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1. Functions in Mathematics

Function Definition

A function is a rule that pairs every element in one set, called the domain, with exactly
one element in another set, called the range. Formally, a function is a relation between
two non-empty sets A and B, where each element in the domain A is assigned to

exactly one element in the range B.

Function Notation

A function is typically denoted as:
f:A— B

where f is the function, A is the domain, and B is the range. For any element € A, the
function fassigns it to an element f(x) € B.

For example, the function
f(z)=2"+6
assigns every element x in the domain to z2 4 6inthe range.

Function Notation with “:="
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The symbol “:=" is sometimes used in function definitions, indicating that the function is
being defined. For instance, if we write:

f(n):=2n+7

it means f(n) is defined as 2n + 7 for all 7 in the domain.

Domain, Range, and Co-domain

Domain

The domain of a function is the set of all possible input values. For example, in the
function

f(x) =2°+6
the domain could be the set of real numbers, integers, or another specified set.

Range

The range of a function is the set of all possible output values that the function can
produce. In the case of

f(x)=xz*+6

the range depends on the domain. If the domain is the set of real numbers, the range
would be all real numbers greater than or equal to 6.

Co-domain

The co-domain is the set in which the output values are considered to reside. The range
is a subset of the co-domain.

Examples of Sets in Functions

e Set of integers:

Z={..,-3,-2,-1,0,1,2,3,...}
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e Set of positive integers:
7" = {1,2,3,...}
e Set of non-negative integers:
Z-9=40,1,2,3,...}

e Set of rational numbers:

e Set of real numbers:

¢ Intervals:

o Openinterval:

(a,b)=x € R|la<zxz<b
o Half-open interval:

a,b) =z € R|a<z<b
o Closed interval:

la,b)]=z€R|a<z<b

Properties of Functions

1-to-1 Functions (Injective)

A function is called 1-to-1 (injective) if every element in the domain maps to a unique
element in the range. In other words, if f(a) = f(b) thena = b.

Note: At most 1 such that f(z) = y.

Onto Functions (Surjective)
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A function is onto (surjective) if every element in the co-domain has a preimage in the
domain. This means that for every y € B, there exists anx € A suchthat f(z) = y.

Note: range = codomain

Into Functions

A function is into if not every element in the co-domain is mapped by the function. This
means the range is a proper subset of the co-domain.

Note: range # codomain

Summary

e Afunction is a pairing between two sets, with each element in the domain paired with
exactly one element in the range.

e Important concepts include domain, range, co-domain, and function properties like
injective, surjective, and into.

e Notation is crucial in understanding and defining functions, with f : A — B as
standard notation and ":=" used to define functions explicitly.
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2. Functions, Polynomials, and
Trigonometric Functions

1-to-1 and Into Functions

1-to-1 (Injective) Function
A function f is called 1-to-1 or injective if different inputs produce different outputs, i.e., if

f(x1) = f(@2), then £1 = z5. In other words, each element of the domain maps to a
unique element in the codomain.

Into Function (Surjective)

A function f is called an into or surjective function if every element in the codomain
(output set) has at least one preimage in the domain. This means that for every y in the
codomain, there exists an  in the domain such that f(z) = y.

Both 1-to-1and Onto (Bijective) Function

A function that is both injective and surjective is called a bijective function. This type of
function has an inverse because every element in the codomain is matched uniquely with
an element in the domain.
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Composite Functions

A composite function is created when one function is applied to the result of another
function. If f and g are two functions, then the composite function f(g(z)) means that
the function g is applied first and then the function f is applied to the result of g().

Notation

The composite of f and g is written as:
(fog)(z) = f(g(x))
This reads as "f composed with g of x."

Inverse Functions

An inverse function reverses the operation of a function. If f(x) is a function, its inverse

f1(z) satisfies the following condition:

F(f (@) = (f(z) ==

This means that applying a function followed by its inverse (or vice versa) will return the
original input.

Example
If f(x) = 2z + 3, then the inverse function f~!(z) can be found by solving for z in
terms of y:
-3
y=2x+3 — x= yT

Thus, f 1 (z) = &2,

Polynomials

A polynomial p(x) is a function of the form:

p(z) = apz" + ap_12™ -+ a1z + ag
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Where a,,,a,_1,...,aq are constants, and n is the degree of the polynomial.

Key Terms:

¢ Constant Coefficient: The term a is the constant term in the polynomial.

¢ Leading Coefficient: The coefficient a,, of the highest degree term is called the
leading coefficient.

e Degree of a Polynomial (deg(p)): The degree of the polynomial is the highest
exponent of x that appears in the polynomial.

Roots of a Polynomial

A root (or zero) of a polynomial is a solution to the equation p(z) = 0 If r is a root, then:
p(r) =0

Discriminant and Roots of Quadratic Polynomials

For a quadratic polynomial ax? + bx + ¢ = 0, the discriminant A is given by:
A = b% — 4ac

e If A > 0, the quadratic has two distinct real roots.
e If A = 0, the quadratic has one real root (a repeated root).

e If A < 0, the quadratic has two complex roots.

Rational Functions

A rational function is the ratio of two polynomials:

Where p(z) and () are polynomials, and g(z) = 0.

Domain and Range of Rational Functions
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e Domain: The domain of a rational function excludes the values of & that make the
denominator g(z) = 0.

e Range: The set of possible output values of the function.

Degree of a Rational Function

The degree of a rational function r(x) = —x) is:

deg(r(z)) = deg(p) — deg(q)

This degree can be negative if the degree of the denominator () is larger than the
degree of the numerator p(z).

Note: Rational functions can have negative degrees, unlike polynomials.

Trigonometric Functions

Trigonometric functions can be defined using the unit circle, which is a circle centered at
the origin with a radius of 1in the coordinate plane.

Unit Circle Definition

For an angle € measured from the positive z-axis (in radians), the trigonometric functions
can be understood as the coordinates of a point on the unit circle.

e Sine: sin(@) represents the y-coordinate of the point on the unit circle at angle 6.

e Cosine: cos(6) represents the z-coordinate of the point on the unit circle at angle 6

Unit Circle

The unit circle is a circle with a radius of 1 centered at the origin. The coordinates of a
point on the unit circle are (cos(#), sin(f)), where 6 is the angle from the positive x-
axis.

Other Trigonometric Functions
sin(6)
cos(6)

1

e Cotangent: COt(e) - tan(0)

e Tangent: tan(f) =
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e Secant: seC(9) — cos(0)

e Cosecant: CSC(9) — sin(0)

Domains and Ranges of Trigonometric Functions

1. Sine Function sin(x)

e Domain: The sine function is defined for all real numbers. Therefore, the domain of

sin(z) is:
(_009 OO)
 Range: The sine function oscillates between -1and 1. Thus, the range of sin(z) is:

[_17 1]

2. Cosine Function cos(x)
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e Domain: The cosine function is also defined for all real numbers. Therefore, the
domain of cos(z) is:

(—OO, oo)
e Range: The cosine function oscillates between -1and 1. Thus, the range of cos(z) is:

[_1> 1]

3. Tangent Function tan(x)

e Domain: The tangent function is undefined at odd multiples of 7, because the cosine
function in the denominator equals 0 at these points. Therefore, the domain of
tan(z) is:

2 1
(2n + )7rn

(—00,00) except = 5 ,MEZL
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e Range: The tangent function has a range of all real numbers, as it increases without
bound:

(_007 OO)

4. Cotangent Function cot ()

e Domain: The cotangent function is undefined where sin(x) = 0, at integer
multiples of 7. Therefore, the domain of cot(x) is:

(—o00,00) except z=nm, neEZ
e Range: The range of cot(z) is:
(_007 OO)

because it behaves similarly to the tangent function, with vertical asymptotes at
T = nm.
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5. Secant Function sec(z)

e Domain: The secant function is undefined where cos(a:) = 0, which occurs at odd
multiples of 7. Therefore, the domain of sec(z) is:

(2n+ 1)

yneZ
5 n

(—00,00) except =z =

e Range: The range of sec(z) is:

(_007 _1] U [17 OO)

because sec(x) = Cosl(m), and cos() is between -1and 1, excluding 0.



Guest
Rectangle


10

6. Cosecant Function csc(x)

e Domain: The cosecant function is undefined where sin(x) = 0. This happens at
integer multiples of 7. Therefore, the domain of csc(z) is:

(—00,00) except x=nm, neEZ
e Range: The range of csc(z) is:
(_007 _1] U [17 OO)

since csc(x) = Sm—l(x) and sin(x) is between -1and 1, excluding 0.
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Inverse Trigonometric Functions

The inverse trigonometric functions return the angle whose trigonometric ratio is the
given value. For example:

e arcsin(z) is the angle 6 such that sin(6) = .

e arccos(x) is the angle 6 such that cos(0) = .

1-to-1and Onto Properties of Trigonometric Functions

e Sine:sin(0) is 1-to-1and onto in the interval [— 7, 7], and its inverse arcsin(z) is
defined in this range.

e Cosine: cos() is 1-to-1and onto in the interval [0, 7], and its inverse arccos(z) is
defined in this range.
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3. Introduction to Limits and
Continuity

Informal Definition of Limit

A limit describes the behavior of a function as the input & approaches a particular value.
We are interested in what happens to f(x) as x gets close to a certain value, rather than
the exact value at that point.

Definition:
Let f(z) be a function. The limit of f(x) as = approaches a is denoted by
lim, ., f(z) = L, which means:

e f(z) approaches the value L as x gets arbitrarily close to a from both sides (left
and right), without necessarily evaluating f(a).

Left and Right Limits

For a given real number a, the limit can approach from two directions:

e Left-hand limit: If f(x) approaches L as  approaches a from the left (i.e, < a),

we write:
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lim f(z) =1L

T—a-

e Right-hand limit: If f () approaches L as x approaches a from the right (i.e., © >

a), we write:

lim f(z)=1L

rz—a’

If the left-hand and right-hand limits are equal, the overall limit exists:

lim f(x) =L

T—a

If the two are not equal, the limit does not exist.

