C)=11.A=1,C=1-F =0.
e For(4,0)=10:A=1,C=0-F =1.
Step 4: Hardware Implementation
e Select Lines: Connect A and C to the multiplexer select inputs.

e Data Inputs:

o Iy = D’ (requires the single NOT gate to invert D).

Guest
Rectangle

o I; = 1 (logic high).
o Iy = 0 (logic low).
o I3 =1 (logic high).
e The output of the multiplexer will yield F'.

This design meets the requirement: only one NOT gate is used (to generate D’), and the
entire function F' is implemented with a single 4-to-1 MUX.

Midterm Sample

midterm-sample.pdf

Guest
Rectangle

13. Sequential Logic and Memory

Introduction to Digital Systems and Sequential Circuits

Big Picture of Digital Systems

¢ Digital Systems are broadly classified into:

o Combinational Logic: Systems without memory where outputs depend solely
on current inputs.

o Sequential Logic: Systems that incorporate memory elements, where outputs
depend on both current inputs and past history.

DIGITAL SYSTEMS: Systems that process binary signals; sequential systems
specifically integrate storage elements (latches or flip-flops) with combinational logic
to implement state-dependent operations.

Introduction to Sequential Circuits
e A sequential circuit is composed of:
o Storage Elements (Memory): Such as latches or flip-flops to hold state.

o Combinational Logic: Which computes next state and output based on current
inputs and stored state.

Guest
Rectangle

SEQUENTIAL CIRCUITS: Digital circuits where outputs are functions of both present
inputs and the stored (past) state. This design enables complex operations such as
counting, memory storage, and control flow.

Memory in Digital Systems

Role of Memory

¢ Memory is essential for maintaining state in a digital system.

¢ Inherent delays in gates can unintentionally store a value, but these effects are
temporary.

e To store data indefinitely, feedback is introduced.

MEMORY: The capability of a circuit to store information; it is achieved by feeding

outputs back to inputs, thereby maintaining a stable state over time.

Extending Storage with Feedback

e Feedback Mechanism: Feeding the output back into the input loop allows a system
to "hold" a value indefinitely.

-

FEEDBACK

SOURCE: WWW.TEACH-ICT.COM

Latches: The Basic Storage Element

Guest
Rectangle

Overview of Latches
e Latches are the simplest storage elements in sequential circuits.

e They hold a binary state (0 or 1) until an external signal causes a change.

LATCH: A bistable circuit that maintains its state until altered by an input signal,
serving as a fundamental memory element in digital systems.

Basic (NOR) S-R Latch
e Construction: Uses NOR gates to implement the Set-Reset (S-R) functionality.
¢ Inputs and Operations:
o §S=1,R=0:SetsQto.
o §=0,R=1:Resets () to 0.
o $§=0, R =0:Holds the current state.

o S =1, R =1:Typically an undefined or forbidden state.

S-R LATCH (NOR): A basic latch using NOR gates where S (set) and R (reset)
determine the output Q).

SR Latch

0
R Y Q
(s [R]a|Q] 0

0 0 1 0

0o 1

0 il 0 il

1 0 1l 0
1 1 0 0 1 0 .
0 Q

Guest
Rectangle

SR Latch

SR Latch

ALL ABOUT ELECTRONICS

Basic (NAND) S'-R' Latch
e Construction: Formed by cross-coupling two NAND gates.
¢ Inputs: Active-low inputs (S'and R’).
e Operations:
o §'=0,R =1:Sets Q to1.
o §'=1,R'=0:Resets) to 0.
o §'=1, R"=1: Maintains the current state.

o S§'=0,R'=0:Forbidden input condition.

S'-R' LATCH (NAND): A latch that uses NAND gates with active-low signals, ensuring
stable operation by avoiding ambiguous states.

Guest
Rectangle

)

S(set) Q

1 (after§ =1,R = 0)
0

0 (afterS§=0,R=1)
1

o = — = D |3

Q
1 olo 1
| 0
0 1
1 1
2" o ol

R (reset)

(a) Logic diagram (b) Truth table

SR Latch using NAND Gates

Active Low Inputs
Truth Table

[8 00 [afts &ies=m)
(o P & = T]

(o e = 0]
N I N N

ALL ABOUT ELECTRONICS

Clocked (Gated) S-R Latch

e Enhancement: Incorporates a clock signal (C) to control when S and R are observed.

e Operation: The latch updates its state only when the clock is high.

CLOCKED S-R LATCH: A variant of the S-R latch where a clock input enables state
changes, providing synchronization in sequential circuits.

Guest
Rectangle

Gated SR Latch

Gated SR Latch

S

Enable

R

Gated SR Latch

SR Latch

Truth Table

ALL ABOUT ELECTRONICS

Q (Next State)

Q’(Next State)

Present State

Present State

Present State

Present State

Enable

(1]

1

1

0

0

0

ALL ABOUT ELECTRONICS

Guest
Rectangle

Gated SR Latch using NAND gates

ALL ABOUT ELECTRONICS

Gated SR Latch using NAND gates

Truth Table

Q (Next State) | Q’ (Next State)

Present State Present State

Present State | Present State
0 1
1 (0]
1 1

ALL ABOUT ELECTRONICS

D Latch

e Derivation: Obtained by adding an inverter to the S-R latch to eliminate
indeterminate states.