Terminology

Neighborhood and Deleted Neighborhood

e Neighborhood of a: This refers to an open interval containing a. For example, (a —

d,a + 9) is a neighborhood of a, where § is a small positive number.

e Deleted Neighborhood of a: This is an open interval around a, excluding a itself. It
can be written as (b, ¢) \ {a} or (b, a) U (a, ¢) meaning the interval does not
include the point a, though it approaches it from both sides.

Formal Definition of Limit

For a function f(z), the limit of f(x) as « approaches a is L, written lim,,_,, f(z) =

L, if:

e Foreverye > 0, thereexistsad > O suchthat |f(z) — L| < e whenever 0 <
|z —a| < 4.

This formal definition captures the idea that f () gets arbitrarily close to L as «
approaches a, regardless of how close x is to a.

Examples of Limits
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Example 1: f(z) = sin (;)
As x approaches 0, f(z) = sin (%) oscillates infinitely between -1and 1. Since f(z)
does not settle towards any particular value as x — 0, the limit does not exist.

lim f(z) = d.n.e

z—0

—_— —=
-5 5 10
5
. 1—cos(z)
Example 2g(w) S
As x — 0, the function g(z) = 1_0;)25(96) is continuous for all z = 0. Evaluating the limit

by substituting small values of x, we observe that the limit approaches a finite value.

Thus, the limit as £ — 0 exists:

. 1
lim g(z) = 3-

The function is continuous everywhere except a x = 0.
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Example 3: h(z) = cot(x)

The function h(x) = cot(z) = :lons—g)) is undefined at z = nm where sin(z) = 0. The
limit does not exist at these points due to vertical asymptotes. For example, at x = T,

the limit as & approaches from the left or right is infinite.

lim h(x) = —oo, lim h(z) = +o0
T z—mt

Thus, h(x) is continuous everywhere except at & = n.
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Summary of Key Concepts

Limit: The value that a function approaches as the input approaches a particular
point.

Left-hand limit: The limit as « approaches from the left.

Right-hand limit: The limit as & approaches from the right.

Neighborhood: An open interval around a point.

Deleted Neighborhood: An open interval around a point, excluding the point itself.

Oscillation: A situation where a function does not approach a single value as
approaches a point (e.g., sin(1/x)).


Guest
Rectangle


XX
.A -~

4. Limits and Their Properties

Example: Formal Definition of Limit

Let f(z) be a function. Consider the formal definition of a limit.

lim, ., f(z) = L means that as & approaches a, the values of f(z) get arbitrarily
close to L.

Example
Let f(z) = 2z + 1, and we are interested in finding lim,_,; f(x).

Applying the definition of the limit:

lim(2z +1) = 2(1) +1 =3
Thus, the limit exists and equals 3.

Properties of Limits
Given two functions f(z) and g(x), and let a € R, such that:

e lim, ., f(z)=1L
o lim, ,g(z)=M

Then the following properties hold:
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1. Addition/Subtraction

lim[f(x) £ g(z)] =L+ M

T—a

2. Multiplication

lim[f(z) - g(a)] = L - M

T—a

3. Division (provided M v 0)

lim M = £
r—a g(CE) M

Example: Limit of a Polynomial
Consider f(z) = z* — 2z + 3 and find lim,,_,, f(z).

Using the properties of limits, compute the limit of each term:

lim(z® — 2z + 3) = lim 2® — lim 2z + lim 3

Tr—a T—a T—a T—a
Substituting the limit values:
2
=a" —2a+3
Thus, lim, ., (2? — 2z + 3) = a® — 2a + 3.

Remark: Limits of Polynomials

If p(x) is a polynomial, then forany a € R,

lim p(z) = p(a)

T—a

This means that you can find the limit of a polynomial at any point by simply substituting
a into the polynomial.

Formal Definition of Limit Using Left and Right Limits

Let f(x) be afunctionand a € R. The limit of f(z) asx — ais L if and only if:
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e The left-hand limit:

e The right-hand limit:

lim f(z) =L
le+ f(z) =L

If the left and right limits exist and are equal, then:

lim f(x) = L

T—a

If the left and right limits do not exist or are not equal, the overall limit does not exist

(d.n.e)).

Piecewise Defined Functions and Limits

For piecewise-defined functions, you evaluate the left and right limits at the point where

the function changes definition.

Example

z+1 ifex <1
L —
et f(=) {2:c1 ifz>1

To find lim, ,; f(x):

o Left limit:

lim f(z) =

z—1"

e Right limit:

lim(z+1)=1+1=2

z—1~

lim f(z) = lim 2z —1)=2(1)-1=1
z—1F z—1t

Since the left and right limits are not equal, lim, 1 f(z) does not exist.

Fundamental Fact
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The limit lim, ., f(z) = L if and only if the left-hand and right-hand limits exist and
are equal to each other. If they are unequal, the limit does not exist.

Homework

Prove: If f(z) = c (a constant function), then:

lim, ., f(z) = cforanya € R.
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5. Continuity and Limits of Functions

Continuity: Definition

Let f be a function defined in a neighborhood of a in real numbers (meaning a is within the domain of f). We say that f
is continuous at z = a if:

lim £(z) = f(a)

T—a

This implies that the limit of f(z) as  approaches a equals the value of f atz = a.

Examples of Continuity
1. Constant Function

Let f(z) = Az. We have:

lim Az = Aa = f(a)

T—a

So, f is continuous at * = a for any real a.
2. Polynomials

For any polynomial p(z), the limit as  approaches any real a is:

lim p(z) = p(a)

T—a

Therefore, all polynomials are continuous at any point a in the real numbers.

Remarks on Continuity of Special Functions

o Rational Functions: All rational functions are continuous on their domains. For example:

fle) = 5


Guest
Rectangle


Here, the domain of fis R \ {2, —2}, and f is continuous at every point within its domain.
Note: For points outside of the domain (e.g, x = 2 orx = —2), continuity does not apply.
¢ Trigonometric Functions: All trigonometric functions are continuous within their domains.

e Inverse Trigonometric Functions: All inverse trigonometric functions are also continuous on their domains.

Properties of Continuous Functions
Let f and g be two continuous functions and let a € R. Then:
1. Addition: lim, ,,(f(z) + g(x)) = lim,_,, f(x) + lim,_,, g(x)
2. Subtraction: lim, ,,(f(z) — g(z)) = lim, ., f(z) — lim,_,, g()

3. Multiplication: lim, ., (f(z) - g(z)) = lim,_,, f(z) - lim,, g(z)

flz) _ lim,, f(z)

4. Division: lim,_,, @) = Tme g(2)

provided lim; ,, g(z) = 0.

Example of Continuity

i sin®(z) +sin(z) +1  sin*(0) +sin(0)+1 04+0+1 1
z—0 cos(z) B cos(0) B 1 1

Thus,

sin?(z) + sin(z) + 1 _1
20 cos(z) -

Floor and Ceiling Functions

1. Floor Function | |: Maps « to the greatest integer less than or equal to .

2. Ceiling Function [z |: Maps z to the smallest integer greater than or equal to .

Examples:
e (23] =2
e [23]=3

Infinite Limits: Definition

Let f be a function defined in a deleted neighborhood of a in the real numbers. We say that the limit of f as x
approaches a is infinity, and we write:

lim f(z) = 400

T—a

if for any M > 0 there exists some § > Osuchthat0 < |z —a| < § = f(z) > M.

Similarly, we write:

lim f(z) = —o00

T—a

if for any m < 0 there exists some § > Osuchthat0 < |z —a| < § = f(z) < m.

Homework
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Problem: Define lim,,_,,- f(z) = +oo.
Solution:

1. For +oc<:

lim f(z) = +oo if for every M > 0, there exists a § > 0 such that if 0 < a — z < 4, then f(z) > M.

Tr—a
1. For —ox:

lim f(z) = —oo iffor every N < 0, there exists a § > 0 such that if 0 < a — 2 < 4, then f(z) < N.

T—a -
Interpretation:
e +00: As z approaches a from the left, f(z) exceeds any positive number M.

e —00: As z approaches a from the left, f(z) falls below any negative number N.
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6. Limits at Infinity, Infinite Limits,
and Squeeze Theorem

Limits at Infinity

Definition
The limit at infinity describes the behavior of a function f(x) as « approaches 00 or
—00. When we write:

lim f(z) =L or lim f(z)=1L

T—00 T——00

it means that as = becomes very large in the positive or negative direction, f(x)
approaches a particular finite value L.

Examples
1. Constant function:

For a constant function like f(x) = 5:

lim 5 =5

T—00
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Here, f(z) stays constant at 5 as & — 00.

-10 -5 0

10

2. Rational function with a degree comparison:
For f(z) = 2:

2
lim — =0
T—00 ¢

Asx — 0O, % gets smaller and approaches 0.
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3. Polynomial function:

For f(z) = 2% — 4z + 3:

lim (2% — 4z + 3) = oo

T—00

Since 22 dominates as & becomes very large, f(x) approaches +oo0.
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4. Rational function example with degrees equal:

2
For f(z) = 33‘15;52, where the degrees of the numerator and denominator are equal:

. 3x*—-2 3
MR s 1

This is because we focus on the leading coefficients when the degrees are equal.
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5. Exponential function:

For f(z) = e™:

lim e* = o
r—00

Here, €* grows rapidly to infinity as € — oo.
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6. Inverse Exponential:

For f(z) = e ™

lime *=0
r—r00

Sincee ™ = £, as & — o0, f() approaches 0.
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Infinite Limits

Definition
An infinite limit refers to the situation where f () grows without bound as x approaches

a certain point a. When we write:

lim f(z) = 0o or lim f(z) = —oo

it means that f(z) increases or decreases without bound as x gets close to a. This

typically indicates a vertical asymptote at ¢ = a.

Examples
1. Rational function with vertical asymptote:

For f(z) = ﬁ the limit as * — 1 does not exist in the traditional sense because
f (x) grows infinitely large as it approaches 1 from the right and negatively large

from the left:
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lim = +00 and lim
z—1t Tr — r—1— €r —

|

1) 5 —Q| 5 10

2. Logarithmic function:
For f(z) = In(x):

lim In(z) = —o0
z—0%

As x approaches 0 from the right, In () decreases without bound.
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3. Polynomial approaching zero with fractional exponent:
For f(x) = # as x approaches 0:

1 1
lim — =00 and lim — = o0
z—0+ T2 z—0- T2
Regardless of approaching from the left or right, f(x) goes to infinity as  — 0,
indicating a vertical asymptote at x = 0.
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4. Trigonometric function with infinite oscillations:

For f(x) = tan(z):

lim tan(z) = +o00 and lim tan(z) = —oo
5 I+

As x approaches % from the left, () goes to +o0; from the right, it goes to —o0.
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5. Fractional power function:
For f(z) = ﬁ,asa} — 07
1 ! +
im — = 400
z—0t \/5

This function approaches +00 as & gets close to 0 from the right side.
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Limits at Infinity for Rational Functions

Definition
For rational functions of the form f(z) = 2%, where p(x) and g(z) are polynomials,

(
limits at infinity can be found by comparing the degrees of the polynomials.

Cases

1. Degree of p(x) < Degree of ¢(x):

lim —= =0
r—+o00 q

~
8
N—

2. Degree of p(x) = Degree of g(x):

. p(z) leading coefficient of p(x)
lim = - -
z—too g(xz)  leading coefficient of g(x)

3. Degree of p(x) > Degree of g(x):
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In this case, the function approaches 0o or —oo depending on the sign.

Squeeze Theorem

Definition
The Squeeze Theorem states that if f(z) < g(x) < h(z) for all z in an interval around
a (excluding a itself) and:

lim f(z) = limh(z) = L

T—a T—a

then lim, ,, g(z) = L.

Example

To evaluate lim,_,o 2 sin ( L ) we can use the Squeeze Theorem. Since:

1
—1 <sin (—) <1
x

1
—z? < z%sin (—) < z?
T

we have:

Since both lim,_,y —2% = 0 and lim,_.o 2% = 0, it follows from the Squeeze Theorem

that:
) . (1
lim 22 sin <—> =
z—0 I
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Min-Max Theorem

Definition
The Min-Max Theorem states that if a function f () is continuous on a closed interval
[a, b, then f(x) must attain both a minimum and a maximum value on that interval.

Formal Statement

If f(x) is continuous on the interval [a, b], then there exist points ¢ and d in [a, b] such
that:

fle) < f(z) < f(d) forallz € [a,b]
Here:

e f(c) isthe minimum value of f(x) on [a, b).

e f(d) is the maximum value of f(z) on [a, b].
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Example

Consider the function f(x) = x2 on the interval [—2, 1]:
e The minimum value is at z = 0, where f(0) = 0.

e The maximum valueis at z = —2, where f(—2) = 4.

\ 4

Key Points

e The theorem guarantees absolute extremum values (not just local extrema).

e It applies only to functions that are continuous on a closed interval.
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-me Value Theorem: Absolute min and max

The Extreme Value Theorem is illustrated below:
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SN

0 a & d b

Note that an extreme value can be taken on more than

once.
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7. Intermediate Value Theorem,
Mean Value Theorem, and
Derivative Basics

Intermediate Value Theorem (IVT)

Definition

The Intermediate Value Theorem (IVT) states that if a function f(:v) is continuous on
a closed interval [a, b] and L is any value between f(a) and f(b), then there exists at
least one point ¢ € (a, b) suchthat: f(c) = L

Formal Statement

If f(x) is continuouson [a,b] and f(a) < L < f(b) (or f(a) > L > f(b)), then
there exists some ¢ € (a, b) such that: f(c) = L

Example

Iff(z) = 3 — 2z + 1 and we are considering the interval [0, 2] :

e f(0)=1and f(2) =5.
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e For L = 2, the IVT guarantees that there exists some ¢ € (0, 2) such that f(c) = 2

10

-20 -10 0 10 20
10
20
Key Points

e The theorem is used to prove the existence of solutions within an interval.

¢ |t does not specify where the solution is located, only that at least one solution
exists
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Intermediate Value Theorem

f(a) < K< f(b)
L a<c<b
ol f(c)=K

Mean Value Theorem (MVT)

Definition

The Mean Value Theorem (MVT) states that if a function f(:c) is continuous on a
closed interval [a, b] and differentiable on the open interval (a, b), then there exists

at least one point ¢ € (a, b) such that:

—a

This equation indicates that there is at least one point ¢ where the instantaneous rate of
change (the derivative) is equal to the average rate of change over the interval [a, b].
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b—a

)

#(a)

Problem 1: Prove that arctan(z) — z + 2> = —5hasa
real solution using the Intermediate Value Theorem (IVT)

To use the Intermediate Value Theorem, we need to show that the function has values of
opposite signs at two points. Let's define:

f(x) = arctan(z) — z + 2° + 5
So, we want to show that f(x) = 0 has a solution.

Step 1: Choose Values for x and Calculate f(x)
Let's evaluate f(x) at a few points to see if there is a sign change:

1. Atz =0:
f(0) = arctan(0) —0+0°+5=5
1. Atz =2:
f(2) = arctan(2) — 2 + 2 + 5 = arctan(2) —2 +8 +5
Since arctan(2) ~ 1.107, we get:
£(2) ~ 1.107 — 2 + 8 + 5 = 12.107

1. At = —2:
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f(—2) = arctan(—2) — (—=2) + (—2)* + 5 = arctan(—2) +2 — 8 +5
Since arctan(—2) ~ —1.107, we get:

f(=2) ~ —1.107+2 — 8+ 5= —2.107

Step 2: Apply the Intermediate Value Theorem

Since f(0) =5 > 0and f(—2) &~ —2.107 < 0, there is a sign change between x =
—2 and & = 0. By the Intermediate Value Theorem, because f () is continuous, there
exists a point z € (—2,0) where f(x) = 0.

Final Answer for Problem 1

Yes, the equation arctan(z) — = + z* = —b5 has a real solution in the interval (—2, 0)

/

by the Intermediate Value Theorem.

)
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Problem 2: Prove that f(z) = 2% cot(z) has a root using

the Intermediate Value Theorem
Define f(z) = 22 cot(z).

Step 1: Analyze the Function

cos(z)
sin(z)

Since cot(x) = , we have:

cos(x)

f(z) =2’

sin(x)

The function f(z) is continuous on intervals where sin(z) = 0, i.e, where x = n for
integers n.

Step 2: Choose an Interval with a Sign Change

Let's consider a small interval around ¢ = 7/2 :

1. Atz =7/4:

1) (') ()15 -0

1. Atz =37/4:

3 37\ ? 3 3\’ 92
1(7) = (%) e« (F) = (F) o055 <o
Step 3: Apply the Intermediate Value Theorem

Since f(m/4) > 0and f(3w/4) < 0,and f(x) is continuous in (7 /4, 3w /4), there
exists avalue ¢ € (m/4,3m/4) where f(z) = 0.

Final Answer for Problem 2

The function f(z) = 2 cot(x) has a root in the interval (7 /4, 37 /4) by the
Intermediate Value Theorem.
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Tangent Lines and Derivative Definition

Tangent Lines and Secant Slope

Let f : (a,b) — R be a continuous function, and let ¢ € (a, b) be fixed. For any x €
(a,b) \ {c}, the slope of the secant line joining (x, f(x)) and (¢, f(c)) is given by:

The slope of this line gives the average rate of change of f between x and c.

Problem Point at c

As x — ¢, the secant line's slope approaches a value (if it exists), which we define as the
derivative of f at c.

Definition of the Derivative
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The derivative of f at ¢, denoted by f'(c), is defined by the limit:

f/(C) — lim f(w) _ f(c)

T—C Tr — C

if this limit exists.

Other Notations for the Derivative
e f'(c)

df
.da:

—=C

* Df(c)
du -
o Fify=f(z)
This definition captures the instantaneous rate of change of f at cand is the
foundation of differentiation in calculus.
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8. Differentiation and Derivatives

Tangent Lines and the Power Rule

Equation of the Tangent Line

The equation of the tangent line to the graph of f at (a, f(a)) is:
y = f(a) + f'(a)(z — a)

Deriving the General Power Rule

To find the derivative of f(xz) = ™ for any integer n, we use the limit definition of the
derivative:

by (z+h)" — 2"
flz) = lim h

Using the Binomial Theorem and simplifying, we arrive at:

/() = na"?

Definition of Left and Right Derivatives

e The left derivative of f at a is defined as:
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f(z) — f(a)

fl(a) =limz — a~

x—a
e The right derivative of f at a is defined as:
z) — f(a
fi(a) =limz — a” f(z) = f(a)
T —a

Remarks on Differentiability

1. If f'(a) exists, then f is called differentiable (or d'able) at z = a.
2. f is differentiable at x = a if and only if both f’ (a) and f! (a) exist and are equal.
3. Alternatively, setting h = x — a, we have:

f'(a) = lim fz) ~ f(a) = lim

rz—a T — a h—0

fla+h)— f(a)
h

Example: Derivative of f(x) = sin(x)

To find the derivative of f(z) = sin(z), we use the limit definition of the derivative. For
a function f (), the derivative at any point £ = a is given by
fla+h) - fla)

h

'(a) = lim

For f(z) = sin(x), we want to compute f'(a).