Guest
Rectangle

e Operation:
o Input D: Directly drives the output () when the clock is active.

o Characteristic: No ambiguous state exists, making the latch predictable.

D LATCH: A latch that captures the value of the input D under a clock condition,
ensuring unambiguous data storage.

W | atches
%

N
SR Latch Clocked SR Latch D Latch
S D
R (resef Q Q Q
C C]
S (set) Q R Q Q
1S Q- 1S Q-
1 C -1 D —
s R Q+| nst | c|s/R| Q+ | mnst | D] a+| inst |
18 NOIN ! Set 110 1 Set 0 x Q Hold
01 0 Reset 101 0 Reset 10 0 Reset
00 Q Hod 100 Q Hold ilfa| il Set
11 uD 111 ub

0 x x Q Hold

Final Summary & Takeaways

¢ Sequential Circuits integrate memory elements with combinational logic to manage
state and process sequences of inputs.

e Latches are fundamental storage devices, with various implementations (NOR-based,
NAND-based, clocked, and D latches) ensuring reliable memory.

e Feedback plays a critical role in extending storage duration, making it possible to
hold a value indefinitely.

Guest
Rectangle

14. Flip-Flops & Sequential Circuit
Analysis

Flip-Flops
The Latch Timing Problem

LATCH TIMING PROBLEM: In a clocked D-latch with feedback, as long as the clock
input C =1, changes in output Q immediately feed back to the input D, causing
uncontrolled oscillation or multiple updates within one clock pulse.

Flip-Flop Timing (1's-Catching)

1's-CATCHING PROBLEM: If the data input (S or D) changes while the latch is
transparent (C = 1), the master latch may set or reset multiple times during the same
pulse, capturing unintended “1's.”

e Example: With Q = 0, a brief high on D while C =1 can propagate to Q, then back
to D, toggling multiple times.

e Consequence: Results in extra transitions, metastability risk, and dependence on
pulse-width.

Guest
Rectangle

e Solution: Use edge-triggered architecture so inputs are ignored when C is
steady; only the clock edge causes a single update.

Master-Slave Flip-Flop

MASTER-SLAVE FF: Two clocked latches in series, with the slave latch driven by the
inverted clock.

e Master (C = 1): Captures input.
e Slave (C = 0): Transfers master's output to Q.

e Benefit: Master and slave are never transparent at the same time, preventing

intra-pulse feedback.

Master Slave
— D Q pb—
EN Q —

>

Edge-Triggered D Flip-Flop

EDGE-TRIGGERED FF: Updates output only on a clock edge, ignoring input changes at
other times.
¢ Negative-edge triggered: Updates on falling clock.

¢ Positive-edge triggered: Updates on rising clock (via an inverter on C).

e Remark: Simplifies input to a single D line, avoiding forbidden states and reducing
delay.

Guest
Rectangle

T
m O
ol O
m O
I
O

TI
O

Clock

QN

CLK DC DC

Standard Symbols & Direct Inputs

STANDARD STORAGE SYMBOLS:
e D-Flip-Flop: Single data input, clock, Q/Q outputs.
e S-R Flip-Flop: Separate S and R inputs (forbidden high-high combination).

e DIRECT INPUTS: Asynchronous Set (S,) and Reset (R,) for initialization outside
clocked operation.

Guest
Rectangle

Sequential Circuit Analysis

General Model

SEQUENTIAL CIRCUIT MODEL:
e State Variables: Stored in flip-flops (vector S(t)).
e Next State: S(t+1) = f(S(t), X(t)).

e Outputs: Y(t) = g(S(t), X(t)).

Analysis Example
Given: Input x(t), state bits A(t), B(t), output y(t).

Alt+1) = A(t) z(t) + B(t)z(t)
B(t+1)=A'(t) z(t)
y(t) ='(t) (B(t) + A(t))

Solution Steps:
1. Derive next-state and output Boolean expressions.

2. Construct the state-table with Present State, Input, Next State, Output.

3. Simplify expressions if desired.

Guest
Rectangle

State-Table & State-Diagram

STATE TABLE: Lists all Present State & Input combinations with corresponding Next
State & Output.

e Columns: Present State | Input | Next State | Output

e STATE DIAGRAM: Directed graph where nodes are states; arcs labeled
“input/output” show transitions.

W SC Analysis Example

Uy
* Boolean equations for the functions: ‘ i |
» A(t+1) = A(t)x(t) + B(t)x(t) ig}’}n ol——a
> B(t+1) = A'(t)X(t) —> €k A
> y(t) = x'(t)(B(t) + A(t))

0

——8

—> Clk b— B

Clock

Guest
Rectangle

WS

SC Analysis Example: State Table

» The state table can be filled in using the next state and output equations:

A(t+1) = Alt) x(t) + B () () W) | (en) &)
w resent Next
y(t) = x'(t) (B(t) + A(t)) Stat Input State Output
A B x| A B [r\
0 0 0 0 0
C 0 0 1 0 0
0 1. O - 0 1
< 0o 1 1 1 0
1 0 0 0 1
4 1 0 I 1 0
1 1 € * 0 1
S | 1\ 0
= —

N\
%%‘ SC Analysis Example: Alternate State Table

A(t+1) = A(t) x(t) + B(t) x(t)
B(t+1) = A'(t) x(t)
y(t) = x'(t) (B(t) + A(t))

Next State Output

Present

State @ x=1 x=0 x=1

A B A B A B y y
a__) @ @ 0 0
0 1 0 1 1 0
1 0 0 1 O 1 0
a1 @ T 0> 10

State-Table Characteristics

STATE-TABLE CHARACTERISTICS:

e Divided into four sections: Present State, Input, Next State, Output.