Step-by-Step Solution
1. Set Up the Derivative Using the Definition:
Substitute f(x) = sin(z):

. . sin(a + h) — sin(a)
fa) = Jim h

2. Apply the Sine Addition Formula:
Using sin(a + h) = sin(a) cos(h) + cos(a) sin(h), we get:
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£(a) = lim sin(a) cos(h) + cos(a) sin(h) — sin(a)
h—0 h
3. Factor Out sin(a) and cos(a):
Rewrite the expression by grouping terms with sin(a) and cos(a):

h)—1 sin(h)
a) = 1i : cos(
f'(a) lim (sm(a) — + cos(a) 2
4. Evaluate Each Limit:

e Itis known that limy,_, Sinlgh) =1

e |tisalso known that lim,,_ COS(Z)_l = 0.

Substituting these limits, we get:
f'(a) = sin(a) - 0 + cos(a) - 1 = cos(a)

Final Result

Thus, the derivative of f(x) = sin(x) is
/() = cos(a)

Algebra of Derivatives
Let f and g be two functions for which f’(a) and ¢’ (a) exist. Then:

1. Sum and Difference Rules:
(f+9)(@)=f(z)+d (), (f-9) (z)=7Ff(z)—g()
2. Product Rule (Leibniz Rule):
(f-9)(z) = f'(z)g9(z) + f(z)g'(z)

3. Quotient Rule:



Guest
Rectangle


4. Reciprocal Rule: If f(z) = 0, then the derivative of ﬁ is given by:

(7) @~
Examples of Derivatives
1. f(z) = z* + sin(z)
f'(x) = 4x* + cos(z)
1. f(z) = z - sin(z)

f'(z) = sin(z) + z - cos(z)

1. f(z) = tan(z) = n)

cos(z)

cos(z) - cos(x) — sin(x) - (—sin(z)) 1 + tan®(z) = sec?(z)

f(e) =

cos(x)

Chain Rule and Applications

Chain Rule for Derivatives

For a composite function A(z) = f(g(z)), the derivative is given by:
W(z) = f'(g(z)) - d'(2)
Example: h(z) = 1 + sin®(z)
e Let f(z) = 1+ % and g(z) = sin(). Then:
h(z) = f(g(z)) = 1 +sin’*(z)
e By the Chain Rule:

h'(z) = 2sin(z) - cos(z) = sin(2z)
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where we used the double-angle identity.

Another Example: h(z) = sin(z? + 1) + 1

To find the derivative of h(z) = sin(z? + 1) + 1 using the Chain Rule, let’s go through
the steps:

1. Identify the Outer and Inner Functions:
e The outer functionis f(u) = sin(u) + 1.
e Theinner functionis g(z) = 2% + 1.
2. Apply the Chain Rule:
According to the Chain Rule, ' (z) = f'(g(z)) - ¢'(x).
3. Differentiate the Outer Function:
The derivative of f(u) = sin(u) + 1 with respect to uis f'(u) = cos(u).
4. Differentiate the Inner Function:
The derivative of g(z) = x2 + 1 with respectto z is ¢’ (z) = 2.
5. Combine Results:

Substitute g(z) = 2 + 1and g'(z) = 2z into the Chain Rule formula:
K(z) = f'(g(z)) - g'(z) = cos(a’ +1) - 2z

Final Result
Thus, the derivative of h(z) = sin(z? + 1) + 1is

B (x) = cos(z® + 1) - 2z

Remark on the Derivative of Inverse Functions

If f is differentiable in a neighborhood of a point a, and if f is one-to-one and onto in
this neighborhood, then the composite f(f1(z)) = z. By using the Chain Rule, we
can differentiate this composition to find the derivative of the inverse function.

Derivation of the Formula for the Derivative of an Inverse Function
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Suppose f(z) is a function that is differentiable and has an inverse f ! (z). We want to
find the derivative of f_1 (z) at a point &, which is given by the formula:

1

(f)(z) = 77 (@)

provided that f'(f~'(z)) # 0.

Step-by-Step Derivation

1. Express the Inverse Relationship:
Since f and f~! are inverses, for any point Z in the domain of f 1, we have:

f(f () =2

2. Differentiate Both Sides with Respect to z:
Differentiate the equation f(f (x)) = z with respect to z. Using the Chain Rule
on the left side, we get:

d d

= (07 @) = (@)

3. Apply the Chain Rule:
By the Chain Rule, the derivative of f(f~(z))is f/(f 1(x)) - (f 1) (x). On the
right side, the derivative of  is 1. So we have:

@) (fF ) (@) =1

4. Solve for (f1)'(z) :
Toisolate (f~1)'(x), divide both sides by f'(f1(z)) :

—1y/ . 1
R (TI0)

Conclusion

Thus, we have derived the formula for the derivative of an inverse function:


Guest
Rectangle


—1y/ o 1
U= 5@

This formula is valid as long as f'(f ' ()) = 0, ensuring the denominator is non-zero.

Example: Finding the Derivative of f(x) = tan(z) and Its Inverse
f(z) = arctan(z)

Part 1: Derivative of f(z) = tan(x)

1. Function Definition:

For f(z) = tan(z), we want to find f'(x), the derivative of tan(x) with respect to
.

2. Differentiate tan(x) :

We know that the derivative of tan(z) is given by:

f'(z) = sec®(z)

So, the derivative of f(z) = tan(z) is:
F/(2) = sec(z)

Part 2: Derivative of the Inverse Function f ~1(x) = arctan(z)

Now, we'll find the derivative of the inverse function f ~!(z) = arctan(z) by using
implicit differentiation.

1. Relationship with the Tangent Function:

Since arctan(z) is the inverse of tan(z), we have:
y = arctan(z) = = = tan(y)

2. Implicit Differentiation:

Rewrite the relationship as ¢ = tan(y) and differentiate both sides with respect to
x:
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d d

%(w) = @(tan(y))

Since the derivative of x with respect to x is 1, we get:

dy

1 = sec®(y) - I

dy .
3. Solve for == :
To find g—z, isolate it by dividing both sides by sec?(y) :
dy 1
der  sec2(y)

4. Express sec?(y) in Terms of z :

Since ¢ = tan(y), we can use the identity sec?(y) = 1 + tan?(y) to express
sec?(y) interms of  :

sec’(y) = 1+ 2?

5. Substitute and Simplify:

. 2 . 2 . . dy .
Substitute sec®(y) = 1 + * back into the equation for T

@_ 1
der 1+ x2

Final Answer

The derivative of f~!(z) = arctan(z) is:

d 1

T2 arctan(x) = T2

Homework Exercises

1. HW1: If f(x) = cos(z), find f'(x). Prove these rules using the limit definition of
the derivative.

2. HW2: Compute the derivatives of all inverse trigonometric functions.
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HW1: If f(z) = cos(x), Find f'(x). Prove Using the Limit Definition of
the Derivative

To find f'(x) for f(x) = cos(x) using the limit definition of the derivative, we start
with

h—0 h
For f(x) = cos(z), this becomes

f(z) = llg% cos(z + h) — cos(x)

Using the cosine addition formula cos(x + h) = cos(x) cos(h) — sin(z) sin(h),
substitute this into the limit:

f(z) = }llli% cos(x) cos(h) — sin}fa:) sin(h) — cos(x)

Factor out cos(z) from the first and last terms in the numerator:

f(x) = }lllg(l) cos(z)(cos(h) — }11) — sin(z) sin(h)

Separate the terms in the numerator:

/(@) = lim (Cos(w) . % _ sin(a). sin}ih))

Now, we can use two well-known trigonometric limits:

1. limy, o 220 — 1

cos(h)—1 __ 0

Substituting these values gives:

f'(z) = cos(z) - 0 — sin(zx) - 1
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f'(z) = —sin(z)
Therefore, the derivative of f(x) = cos(x) is
f'(z) = —sin(z)

HW2: Compute the Derivatives of All Inverse Trigonometric Functions

Here we will find the derivatives of each inverse trigonometric function. We'll use the fact

that if y - fﬁl(x), then zil.’l? — f’(f}l(iﬂ))

1. Derivative of arcsin(x)
Let y = arcsin(z). Then z = sin(y).
Using the identity cos?(y) = 1 — sin®(y), we get cos(y) = v/1 — 22.

Since < sin(y) = cos(y), we have:

dy
de =cos(y) = 1 — x2

dy
Thus,
dy 1
der /1 — 22
So,
d in(z) 1
— arcsin = —
x v 1 — 22

2. Derivative of arccos(x)
Let y = arccos(z). Then z = cos(y).

Differentiating with respect to y :

dz = —sin(y) = —v1 — a2

dy
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Thus,

dy 1
dr  /1— 22
So,
d (z) = 1
7 arceos(z) = ——

3. Derivative of arctan(z)
Let y = arctan(x). Then x = tan(y).
Using sec?(y) = 1 + tan?(y), we have sec?(y) = 1 + z2.

Thus,
dy 1
dr 1+ z2
So,
d arctan(x) = !
dx 1+ 22

4. Derivative of cot 1 ()
Lety = cot *(z). Then = = cot(y).
Using csc?(y) = 1 + cot?(y), we have csc?(y) = 1 + z2.

Thus,
dy 1
dr 1+ x2
So,
d 1
— cot! S
7 cot™ " (z) T2
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5. Derivative of sec ! (z)

Lety = sec !(z). Then z = sec(y).

Using sec?(y) — 1 = tan?(y), we get | tan(y)| = vz2 — 1.
Thus,
dy 1
dr |z|vz2 -1
So,
d 1 1
—sec () = ————
dz (=) |z|vaz? —1

6. Derivative of csc ()

Lety = csc!(z). Then z = csc(y).

Using csc?(y) — 1 = cot?(y), we get | cot(y)| = vz2 — 1.
Thus,
dy 1
de lz|vz2 — 1
So,
d 1( ) 1
—csc () = ——————
dx |z|va?—1

Derivatives of Inverse Trigonometric Functions

1. £ arcsin(z) =
2. di arccos(z) = 11 =
3. & arctan(z) = 1

d 1

4. %cot_ (LU) = — 11z
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9. Implicit Differentiation and
Tangent Lines

Implicit Differentiation

Often, the relationship between variables x and ¥ is given by an equation rather than a
function. This requires implicit differentiation.

Example
Let F(z,y) = xsin(y) + y cos(z) — 1.

Geometrically, this relation corresponds to the curve:

C:= {(xay) € R? | F(xay) :0}
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Verifying a Point on the Curve

Let (@, B)

(0,1). Substitutex = 0and y = linto F'(z,y) :

0-sin(l)+1-cos(0)—1=1—-1=0

F(0,1)

Thus, (0, 1) is on the curve F'(z,y) = 0.

(0,1), y can be expressed as a functionof z : y

Assume that around (c, /)

y(z).
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Differentiating Implicitly
Differentiate both sides of F'(z, y(x)) = 0 with respect to x:

sin(y) + z cos(y(z)) - y'(z) + ¥/ (z) cos(z) + y(z) - (—sin(z)) = 0

Setting (z,y) = (0,1)
Substitute (x, y) = (0, 1)

1-sin(1) +0-cos(1) - ¥'(0) + ¥'(0) - cos(0) + 1 - (—sin(0)) =0
This simplifies to:
y'(0) = —sin(1)

Equation of the Tangent Line

Using the point-slope form, the tangent line at (0, 1) is:
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(y—1) =y (0)(z —0) = y=—sin(1) -z +1

N

Alternative Method: Assuming © = x(y)
Similarly, if we assume & can be expressed as a function of y, we differentiate with

respect to y.

Remark on Expressibility
Around a point (a, ) :

o Ify'(a) = 0, then z cannot generally be expressed as a function of y locally.
e If2/(d) = 0, then y cannot generally be expressed as a function of x locally.

e Exceptions to these general cases do exist.

Theorem: Differentiability Implies Continuity
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Let f : (b,c) — Rbeafunction,andleta € (b, c).If f'(a) exists (i.e., f is
differentiable at a), then:

lim f(z) = f(a)

T—a
This means that f is continuous at * = a. In particular, continuity is a necessary

condition for differentiability.

Example Problem
Let

sin(z)+1 ifz>0
Fa) = @) L
ar +0b ifex <0

Given that f is differentiable on R, find @ and b.

Solution

1. Continuityatz = 0 :

lim f(z) =sin(0)+1=1

z—07"

= lim f(x) =a-0+b=0

z—0~

For continuity, b = 1.

2. Differentiabilityat z = 0 :

f(z) = {cos(m) ifx >0

a ifr <0

We calculate the derivative at £ = 0 from both sides:

lim f'(x) = cos(0) =1

z—0"
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lim f'(z) =a

z—0~

For differentiability, a = 1.

Final Answer
a=1andb=1.
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10. Higher Order Derivatives and
the Mean Value Theorem (MVT)

Higher Order Derivatives

The higher order derivatives of a function f () are obtained by repeatedly
differentiating f ().

1. First Derivative: f'(x) (rate of change or slope of f(z))

2. Second Derivative: f” (), obtained by differentiating f'(x). This represents the
rate of change of the slope (e.g., concavity of f(z)).

3. Third Derivative: f"’(x), obtained by differentiating f” ().

4. n-th Derivative: Denoted f(™) (x), obtained by differentiating f(z) exactly 7 times.

Example: For f(z) = 3
o f(x)=3z?

e f'(z) =6z

o f"(z)=6

£ (z) = 0forn > 4 (constant derivative).
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The Mean Value Theorem (MVT)

Statement of the Theorem
Let f : [a,b] — R be a function. If:
1. f is continuous on [a, b],

2. f is differentiable on (a, b),

then there exists some ¢ € (a, b) such that:

f(6) — f(a)

Flo =10 -]

Intuition

The Mean Value Theorem states that there is at least one point cin (a, b) where the
instantaneous rate of change (the derivative) equals the average rate of change over the
interval.

Remark on Monotonicity and Derivatives
Let f : [a,b] — R be a function. We define:
1. fisincreasing on [a, b] if forall 1, x2 € [a,b] withx; < x9, f(z1) < f(z2).
2. f is decreasing on [a, b] if for all z1, zo € [a, b] with z1 < xo, f(z1) > f(x2).
3. f is non-decreasing on [a, b] if for all 21, 2 € [a, b] withz1 < x9, f(z1) <
f(@2).
4. f is non-increasing on [a, b] if forall 1, z2 € [a, b] with x; < xo, f(x1) >

f(z2).

If f is continuous on [a, b] and differentiable on (a, b), then for any 1, 2 € [a, b], the
MVT ensures that:

f(z2) — f(21)

Ty — I1

= f’(:c) for some x € (901,-’102)-

Consequences
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1. If f isincreasing on [a, b], then f(z2) — f(@1) > 0, which implies f'(z) > 0 for
allz € (a,b).

2. If f is decreasing on [a, b, then f(x2) — f(x1) < 0, which implies f'(z) < 0 for
allz € (a,b).

3. If f is non-decreasing on [a, b, then f'(x) > Oforallz € (a,b).

4. If f is non-increasing on [a, b], then f'(z) < Oforallz € (a,b).

Example: Monotonicity and the MVT
Let f(x) = x3. Check monotonicity on [—1, 1].
1. Compute f'(z) :
f'(z) = 32°
2. Analyze f'(z)on (—1,1) :
e Since f'(x) > Oforall x, f(x) is non-decreasing on [—1, 1].

e Moreover, f'(x) > Oforallz = 0, so f(z) is strictly increasing on [—1, 1].

3. Apply the MVT:

Forz1 = —1and z2 = 1, the MVT guarantees a point ¢ € (—1, 1) such that:
1) — f(—1 1—-(—-1
o V=1 _1-(D
1 (-1 2

Thus, f'(c) = latsomec € (—1,1).
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11. Solutions to Calculus Problems:
Preparation for MT 1

A# Important Note:

"l couldn’t attend this lecture where students had an open Q&A session with the professor. To

ensure | stay on track, I've included the solutions to Self-Study Problems: MT 1 here as a
reference."

Problem 1: Evaluate the following limits if they exist. If not, indicate whether
the limit does not exist or is ==00. Do not use L'Hopital's rule.

() lim,_, tan (%(z))
1. Simplify the argument of tan :

As x — 0, the standard limit property states:

sin(x) 1

Z

Thus, the argument of tan approaches:

tan <M> — tan(1)

Z

2. Evaluate the limit:
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Since tan(1) is a finite value, the limit exists and is:

sin(x)

z—0

lim tan (
T

) — tan(1)

D |5—2z|—|z—2]
(i8) g5 =5

To solve this, we need to analyze the one-sided limits, as the absolute values could behave
differently from either side of x = 3.

Step 1: Calculate the Left-Hand Limit (z — 37)
For x < 3, the absolute values simplify as follows:
e |5—2z| =5—2x
e |z —2|=x—2
e |z —5|=5—=x
e 3z —T7=7-3z

Substituting these expressions into the limit, we get:

. 2z—-5—(xz—2) ) z—3
lim = lim ———
23 b —x— (7T—3x) 223 —4dz+12

Simplify the expression:

-3
= lim :E

T3~ —4(:11 — 3)
Cancel x — 3 from the numerator and denominator:

1
= lim — = —

1
z—3- —4 4

Step 2: Calculate the Right-Hand Limit (z — 3™)
For x > 3, the absolute values simplify as follows:

e |[5—2z| =25

e lx—2|=2—-2

e lz—5|=x2-5

e 3z -7 =3x—-7
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Substituting these expressions into the limit, we get:

lim 20 —5— (z—2) i z—3
293+ 5—x— (3x —T) 253 —dx + 12

Simplify the expression:

Conclusion

Since both the left-hand and right-hand limits are equal:

5 |5 —2z| — |z — 2| 1
im =—=
z—3 |z — 5| — |3z — 7| 4

(4%) limy ., 32
1. Simplify the denominator:

Rewrite the denominator as:

2’ -z =x(x — )

2. Considercasesforx > mandx < 7 :

e Forz > m,|x — 7| = = — 7. The expression becomes:

Tr—T _1

z(x—7) =

Asz — 7t 1 - 1
e Forx < m,|x — 7| = m — x.The expression becomes:

T™T— 1

z(x — ) Tz

3=

Ase —m ,—> — —
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3. Conclusion:

The left-hand and right-hand limits differ. Therefore, the limit does not exist.

3

1. Simplify the square root:

4

Factor x* inside the square root:

2 2
\/x4—2:|ac2]\/1—?:a:2\/1—g

2. Simplify the expression:

sincex — —00.

Substitute the simplified square root into the fraction:

3x3 3x3

3z
VE2 mfimz 1

T

3. Evaluate the limit:

As x — —00, the denominator approaches V1 =1, so:

Thus, the limit is:

(v) lim,_,o 2/% sin (1)
1. Bound the oscillatory term:

Since —1 < sin (1) < 1, multiplying by z2/3 gives:

x

—z?3 < 2*3sin <1) < 2?3
x

2. Apply the Squeeze Theorem:

Asz — 0,223 — 0and —2%/® — 0.By the Squeeze Theorem:
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1)2 1

- h—1)’—
(vi) limy, g (—3h—‘l

1. Simplify the numerator:

Expand (h — l)2 - 1.

3 9
1 1 2h 1 1 2h
h—=)Y - =p? -4 - - =p> -
( 3) 9 3 * 9 9 3
2. Simplify the fraction:
Divide the numerator by h :
-5, 2
h 3
3. Evaluate the limit:
Ash — 0,h — % — —%.Thus:
12 1
lim P73 "5 2
h—0 h 3

Problem 2: Find all values of a that make f () continuous everywhere.

The function f () is defined piecewise as follows:

f(z) = 222 — 3z +5 ifex <0
| 7sin®(3z) +a® ifz >0

To ensure f(x) is continuous at z = 0, we need the limit from the left and right at = 0 to be
equal to f(0).