Guest
Rectangle

e Treats Present State & Input as “inputs” to the truth table; Next State & Output as
“outputs.”

e Enables systematic enumeration of all behavior for design and verification.

Final Summary & Takeaways

e Latch vs. Flip-Flop: Edge-triggered FFs eliminate the 1's-catching issue inherent in

level-sensitive latches.

e Master-Slave vs. Edge-Triggered: Master-slave uses back-to-back latches; edge-
trigger updates only on a clock transition.

e Analysis Workflow:
1. Write state equations.
2. Build the state table.
3. Draw the state diagram.
¢ Key Pitfalls:
o Omitting asynchronous resets leads to undefined start states.
o Mislabeling clock edges causes timing failures.

o Failing to enumerate all table entries can hide invalid or unused states.

Guest
Rectangle

15. Finite State Machines: State
Diagrams, Models, and
Representations

1. State Diagrams

1.1 Definition & Components

STATE DIAGRAM: Graphical FSM representation where:
e Each state is a circle labeled with a state name.
e Directed arcs show transitions from Present State — Next State.
e Labels on arcs indicate the input causing that transition.
e Output labels appear either:

o On each circle (Moore): output depends only on state.

o On each arc (Mealy): output depends on state + input.

1.2 Small vs. Large Circuits

e Small: State diagrams are intuitive and easier to follow than tables.

Guest
Rectangle

e Large: Diagrams become cluttered; tables or code may be preferable.

2. Moore & Mealy Models

2.1 Moore Model

MOORE FSM: Outputs are a function only of the current state.

e Output label placed inside each state circle.

2.2 Mealy Model

MEALY FSM: Outputs are a function of state & input.

e Output label placed on each transition arc (“input/output”).

2.3 Mixed Models

I In practice, designs sometimes mix Moore and Mealy conventions.

3. Example Diagrams & Tables

3.1 Example State Diagrams

e Top: Mealy diagram with arcs labeled “x=1/y=1", “"x=0/ y=0", etc.

e Bottom: Moore diagram with circles labeled “A/0", “B/1", etc.

3.2 Example State Tables

Present Next State (x=0) Next State (x=1) Output (x=0)
0 0 1 0

1 0 2 0

Present Next State (x=0) Next State (x=1) Output

A/0 B A 0

B/1 B C 1

Final Summary & Takeaways

Output (x=1)
0
1

Guest
Rectangle

State diagrams provide intuitive FSM visualization; use tables when diagrams grow
complex.

Moore vs. Mealy: Choose based on timing and output-dependence requirements.

Design workflow: Follow the six-step procedure to go from spec — implementation
— verification.

Guest
Rectangle

16. FSM Design & Sequence
Detection

Sequential-Circuit General Model

MODEL:
e State vector S(t) stored in flip-flops.

o Next state S(t+1) = f(S(t), X(t)).

e Outputs Y(t) = g(S(t), X(t)?)

Six-Step Design Procedure
1. Formulation: Draw state diagram or table from specification.
2. State Assignment: Map each abstract state — binary code.
3. Obtain State Table: List Present State, Input — Next State, Output.
4. Obtain Equations:
e (a) Flip-flop input equations from Next State entries.

¢ (b) Output equations from Output entries.

Guest
Rectangle

e (c) Optimize via Karnaugh maps or Boolean simplification.
5. Technology Mapping: Implement equations with gates & actual FFs.

6. Verification: Confirm FSM behavior matches original spec.

Case Study: Sequence Recognizer (1101)

Problem Statement
I TASK: Output 1 whenever the input sequence “1101” appears (including overlaps).
Mealy Implementation

State Diagram
e States A-B—C-D track partial matches.

e QOutput 1on transition that completes “1101".

State Table
Present x=0 — (Next, y) x=1- (Next, y)
A (A, 0) (B, 0)
B (A 0) (C,0)
C (D, 0) (C,0)
D (A, 0) (B, 1)

Moore Implementation

Extended State Diagram
e Add extra state E to produce output 1in Moore style.

e Outputs on circles: A/0, B/0, C/0, D/0, E/1.

Moore State Table

State Code x=0 — Next x=1 - Next Output
A 000 A B 0

Guest
Rectangle

State Code x=0 — Next x=1 - Next Output

B 001 A C 0
C on D C 0
D 010 A E 0
E 10 A C 1

Unused-State Handling

MINIMAL RISK: Redirect illegal/unused codes — safe (reset) state.

MINIMAL COST: Treat unused entries as “don’t cares” to simplify logic, but risk
undefined behavior if ever entered.

Summary

e Sequence recognizer: lllustrates both Mealy (compact, output on arc) and Moore
(requires extra state) designs.

e State assignment: Heuristic choices can greatly affect hardware cost and reliability.

¢ Unused states: Must be handled deliberately to avoid metastability or safe-mode
failures.