Step 1: Evaluate the Left-Hand Limit (x — 07)

Forz <0, f(z) = 22% — 3z + 5. Thus:

lim f(z) = lim (22> — 3z +5) =5

z—0~ rz—0~

Step 2: Evaluate the Right-Hand Limit (z — 07)

Forz > 0, f(x) = 7sin?(3z) + a®. Asz — 0%, sin?(3z) — 0, so:
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lim f(z) = lim (7sin*(3z) + a?) = o®
x—07" x—07"

Step 3: Set Limits Equal for Continuity

For f(x) to be continuous at x = 0, we need:

lim f(z) = lim f(z) = £(0)

z—0" x—0"

Thus:
5=a’

Step 4: Solve for a

Solving a? = 5, we get:
a==+V5

Conclusion

The values of a that make f(x) continuous everywhere are:
a=+V5

Problem 3: Intermediate Value Theorem (IVT)
(i) Intermediate Value Theorem (IVT) Statement

Let f : [a,b] — R be a continuous function on the closed interval [a, b]. Suppose that yq is any

value between f(a) and f(b). In other words, if yo € (f(a), f(b)) oryo € (f(b), f(a)), then
there exists at least one point £y € [a, b] such that yg = f (o).

This property allows us to conclude that any value between f(a) and f(b) must be attained by
the function f at some point within the interval [a, b].

(ii) Application of the IVT

Prove that the equation arctan(z) =  — x has at least 1 solution.

Define the function:
T
f(x) := arctan(z) — 5 +x

Note that both arctan(z) and — 3 -+  are continuous functions over (—00, 00).
Consequently, f(z) is continuous over (—00, 00), and particularly on the closed interval [0, 1].
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1. Evaluate f(0) :
f(0) = arctan(0) — g 4 0= _g

2. Evaluate f(1) :

T T T
1) =arctan(l) - ~ +1=~ - T 41=-" 4
f(1) = arctan(1) 2+ 1 2+ 4+
3. Check if 0 lies between f(0) and f(1) :
Since f(0) = =% <0 < =% 4+ 1 = f(1), we observe that 0 lies within the interval

(£(0), f(1)) = (=3, 1= %)
4. Conclude by IVT:

By the Intermediate Value Theorem, since f is continuous on [0, 1] and 0 lies between f(0)
and f(1), there must exist a point £y € (0, 1) such that f(z¢) = 0.

Therefore, we have:

f(zy) = 0 = arctan(zg) = g — x

Thus, there exists a solution ¢ in (0, 1) that satisfies the equation.

Problem 4: Differentiability and its Definition
(i) Definition of Differentiability at a Point x :

A function f(x) is differentiable at * = x if the following limit exists:

£ (o) = ;1113(1) fzo + h})L — f(=0)

Alternatively, this can be written by setting x — o = h as:

f,(x()) — lim f(z) — f(=z0)

rT—X r — Xy

This means that the derivative f'(x() represents the slope of the tangent line to the graph of
f(x) at & = x, provided the limit exists.

(ii) General Differentiability of f(z) :

A function f(x) is said to be differentiable at a general point « if:
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oy J@+h) — f(z)
f'(z) = lim 7

exists. This definition implicitly assumes that z is within the domain of f () and that f is smooth
enough to compute the above limit.

For example:

e Polynomial functions like z? or trigonometric functions like sin(z) are differentiable

everywhere within their domains.

e This general definition applies at every point x, but when we specify a particular point £ = a,
it reduces to the case in part (i).

(iii) Differentiability at z = 3 :

To check differentiability at £ = % we use the limit definition:

(L) - L1

2 h—0 h

Alternatively, it can also be expressed as:

1 z) — f (3
(1) - m 12 £(3)
This ensures that the derivative at * = % exists if and only if the above limit converges to a finite
value.

Problem 5: Differentiability Analysis
Part (a): Compute f'(z) for f(z) = % atz = —1

1. Use the definition of the derivative:

f(zo + h) — f(20)

! s
f @) = lim h
2. Substitute f(z) = z2and o = —1:
e (CLERE (1)
F=1= B0 h

3. Simplify the numerator:
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(-1 +h)?— (1) =(1—-2h+h?) —1=—2h+h?

4. Substitute back into the limit:

—2h + h?
! — =
F=1) = Jim—
5. Simplify the fraction:
Factor h from the numerator:
h(—2 + h)
"(—1) = 1i
f1(-1) = lim ——

Cancel h (valid for h =+ 0):

f'(~1) = lim(—2 + h)

h—0
6. Evaluate the limit:
F(~1) = —2
Part (b): Compute f'(0) forf(z) = %
1. Set up the derivative using the definition:
/ R T f(.’ll) — f(O)
110) = 91515(1) T
2. Evaluate f(0) :
2—-0
0))=——=1
1(0) 240
3. Substitute into the definition:
2-z _ 1
I o 24
110) = o T
4. Simplify:
! — lim =% —
f(o)_alclgll) x 916%24—:10

5. Evaluate the limit:
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—2

£0)= 5 = -1

Part (c): Prove the Derivative of f(z) = cos(z)

1. Use the definition of the derivative:

£(2y) = lim cos(x) — cos(zp)

T—x0 T — I

2. Simplify using trigonometric identity:

Use cos(A) — cos(B) = —2sin (AJFTB) sin (A_TB) :

;o —2sin (%) sin (255)
f(@o) = lim p——

3. Substituteh = ¢ — xj :
Rewrite the limit:

NS

sin (

)

f'(zo) = lim — sin (o) -

NS

4. Simplify:
in( &
Using limy,_, sn(s) _ 1:

f'(zo) = —sin(zo)
Problem 6: Differentiability of f(z) = |z* — 9|
Part (a): For what values of z is f(x) differentiable? Find a formula for f'(x).

1. Analyze the definition of f(z) = |22 — 9| :

Rewrite f(z) using its piecewise definition:

2 -9 ifz?>9 ie,z>3o0orax < -3,
flz) = )
9—z° if —3<x<3.

2. Differentiate each piece:

e Forz?>9:
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e For—-3<x<3:

fla) =9 -a%) = 22

3. Combine into a formula:

, 2x ifx >3orx < —3,
fi(z) = .
—2x if —3<z<3.

4. Check differentiabilityat z = 3andz = —3:

e The left-hand derivativeat z = 3 :

ey 1 _fB+h)—fB) .. (B3+h)*-9
f'(3) =limh —0 Y _hhj{)l, Y =6
e The right-hand derivativeat x = 3 :
_ 2 _
4 (3) =timh o LB IOy BFR7 79
h h—0* h

Since f.(3) = f..(3), f(z) is not differentiable at z = 3.

Similarly, atx = —3 :

fL(3) # f.(3)

so f(x) is also not differentiable at z = —3.
5. Conclusion:
f(x) = |z? — 9] is differentiable for z € R \ {3, 3}.
Part (b): Sketch the Graphs of f(z) and f'(x)
1. Graphof f(z) :
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30

30

-20

2. Graphof f'(z) :

N
o
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Problem 7: Analyze the Differentiability of g(z) = |z — 1| + | + 2|
(a) For what values of z is g(x) differentiable?
1. Piecewise Definition of g(x) :

The absolute value terms introduce critical points at # = 1 and x = —2. Let us rewrite g(x)
piecewise:

e Forz>1 |z —1=z—1land |z + 2| =2+ 2, s0:
gz)=(z—-1)+(z+2)=22x+1
e For—2<z<l|z—1=1—zand|z+ 2| =2+ 2 s0:
gx)=1—-2)+(z+2)=3
e Forz < —2|x—1=1—zand|z+ 2| = -2 — 2 s0
gz)=1—-2)+(—z—-2)=-2z—-1
The piecewise definition is:

2r+1 ifz>1,
g(z) =43 if —2<z<1,
-2z -1 ifzx< 2.

2. Derivative in Each Interval:

e Forx >1:

e For—2<zx<1:

d
!
= — :O
g(@)= ()
e Forx < —2:
d
! = —(—22—-1) = -2
g'(z) dw( z—1)
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The derivative is:

(2 ifz>1,
gx)=<0 if —2<z<1,
—2 ifz < —2.

3. Check Differentiabilityatx = 1 :

e Left-hand derivative:

g-(1) =limh — o9 +h) —9() o 3-3
h h—0-
e Right-hand derivative:
‘ 1+h)—g(1) . (21+h)+1)-3
! —1 +9( _ _
g, (1) =limh — 0 - ;}Eﬁi : 5

Since g'(1) # g’ + (1), g(x) is not differentiable at z = 1.
4. Check Differentiabilityat z = —2 :

e Left-hand derivative:

9(=2+h) —g(=2)

! = 1. B = 1 = —
g (2)=limh —0 b hlir%)l* 3 2
¢ Right-hand derivative:
: g(=2+h)—9g(=2) . 3-3
g (2) =limh — 07 Y :]ZILI{]L— =0

Since g'(2) # ¢’ + (2), g(x) is not differentiable at z = —2.
Final Answer for (a): g(z) is differentiable forx € R \ {—2,1}.
Part (b): Sketch g(x) and ¢'()
1. Graphof g() :
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10
5
-‘Li; 0
2. Graphof ¢'(z) :
5
-10 -5 0
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Problem 8: Compute the Following Derivatives

(i) Find % for s(t) = 1/ cos(v/t)

1. Rewrite s(t) :
s(t) = cos(v/t)/°

2. Apply the chain rule:

ds 1 4 d
S cos(Vt) 5. %[cos(\/i)]

3. Differentiate \cos(\sqrt{t}) :

[cos(V't)] = —sin(Vt) - —=

d
dt 2/t

4. Combine:

ds 1 4 i
prial cos(Vt) Y5 (— sin(v/) - 2—\/5)

5. Simplify:

ds sin(+/%)
dt 10+t cos(v/t)4/5

(ii) Find & for f(t) = sin(cos(4t))

1. Apply the chain rule:

df d
i cos(cos(4t)) - %[cos(4t)]