Guest
Rectangle

17. State Assignment &
Minimization

Obtain State & Output Equations

1. State/Output Table

Present State Code (Q:Q2Q3) Next State (x=0) Next State (x=1) Output (y)

A 000 A (000) B (001) 0
B 001 A (000) C (01) 0
C on D (010) C (011) 0
D 010 A (000) E (110) 0
E 10 A (000) C (01) 1

Remark: From this table, derive for each flip-flop input the Boolean equation in terms
of Qi, Q2 Qs, and x, and the output y = g(Q1,Q2,Q3,x).

Decomposed State Assignment

DECOMPOSED STATE ASSIGNMENT:

Guest
Rectangle

e Minimal Risk: Unused (illegal) codes — safe/reset state on occurrence.

e Minimal Cost: Mark unused codes as “don't care” in next-state logic to simplify
equations (assumes they never occur).

State Minimization
1. Purpose

I STATE MINIMIZATION: Reduce gates or flip-flops by merging equivalent states.

2. Equivalent States

EQUIVALENT STATES: Two states are equivalent if, for every input sequence, they
produce identical outputs and transition to equivalent next states.

3. Strategy

e Partition states by output behavior under x=0/1.
e |teratively refine partitions until no further splits occur.

e Merge equivalent states in the state table/diagram.

State-Minimization Example

1. Original Table

Present x=0 — Next, y x=1- Next, y
A A0 B0

B Co0 D,0

C A0 D,0

D EO F1

E A0 F1

F GO0 F.1

G A0 F1

2. Identify Equivalences

Guest
Rectangle

e E = G (same outputs/transitions)

e F=D
3. Reduced Table

Present x=0 — Next, y x=1- Next, y
A A0 B,0

B C.0 D,0

C A0 D,0

D/F D,0 D1

E/G A0 D1

Post-Minimization Steps
1. Draw Reduced State Diagram with merged states.
2. Assign Codes to reduced states (e.g., binary or one-hot).
3. Derive New Equations for D-inputs and y from the reduced table.

4. Optimize Logic using Karnaugh maps or Boolean simplification.

Final Summary & Takeaways

e State/Output Table — Equations: Systematic derivation for each flip-flop and
output.

¢ Unused-State Handling: Choose minimal risk (redirect) or minimal cost (don't
cares).

¢ Minimization Workflow:
1. Partition by output behavior.
2. Refine by next-state equivalence.
3. Merge equivalent states — reduced FSM.
4. Redesign logic for improved area/performance.

e Common Pitfalls:

Guest
Rectangle

Neglecting unused codes can cause undefined behavior.
Failing to fully refine partitions may miss further merges.

Reassigning codes without considering transition adjacency can increase logic
complexity.

Guest
Rectangle

18. Sequential-Circuit
Fundamentals & Flip-Flops

1. Sequential-Circuit Model

SEQUENTIAL CIRCUIT MODEL:
e State vector S(t) stored in an array of flip-flops.

e Next state S(t+1) = f(S(t), X(t)), a Boolean function of current state and inputs.

e Outputs Y(t) = g(S(t), X(t)), a Boolean function of state (and sometimes inputs).

2. Latches & Flip-Flop Architectures

2.1 Latch Timing Problem

LATCH-TIMING PROBLEM: In a level-sensitive D-latch, when clock C = 1 the feedback
path Q—D allows multiple toggles within one pulse, causing oscillation.

2.2 Master-Slave Flip-Flop

MASTER-SLAVE FF: Two back-to-back latches; master enabled when C = 1, slave when
c=0.

Guest
Rectangle

I e Breaks feedback loop—Q updates once per cycle.

2.3 Edge-Triggered Flip-Flop

EDGE-TRIGGERED FF: Updates output only on a clock transition (rising or falling),
ignoring input while clock is steady.

3. JK Flip-Flop
I BEHAVIOR: Like S-R FF but allows J=K=1, which toggles Q.

Characteristic Table

J K Q(t) Q(t+1) Operation
0 0 0 0 Hold
0 0 1 1 Hold
0 1 0 0 Reset
0 1 1 0 Reset
1 0 0 1 Set
1 0 1 1 Set
1 1 0 1 Toggle
1 1 1 0 Toggle

Characteristic Equation:

Qt+1)=JQ(t) + KQ(t)

Excitation Table

Q(t) Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1

Guest
Rectangle

N
\),,;’\:“ J-K Flip-Flop Descriptors

* Characteristic Table 1K |Q(t+l) Operation
0 0| O Nochange
01 0 Reset
10 1 Set
1 1| O Complement

» Characteristic Equation

Qt+1) =JQ +KQ

« Excitation Table Q(t) Q(t+ 1)|J K Operation
0 0 0 X No change
1 1 X Set
1 0 X 1 Reset
1 1 X 0 No Change

4. T Flip-Flop
I BEHAVIOR: Single input T toggles Q when T = 1; holds when T = 0.

Characteristic Table

T Q(t) Q(t+1) Operation
0 0 0 Hold

0 1 1 Hold

1 0 1 Toggle

1 1 0 Toggle

Characteristic Equation:
Qit+1) =T Q)
Excitation Table

Q(t) Q(t+1) T
0 0 0

Guest
Rectangle

Q(t) Q(t+1) T
0 1 1
1 0 1
1 1 0

Final Summary & Takeaways

e FSM Model: Defined by next-state function f and output function g stored in flip-
flops.

e Latch vs. FF: Edge-triggered FFs solve level-sensitive feedback issues.

e JK & T FFs: Characterize with tables and equations; excitation tables guide input
design.