2. Differentiate cos(4t) :

d .
E[cos(4t)] = —sin(4t) - 4

3. Combine:

A cos(cos(4t)) - (~4sin(41))
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4. Simplify:

af

i —4 cos(cos(4t)) sin(4t)

(iii) Compute % [(z* + 3)V/z]

1. Rewrite:
(z® + 3)vz = (2 4 3)2/?

2. First derivative using the product rule:

o Liz?43] =22

. %[xlﬂ] = ﬁ
Substitute:
i[(a:2 +3)2'?) = 2z - 2% 4 (22 4 3) - 1
dz 2\/x
3. Simplify:

z2+3

d 121 _ o.3/2
[(z° + 3)x /%] =22/ + NG

dx

4. Second derivative:

2
Part (a): Differentiate 213/2 + % term by term:

3/2

e For 2x°/¢, the derivative is:

di[2:c3/2] — 32'/2
Hi

T

2 2 3/2
+3 . . T 3 _ =z 3 —1/2 . . .
2\/E,S|mpln‘y to Nz + i 2 + 5z , then differentiate:

d (z%? 3, d (3 3
el B _ = /2 el -1/2 _ _° —3/2
dz ( ) ) 1" 4o (2“’“ > 1"

® For

5. Combine:
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d_z[( 213)/x] =3 1/2+§ 1/2_3,]6—3/2
72l x| = 3z ks 1

6. Simplify:
3

15
(2 _ 212 2 -3/2
. [(z* + 3)v/z] i ki

Part (b): Compute ¢’ (z) = & [Sin(w)] .

1. Set up the first derivative ¢’ () :
Using the quotient rule:

gl(m) = 2
. %[sin(a:)] = cos(x),
° 4 =
dx ’

Substituting:

cos(z) -« — sin(z) - 1

gl(x) = 12
Simplify:
x cos(z) — sin(z)
gl(m) = 2

2. Compute the second derivative g’ () :
Differentiate ¢ () using the quotient rule again:

4 [z cos(z) — sin(z)] - 22 — (z cos(z) — sin(z)) - L[z

9”(213) = & (332)2 = ]

3. Differentiate x cos(z) — sin(z) :
Using the product rule for  cos(z) :

d .
%[a} cos(z)] = cos(z) — z sin(x)

and for — sin(z) :
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— [—sin(z)] = — cos(z)

So:

d . : :
%[w cos(z) — sin(z)] = cos(z) — z sin(z) — cos(z) = —z sin(z)

4. Simplify the second derivative:
Substituting back:

(—zsin(z)) - 22 — (z cos(z) — sin(z)) - 2z

g"(zx) = por

Simplify the numerator:

—xz3 sin(z) — 2z(x cos(z) — sin(z))

"
Tr) =
9" (z) "
Expand:
" —x3sin(x) — 222 cos(x) + 2z sin(z)
g'(z) = i
x
5. Factorize:
" —xz?sin(z) — 2z cos(z) + 2 sin(z)
g"'(z) = 3

T
(iv) Compute dilz ((z + 1)1 tan(3z))

1. Apply the product rule:

diz((z + 1) tan(3z2)) = %[(z +1)%%4] . tan(3z) + (z + 1)20%. diz[tan(Bz)]

2. Differentiate each term:
o Ll(z+ 1) = 2024(z 4 1)20%,
. %[tan(?)z)] = 3sec?(3z).

3. Combine:

d
d—((z + 1) tan(3z2)) = 2024(z + 1)** tan(3z) + 3(z + 1)***sec?(32).
z
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(v) Findg—z ‘t:%' where z(t) = t? + 2, y(t) = tan(t) — 3

1. Use the chain rule:

dy
W _ @
d
dx d—f
2. Differentiate z(t) and y(t) :
o & _ ot
o L —sec?(t).
3. Substitute:
dy sec?(t)
dr 2t
4. Evaluateatt = % :
e sec? (%) = 2.
e 2t=1.
Substitute:
dy 2 4
dr 5 o

Problem 9: Theorems and Their Applications
Part (a): Rolle’s Theorem
Statement:

Let f be a continuous function on the closed interval [a, b], differentiable on the open interval
(a,b), and satisfying f(a) = f(b). Then, there exists at least one point ¢ € (a, b) such that:

f'(e) =0

Part (b): The Mean Value Theorem (MVT)
Statement:

Let f be a continuous function on the closed interval [a, b] and differentiable on the open interval
(a,b). Then, there exists at least one point ¢ € (a, b) such that:
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—a
Part (c): Show that the equation 2z — 1 = sin(z) has exactly one solution in the open
interval (0, 7).
1. Existence of a Solution
Define f(z) = 2z — 1 — sin(z).
e f(x)is continuous on [0, 7| because it is the difference of continuous functions.

e Evaluate at endpoints:
f(0)=—-1 and f(mr)=27r—1—sin(7r)=27r—1>0
e By the Intermediate Value Theorem (IVT), there exists 1 € (0, 7) such that f(z;) =

0.

2. Uniqueness of the Solution

Assume there are two distinct solutions, €1 and 3, such that f(z1) = f(z3) = 0.By Rolle’s
Theorem:

e Since f(x1) = f(x2), there exists ¢ € (x1, z2) such that f'(c) = 0.

e Compute f'(z):
f'(z) = 2 — cos(z)

e Since —1 < cos(z) < 1forz € (0,7), we have f'(z) = 2 — cos(z) > 1.
e This contradicts f’(c) = 0, so there cannot be two distinct solutions.

Conclusion: The equation has exactly one solution in (0, 7).
Part (d): Prove 0 < f(5) < 3 given f is differentiable and f(2) = —3,1 < f'(z) < 2 for
z € (2,5).
1. Apply MVT:
Since f is differentiable on (2, 5) and continuous on [2, 5], there exists ¢ € (2, 5) such that:

F6)—f(2) _ f(6)+3

flo="F%—%5 =773

e Givenl < f'(c) < 2, we have:
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2. Simplify the inequalities:
Multiply through by 3:

3<f(5)+3<6
Subtract 3:
0< f(5) <3

Part (e): Show that tan(z) > zfor0 < z < Z.

1. Define a function:

Let f(x) = tan(x) — z.Then, f(x) is differentiable on (0, 7).

2. Compute the derivative:
f'(z) = sec*(z) — 1 = tan?(z)

e For0 <z < Z,tan*(z) > 0,s0 f'(x) > 0.
3. Conclusion:
Since f'(z) > 0, f(z) = tan(z) — xisincreasing on (0, 7).
o Atz =0, f(0) = 0.Therefore, f(z) > 0for0 <z < 7.
e Hence tan(z) > xfor0 < z < 7.
Part (f): Discuss whether h(z) = |z| contradicts MVT.
1. Conditions for MVT:
h(z) = |z|is continuous on [—1, 1] but not differentiable at x = 0.

2. Conclusion:

MVT requires differentiability on the open interval (—1, 1). Since h(z) is not differentiable at
x = 0, MVT does not apply, and there is no contradiction.

Problem 10 Solutions
(a) Tangent Line to y = v/ at (2, v/2)
Step 1: Find the slope of the tangent line

The given function is y = +/z, which can be written as:
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Differentiate y with respect to  :

1
Yy (x) = 133_3/4
Substitute x = 2into y/(z) :
! 1 —-3/4
V(@)= 1)

Simplify (2)’3/4 using exponent rules:

1 1
-3/4 _ _
& ==
Thus:
1
/2 g
vz 4.8

Step 2: Equation of the tangent line

The equation of the tangent line is:
Y —yo =m(z — )

wherem = /(2) = m,xo = 2,and yy = V2.

Substitute these values:

y_%: 4%($—2)
Simplify:
. 1
y:ﬂ+4%($—2)

Final Answer:

The equation of the tangent line is:
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—2
— 2+
y 1 5

(b) Find a Parabola y = ax? + bz Such That Its Tangent Line at (1,1) isy = 3z — 2

1. Conditions:

e The point (1, 1) lies on the parabola:
a(1)? +b(1) =1
This simplifies to:
a+b=1

e The slope of the tangent line at x = 1is equal to 3:

% (aac2 —i—bm) =2ax+b

Atz =1:
2a(1)+b=3
This simplifies to:
2a +b=3

2. Solve the System of Equations:
From (1) and (2) :
Subtract (1)from (2) :

20+b—(a+b)=3-1

a=2
Substitute @ = 2into (1) :
2+b=1
b=—-1

3. Equation of the Parabola:
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The equation is:

y=2z>—=z
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12. Applications of Derivatives

1. Extreme Values

Definitions
Let f : I — R be afunction defined on aninterval I :

e Local Minimum:

(¢, f(c)) is alocal minimum of f if:
fle) < f(z), Vexe(c—d,c+d)NI

for some d > 0.

e Local Maximum:

(¢, f(c)) is alocal maximum of f if:
fle) > f(x), Vexe(c—¥d,c+d)NI

forsome d > 0.

¢ Global (Absolute) Minimum:

(¢, f(c)) is a global minimum of f on I if:
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fle) < f(z), Vxel
¢ Global (Absolute) Maximum:

(¢, f(c)) is a global maximum of f on I if:
fle) > f(x), Vxel

Extreme Value Theorem (EVT)

The Extreme Value Theorem states:

If f(x) is continuous on a closed interval [a, ], then:
1. f(=) attains both an absolute maximum and an absolute minimum on [a, b].
2. That is, there exist points ¢ and d in [a, b] such that:
e f(c) > f(z)forallz € [a,b] (absolute maximum).

e f(d) < f(x)forallz € [a, b] (absolute minimum).

Key Points

1. The function must be continuous on the closed interval [a, b].
2. The absolute maximum and minimum values may occur at:
e Endpoints of the interval a or b, or

e Critical points where f'(z) = 0 or f'(x) is undefined.