Guest
Rectangle

19. Registers & Bus-Based
Transfer Structures

1. Registers & Design Models

1.1 Register Definition

REGISTER: A collection of binary storage elements (flip-flops) that holds an n-bit
vector. Can be defined by a state table, but typically treated as a storage vector for
data movement and simple processing.

2. Register-Storage & Load Control

2.1 Expectations vs. Reality
EXPECTATIONS: Register holds data across clock cycles; loading must be controlled.

REALITY: A plain D-FF register loads on every clock edge.

2.2 Load Control Techniques
1. Clock Gating

Guest
Rectangle

CLOCK GATING: AND the global clock with a Load signal to enable loading only
when Load=1.

Problem: Gated clocks introduce skew and timing hazards.

2. Load-Controlled Feedback

FEEDBACK CONTROL: Keep clock free; use a 2:1 multiplexer on each D-input to
select between current Q (hold) or new input (load).

Benefit: Eliminates clock skew; cost is extra MUX logic.

3. Register-Transfer Operations & Notation

3.1 Register-Transfer Concept

REGISTER TRANSFER OPERATION: Movement or processing of data between
registers under control signals; each elementary step is a microoperation.

3.2 Notation

e Register name: R, PC, IR

Bit range: R(7:0), PC(H), PC(L)

Transfer arrow: . - &,

Parallel ops: . « 7., 7. < &.

Memory reference: &, « nAr]

4. Conditional Transfers

CONDITIONAL TRANSFER: K;: (R, < R¢) executes only if control Ky = 1.

Example timing: only one clock edge with K;=1 causes the move.

5. Microoperations

5.1 Categories

‘ Types:

Guest
Rectangle

Transfer: move data between registers

Arithmetic: add, subtract, increment, etc.

Logical: bitwise OR, AND, EXOR, NOT

Shift: logical/arithmetic left/right

5.2 Arithmetic Microoperations

Symbolic Description

Ro « R1 + Rz Addition

Ro « Ra’ One's complement
Ro « Ra/ + 1 Two's complement
Ro « R2 - Ry Subtraction

Ro « Ro + 1 Increment

Ro « Ro - 1 Decrement

5.3 Logical Microoperations

Symbolic Description
Ro « Ra’ Bitwise NOT
Ro « Ri V R Bitwise OR

Ro « Ri A Rz Bitwise AND

Ro « Rx @ R Bitwise EXOR
I Example: For R1=1010 1010 and R,=1111 0000, compute all four operations.

5.4 Shift Microoperations

Symbolic Description
Ro « SL R. Shift left (zero-fill)
Ro « SR Ra Shift right (zero-fill)

6. Transfer-Structure Architectures

Guest
Rectangle

6.1 Multiplexer-Based Transfers

I MUX-BASED: Each register input has a dedicated MUX to select its source.

6.2 Bus-Based Transfers

BUS-BASED: A shared bus driven by a single MUX or by multiple 3-state drivers; feeds
many registers.

6.3 Dedicated vs. Shared Structures
e Dedicated MUX: Highly flexible, high hardware cost.
e Shared Bus + MUX: Lower cost, limited simultaneous transfers.

e Shared Bus + 3-State Buffers: Further cost reduction, drivers must tri-state when
not active.

7. Three-State Buffers & Hi-Z Logic

7.1 Hi-lImpedance Outputs

Hi-Z: "Open-circuit” state that allows multiple drivers to share a bus safely. When
output = Hi-Z, it neither drives 0 nor 1.

7.2 3-State Buffer
Behavior:
e EN = 0:OUT = Hi-Z
e EN=1:0UT=IN

e \Variations: bubbles invert IN or EN.

EN IN ouT
0 X Hi-Z
1 0 0

1 1 1

7.3 Bus Contention & Resolution

Guest
Rectangle

Rule: On a shared wire, at most one 3-state driver may be enabled; all others must be
Hi-Z.

Valid combinations for two drivers B, By:

e (O,HI-2)-0

(1, Hi-2) =1

(Hi-Z,0) -0

(Hi-Z,1) =1

(Hi-Z, Hi-Z) = Hi-Z

Final Summary & Takeaways
e Registers are n bit state vectors realized by D-FF arrays.
e Load control achieved via clock gating or input MUXes.
e Register-transfer notation formalizes data movement and processing.
e Microoperations provide elementary arithmetic, logic, and shift functions.

e Transfer structures trade off flexibility vs. hardware cost: dedicated MUX, shared bus,
3-state.

e Hi-Z logic enables bus sharing; only one driver active at a time is safe.

Guest
Rectangle

20. Registers and Register
Transfer Operations

Register Fundamentals

Definitions

REGISTER: A collection of binary storage elements storing a vector of bits.

MICROOPERATION: An elementary operation (e.g., load, shift) performed on register
contents.

Four-Bit Register Examples
¢ Parallel Load Register: All bits load simultaneously from inputs.

o Shift Register: Bits shift left or right by one position per clock.

Guest
Rectangle

Parallel Data Output

A
ll ':]2

0l
MSEI T TLSEI
- I I I

. Serial
Serial D Q
vz L o
Input 1hit |- I:ut bt | 1-bit Hpd

MSEI T TLSB

Dz DOg,

Parallel Data Input

Register Transfer Architectures

Dedicated MUX-Based Transfer

Each register input has its own multiplexer, allowing arbitrary source-to-destination
moves in one cycle.

Guest
Rectangle

sisfe e Dedicated MUX — based
- i

Jo s 1. Transfer

2-10-1
o1 MUX

RO

e Multiplexer connected to each

Y Y register input produces a very
S .

™1 201 |2 flexible structure

»1 MUX i

e Characterize the simultaneous
transfers possible with this
Y Y structure

2-10-1 n_
!

»{| MUX

(a) Dedicated multiplexers

Bus-Based Transfers

Multiplexer Bus: Single bus with a large multiplexer at the driver side, limiting
simultaneous transfers.

Three-State Bus: Uses tri-state buffers on each register output sharing a common

bus.
E System
! bus line
Data out
To and from V
device
] petain

¥

Guest
Rectangle

Final Summary & Takeaways

e Registers store and process data via microoperations.
e Transfer architectures trade flexibility (dedicated MUX) for cost (bus-based).

e Shift registers support serial data movement with minimal hardware.

Guest
Rectangle

21. Counters, Shift Registers, and
Serial Transfer

Counters

Definitions

COUNTER: A register sequence that advances through a predefined state sequence
on clock pulses.

Ripple vs. Synchronous Counters

¢ Ripple Counter: Clock feeds only LSB; toggling ripples through bits (not fully
synchronous).

¢ Synchronous Counter: Common clock to all flip-flops; combinational logic
determines next state.

Guest
Rectangle

High

J Q J Q J Q J Q
Clock >Cy >Ck >Cy >C
K @ K & K & K @
Qo Qq Q2 Qs

(a) Asynchronous counter

Clock

% | |

Qo

Q3

(b) Timing Diagram

Counter Variants
e Up/Down Counter: Counts up or down based on control input.

¢ Modulo-N Counter: Resets or loads on terminal counts to achieve non-power-of-
two sequences.

e Parallel-Load Counter: Supports loading arbitrary values via parallel inputs.

Guest
Rectangle

Shift Registers and Serial Transfer

Shift Register Operations

Shift Left/Right (sl/sr): Moves bits toward MSB/LSB; new bit may be zero or provided
externally.

Parallel-Load and Hold

Adding multiplexers enables select between shift, load, and hold operations in the

same register structure.

Serial Transfer Example

Serial Addition: Performs A < A + B one bit at a time using two shift registers and a
single adder.

LEDs

L Register A el)

ISeriE::I » Register B jmmip Full Adder
hpu

D FF |

Final Summary & Takeaways
e Counters derive from register structures with combinational next-state logic.
e Synchronous design improves timing predictability over ripple counters.
e Shift registers and serial operations trade throughput for hardware efficiency.

e Parallel-load capability enhances flexibility for control applications.

Guest
Rectangle

22. Programmable Computer and
Control Unit

Datapath & Control

DATAPATH: Performs data transfer and processing operations, composed of a
register file, function unit (ALU, shifter), and buses.

CONTROL UNIT: Determines operation sequencing by generating control signals

from external inputs and status flags.

e Control Inputs: External control signals and status outputs from the datapath.

e Control Outputs: Signals enabling multiplexers, register loads, and function-unit
operations.

Guest
Rectangle

Primary Inputs

l Control Inputs i Data Inputs
Control
Control Signals Data
Unit Path
Status
Signals
Control OQutputs lData Outputs
Prima?y- Outputs

Control Unit Types

PROGRAMMABLE CONTROL UNIT: Features a program counter (PC), instruction
memory (ROM/RAM), and decision logic to fetch and decode microinstructions.

NON-PROGRAMMABLE CONTROL UNIT: Hardwired sequencer without instruction
fetch; suited to fixed-operation datapaths.

Datapath Components

REGISTER FILE: A bank of registers with multiplexed inputs for microoperations.
FUNCTION UNIT: ALU and shifter, with a function-select multiplexer (FS codes).

BUSES: Shared A, B, and D buses using either dedicated multiplexers or three-state
buffers.

Final Summary & Takeaways

e Datapath comprises the register file, function unit (ALU/shifter), and shared buses to
move and process data.

e Control Unit generates sequencing signals from external inputs and status flags to

orchestrate microoperations.

Guest
Rectangle

Control Inputs/Outputs: Inputs include external controls and datapath status;
outputs drive multiplexers, register loads, and function-unit operations.

Programmable vs. Non-Programmable:

o Programmable Control Unit: Uses a PC and microinstruction memory for
flexible sequencing.

o Non-Programmable Control Unit: Hardwired logic for fixed-operation control
with lower hardware overhead.

Datapath Components Recap:
o Register File: Multiplexed inputs for microoperations.
o Function Unit: ALU/shifter with function-select codes.

o Buses: Implemented via dedicated multiplexers or tri-state buffers to route data.

Guest
Rectangle

23. Algorithmic State Machines
and ASM Design

Algorithmic State Machines

ASM: A structured, flowchart-like method to specify states, decisions, and

microoperations in sequential circuits.

ASM Primitives

1. State Box (Rectangle): Denotes the current state and its register-transfer
operations.

2. Scalar Decision Box (Diamond): Branches on a single input condition (TRUE/FALSE).

3. Vector Decision Box (Hexagon): Branches on an n-bit input vector, with up to 2"
exit paths.

4. Conditional Output Box (Oval): Specifies outputs or actions triggered under
decision conditions.

ASM Blocks & Timing

Guest
Rectangle

ASM BLOCK: A state box plus its connected decision and output boxes, representing
one control cycle.

ASM TIMING: Outputs are asserted during the state; register transfers occur on the
clock’s rising edge as the machine exits the state.

ASM Design Process

1.
2.

Identify States: Enumerate all functional states of the control unit.

Construct Flowchart: Use ASM primitives to map transitions, decisions, and
outputs.

Define Microoperations: Assign register transfers and control-word field values for
each state.

Implement Hardware: Translate the ASM into control logic or microprogram
memory.

ASM Block : Another Example

ANALYSIS: —
= State IDLE,AVAIL = IDLE ‘ TR
= START =0, next sfate AVAIL ' '
is to Increase R ang
next state is IDLE 0
= START = I, next to <>
clear R to all 0’s angd
next state is... E@
Depending on valug¢ ofsit

QO0, next state is
MULO or MULI. Exit

MULD § MUL1

Exit

Guest
Rectangle

Guest
Rectangle

24. Design Examples

Greatest Common Divisor

Description

The Euclidean greatest common divisor (gcd) algorithm finds the largest positive integer
that divides two input values without a remainder. Mathematically:

e gcd(@,a)=a
e gcd(a, b) =gcd(a-b,b)ifa>b
e gcd(a, b) = gcd(a, b - a) otherwise
ASM Components
e States:
1. IDLE
2. COMP
3. DONE
e Registers: A B
e Inputs: X Y, GO

e Outputs: DONE (pulsed when result is ready), A (holds gcd result)

Guest
Rectangle

Operation Sequence
1. IDLE
e Wait for GO =1, while loading initial values:
o A<X
o BeY
e When GO asserts, transition to COMP.
2. COMP
e Compare A and B:
o IfA>B,thenA < A -B.
o Elseif B> A thenB < B - A.
e Repeat until A = B:
o When A = B, that value is gcd(X, Y).
e Transition to DONE.
3. DONE
e Pulse DONE output (0—1) to indicate completion.
e Hold A as final gcd.

e Return to IDLE on reset or next GO pulse.

Guessing Game

Description

A simple interactive game where a rotating 1-of-3 LED pattern moves at ~5 Hz. The player
presses one of three push-buttons (G4, G, G3) to “guess” which LED is currently lit. If a
wrong button is pressed, an error LED is asserted. Play pauses until the button is released,
then resumes rotation.

ASM Components
¢ Inputs: Gy, G,, G3 (push buttons)

e Outputs:

Guest
Rectangle

o Ly, Ly, L3 (1-of-3 rotating LED pattern)
o ERR (red LED, asserted on wrong guess)
e Clock Frequency: ~5 Hz for rotating pattern
Operation Sequence
1. Rotate Pattern
e On each clock tick, shift the single "1” among Ly—L,—L3;—L, in a circular fashion.
2. Guess Detection
e Ifany Giis pressed:
o CheckifLi=1.
= If matched, do nothing (correct guess).
» [f unmatched, assert ERR =1.
e While G; remains pressed, halt rotation (pattern frozen).
3. Resume Play

e Once the pressed button is released (G; = 0), clear ERR, then resume rotation
from current LED.

attachment:59059461-b0a4-4036-aa21-07f740164583:elec205-w14-s25.pdf

Guest
Rectangle

25. Final Exam Review

Contents

1.

o v~ WD

Sequential Circuits Overview

Latches & Flip-Flops

Sequential Analysis & Design

Registers, Counters & Shift Registers

Algorithmic State Machines (ASMs)

Datapath & Control Basics

Sequential Circuits Overview

¢ Definition: Outputs depend on current inputs and stored state.

Model:

Inputs (X) » Combinational Logic -» Flip-Flops (state Q) - Output

s (Y)

0
L— Q feedback

Guest
Rectangle

e Next-State Function: Q(t+1) = f(X(t), Q(t))
e Output Function:

o Mealy: Y(t) = g(X(t), Q(t)

o Moore: Y(t) = h(Q(t))

Latches & Flip-Flops
1. SR Latch (NOR/NAND):
e Stores 1 bit.

e S=1R=0 - Set (Q=1); S=0R=1 — Reset (Q=0); S=R=0 - Hold; S=R=1 -
Forbidden.

2. Clocked SR Latch:
e Gate S/R with clock C.
e When C=1, latch is transparent; C=0, holds state.
3. D Latch:
e Derived from SR latch: D=1 — Set; D=0 — Reset when C=1; C=0 — Hold.
4. Master-Slave & Edge-Triggered D FF:
e Two latches in series: master enabled on C=1, slave on C=0.
e Edge-triggered FF updates only on clock transition.
5. JK & T Flip-Flops:
e JK:J=K=0 - Hold; J=1K=0 - Set; J=0 K=1 - Reset; J=K=1 - Toggle.
e T:T=0 - Hold; T=1 - Toggle.

Guest
Rectangle

= c-=L
Latches A

/\ 20 - \da\d

SR Latch Clocked SR Latch @

R (reset Q S Q
C

S (set) Q R Q

2.,
SN
[\

)

S Qf {S:Q
R QO R QP

(18 104 Set & 110 1 Set
01 0 Reset™ 101 0 Reset
o f{a;| ol Hold v 100 Q Hold

@ uD afa] uD

0D x x Q Hold

Sequential Analysis & Design
1. Analysis Steps:
e Given flip-flop type and logic, derive next-state and output equations.
e Build a state table: (Present State, Input) — (Next State, Output).
e Draw state diagram (Mealy: arc labeled X/Y; Moore: state labeled /Y).
2. Design Procedure:
a. Specification — State Diagram (identify states, inputs, outputs).
b. State Assignment: Choose binary codes (Gray code often minimizes logic).
c. State Table: List all (PS, X) = (NS, Y).
d. Equations:
e ForD-FF:D_i = Q_i(t+1).
e For JK: use excitation table to find J,K.
o ForT:T=Q & Q(t+1).

e Output logic: depends on PS (Moore) or (PS+Input) (Mealy).

Guest
Rectangle

e. Simplify: Karnaugh maps or Boolean algebra.

f. Implementation & Verification: Map to gates/FFs, simulate/state-table check.
3. Example (Sequence Detector “1101"):

e States: SO(no bits), S1("1"), S2("11"), S3(“110").

e Transitions labeled with input/output.

e Assign codes (e.g., 00, 01, 11,10); derive D1,D0 and y = Q1 - Q0 - x.

Registers, Counters & Shift Registers

1. Registers:
e n D-FFs storing n-bit word.

e Microops: load, increment, decrement, bitwise NOT, logical/arithmetic ops via
ALU.

2. Transfer Structures:

e MUX-Based: Each register input has a MUX to select source.

e Bus-Based: One shared bus, each register output enabled via tri-state buffer.
3. Shift Registers:

e SISO: Serial in — shift — serial out.

e SIPO: Serial in — after n clocks, parallel outputs ready.

e PISO: Parallel load — shift out serially.

e PIPO: Standard register (parallel load/read).
4. Counters:

¢ Ripple (Asynchronous): Clock drives LSB; each stage toggles on previous
output edge (slower).

e Synchronous: All FFs share clock; next-state logic determines toggles.
e Up/Down, Mod-m, BCD: Use combinational logic to reset or invert as needed.

e Example: 4-bit synchronous up-counter with T-FFs: T_i = Q0 - Q1- ... - Q_{i-1}.

Guest
Rectangle

Counter & Shift Register

VS)

Algorithmic State Machines (ASMs)
e ASM Chart Symbols:
1. State Box: Clocked microoperations inside.
2. Decision Box: Conditional test (Yes/No paths).
3. Conditional Output Box: Output action based on decision.
e Steps to Build ASM:
1. Identify clocked actions and decisions.
2. Draw state boxes with microops.
3. Add decision diamonds for condition checks.
4. Label transitions (e.g., "if x=1 — next state; else — another state”).
5. Derive flip-flop/input equations from ASM.
e Example (Euclid GCD):
o [IDLE: wait GO, load A<X,B<Y. - COMP
o COMP: if A>B, A—A-B; else if A<B, B—B-A; else — DONE

o DONE: DONE=1 for one cycle, then return to IDLE.

Guest
Rectangle

Status condition

Commands _
Data
CDI’ItFDl processor
External logic Input data
inputs —_— — Output data

Datapath & Control Basics

1. Datapath Components:

Register File: Multiple registers with two read ports (Bus A, Bus B) and one write
port (Bus D).

Mux B: Select between register B or immediate.

ALU: Arithmetic/logic operations on Bus A and Mux B output.
Shifter: Shift/rotate operations on Bus B.

Mux F: Select ALU or Shifter output.

Mux D: Select between Mux F or external data for writing.

Status Flags: Z (zero), N (negative), C (carry), V (overflow).

2. Control Word Fields (example 16 bits):

[15-13] DA: Destination register (write).
[12-10] AA: Source for Bus A.

[9-7] BA: Source for Bus B.

[6] MB: 0— register B, 1- immediate.
[5-2] FS: ALU/Shifter function select.
[11 MD: 0— Mux F, 1- external data.

[0] RW: 1- enable write to DA on rising clock edge.

3. Function Select (FS) Examples:

Guest
Rectangle

4. Microinstruction Sequencing:

e Control word loaded each cycle.

0000: F<A (pass A)
0010: F—A+B (add)
0100: F—A-B (subtract)
0110: F—AAB (AND)
0111: F=AvB (OR)

1010: F<shift right(B)
1011: F<shift left(B)
1100: F<0 (zero)

1101: F<1 (one)

e On clock: assert control signals — datapath executes ALU/Shifter - Mux D

selects data — if RW=1, write to register.

¢ Next microaddress: either increment or branch based on flags/inputs.

AL o th
Read 3 R
registar 1 Read MemWrite
| read data 1 i 7o
instriction " reglister 2 L]
——— Rm" > ALL ALY -
o Write L e L datn
regrster Fead .
Write dats 2 _‘ / -
Tl data
HE[{Wﬁtﬂi i Wrlta
data
J{B i Sign 32 MemRead
b ewtend
Fetch Decode Execute

Guest
Rectangle