Why the Theorem is True
1. Continuity on a Closed Interval:
e A continuous function on [a, b] is bounded and does not "blow up" to infinity.
2. Compactness of [a, ) :

e Theinterval [a, b] is compact (closed and bounded), ensuring that f(z) has
both a greatest and a least value on this interval.

2. Critical Points and Local Extrema
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Theorem: Critical Points and Local Extrema

Let f : I — R be a function, and (¢, f(c)) is a local extremum of f. Then cis one of
the following:

1. A critical point: f'(¢) =0
2. A singular point: f'(c) does not exist

3. An endpoint of the interval I.

3. First Derivative Test

The First Derivative Test is used to determine whether a critical point is a local
maximum, local minimum, or neither.

Theorem: First Derivative Test

Suppose c s a critical point of f and f’(x) changes sign around ¢ :
1. If f'(x) changes from positive to negative at ¢, f(c) is a local maximum.
2. If f’(x) changes from negative to positive at ¢, f(c) is a local minimum.
3. If f'(x) does not change sign at ¢, f(c) is neither a local maximum nor a local

minimum.

Example

Let f(z) = z* — 322 Find local extrema:
1. Find f'(z) = 3z% — 6.
2. Solve f'(z) =0:2 =0,z = 2.
3. Analyze the sign of f'(z) :
e f'(x) >0forzx <0,
e fl(z) <0for0 <z <2,
e f'(x) >O0forz > 2.
4. Conclusion:

e x = (0 : Local maximum.


Guest
Rectangle


e 1 — 2 :Local minimum.

4. Second Derivative Test

The Second Derivative Test determines the nature of a critical point based on concavity.

Theorem: Second Derivative Test
Let f be a twice-differentiable function. If ¢ is a critical point (f'(c) = 0), then:

1. If f’(¢) > 0, f(c) is alocal minimum.
2. If f"(c) < 0, f(c) is a local maximum.

3. If f"(c) = 0, the test is inconclusive.

Example

Let f(z) = z* — 422 Find local extrema:
1. Find f'(z) = 42% — 8z.
2.Solve f'(z) =0:2 =0,z = —v2,2 = V2.
3. Find f"(z) = 12z2% — 8.
4. Evaluate f"(z) at critical points:
e z=0:f"(0) = —8, local maximum.

o = =2v2: f'(£v2) = 16, local minimums.

Example: Absolute Extrema of a Continuous Function
Let f(z) = |22 — 4] on [—3,3].
1. Endpoints:
o f(=3)=19-4]=5,
e f(3)=19—4|=5.

2. Critical Points:

Solve f'(z) =0 :
e f'(z) =2x,s0x =0.
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Evaluate f(0) = |0 — 4| = 4.
3. Absolute Extrema:
e Absolute Minimum: (0, 4),

e Absolute Maximum: (—3,5), (3, 5).

Remark: Critical Points and Extrema
¢ Not every critical point or singular point corresponds to a local extremum.

o Forexample, let f(z) = 3. The derivative f'(z) = 3z has a critical point at £ =
0. However, f () has no local maximum or minimum at = 0 because f(z) is

increasing both before and after ¢ = 0.
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13. Derivative Tests and
Concavity

Second Derivative and Its Role in Concavity

Definitions

1. Concave Up:

A function f(x) is said to be concave up on an interval (a, b) if the graph of f(x)
lies above all its tangent lines within (a, b).

Mathematically, f is concave up if:
f"(z) >0 Vz € (a,b).

2. Concave Down:
A function f(z) is said to be concave down on an interval (a, b) if the graph of
f () lies below all its tangent lines within (a, b).

Mathematically, f is concave down if:

f"(z) <0 Vz € (a,b).
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3. Inflection Point:
A point cis an inflection point of f(x) if f(x) changes concavity at c.

In other words, f () transitions from concave up to concave down (or vice versa) at
c.

Necessary condition for ¢ to be an inflection point:

f"(c) =0 or f"(c)does not exist.

Derivative Tests

First Derivative Test (Recap)

The First Derivative Test determines whether a critical point is a local extremum:
1. If f'(x) changes from positive to negative at ¢, f(c) is a local maximum.
2. If f'(x) changes from negative to positive at ¢, f(¢) is a local minimum.
3. If f'(x) does not change sign at ¢, f(c) is neither a local maximum nor a local

minimum.

Second Derivative Test

The Second Derivative Test is used to determine the nature of a critical point based on
concavity:

1. If f”(c) > 0, f(c) is a local minimum (concave up at c).
2. 1f f"(c) < 0, f(c) is a local maximum (concave down at c).

3. If f’(c) = 0, the test is inconclusive, and other methods (like the First Derivative
Test) must be used.

Concavity Analysis on an Interval
To determine concavity:

1. Find the second derivative, f”(z).
2. Solve f"(z) = 0 or f"(x) does not exist to identify potential inflection points.

3. Test the sign of f” () in each subinterval formed by the critical points of f” () :
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o If f'(x) > 0, f(z) is concave up on that interval.

e If f’(z) <0, f(x)is concave down on that interval.

Example 1: Determine Concavity and Inflection Points
Let f(z) = 2° — 322 + 4.

1. Compute the first derivative:
f'(z) = 32 — 6z
2. Compute the second derivative:
f'(x) = 6x —6
3. Solve f"(x) = 0 to find potential inflection points:
6r —6=0 — z=1

4. Test the sign of f”(x) in intervals (—oo, 1) and (1, 00) :
e Forx <1: f"’(x) =62 —6<0,so f(z)is concave down.
e Forz >1: f'(x) =6x —6 > 0,so f(x) is concave up.

5. Inflection Point:

Since f"(x) changes signatz = 1, (1, f(1)) is an inflection point:

Inflection Point: (1, 2).

Example 2: Application of Second Derivative Test
Let f(z) = z* — 4x2.

1. Compute f'(x) and f"(z) :

f'(z) = 42® — 8z, f"(x) =122 — 8
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2. Find critical points by solving f'(z) = 0 :
dz(® —2) =0 = z =0,z = +V2.

3. Use the Second Derivative Test:

e f"(0) = —8:Concave down, z = 0 is a local maximum.

o f"(£+/2) = 16:Concave up, z = ++/2 are local minima.
4. Conclusion:

e Local maximum: (0, 0).

e Local minima: (v/2, —4), (—v/2, —4).

Remark: Inflection Points

Inflection points occur where the concavity of a function changes. These points are not
necessarily critical points (i.e, f'(x) = 0 at an inflection point).

For example, f(z) = z* has an inflection point at z = 0, but f'(0) = 0and f”(0) =
0, yet concavity changes from down to up.
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14. Sketching the Graph of a
Function

Procedure for Graph Sketching

To sketch the graph of a function f(z), follow these systematic steps:

Step 1: Determine the Domain and Intercepts

1. Domain: Identify all values of z for which f(x) is defined. Exclude any points where
the denominator equals zero or the function involves undefined operations (e.g.,
square root of a negative number).

2. Intercepts:
 x-intercepts: Solve f(x) = 0.

e y-intercept: Evaluate f(0) if z = 0 is in the domain.

Step 2: Asymptotes

1. Vertical Asymptotes: Solve for  where the denominator of f () equals zero (if
f(x) diverges at those points).
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2. Horizontal Asymptotes: Check the behavior of f(x) as x — 400. This often

involves finding limits:

lim f(z) and lim f(z).

T—00 r—r—00

Step 3: First Derivative Analysis (f'(x))
1. Critical Points:

e Solve f'(x) = 0to find where the slope is zero (local maxima/minima
candidates).

e Identify points where f’(x) does not exist (singular points).
2. Intervals of Increase and Decrease:

e Determine the sign of f’(x) on each interval separated by critical points. If
f'(z) > 0, the function is increasing; if f'(z) < 0, the function is decreasing.

3. Classification:

e Use the First Derivative Test to classify critical points as local maxima, minima,
or neither.

Step 4: Second Derivative Analysis (f”(z))

1. Intervals of Concavity:

e Determine the sign of f”(z) on each interval. If f”(z) > 0, the graph is
concave up; if f”'(x) < 0, the graph is concave down.

2. Inflection Points:

e Solve f"(x) = 0 or find where f”(x) changes sign. These points indicate a
change in concavity.

Step 5: Sketch the Graph

1. Combine all the information from Steps 1-4.
2. Plot:

e Domain restrictions and asymptotes.


Guest
Rectangle


e |Intervals of increase, decrease, concavity, and inflection points.
e Key points such as intercepts, local maxima/minima, and asymptotes.

3. Draw a smooth curve connecting the points.

Example: Sketch the Graph of f(x) = ﬁzj

We will sketch the graph of f(x) = z 1 by following the steps.

x2—4

Step 1: Domain and Intercepts

e Domain: The function f(z) is undefined where the denominator > — 4 = 0. Solve:
2 —4=0 = z =42
So, the domain is (—00, —2) U (—2,2) U (2, 00).
e x-intercepts: Solve f(z) = 0. The numerator 2 — 1 = 0, so:
P -1=0 = z==+1

The x-interceptsarex = land z = —1.

e y-intercept: Evaluate f(0):

The y-intercept is (0, %)

Step 2: Asymptotes

e Vertical Asymptotes: The denominator 22 — 4 = 0 leads to vertical asymptotes at

T = 2.

e Horizontal Asymptote: Analyze the behavior of f(z) asx — toc:
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The horizontal asymptote is y = 1.

Step 3: First Derivative Analysis (f'())

1. Compute f’(x) using the Quotient Rule:

B (22 — 4)(2z) — (2% — 1)(2z)

fl(x) _ (wz . 4)2
Simplify:
, 2z(x? —4—2*+1)  —6z
P ="y @y

2. Critical Points:
e Solve f'(z) = 0:

—6x

So, ¢ = (s the only critical point.
3. Intervals of Increase/Decrease:
e Analyze the sign of f'(z):
o Forz >0, f'(x) < 0 (decreasing).
o Forz <0, f'(z) > 0 (increasing).
The function is increasing on (—o00, 0) and decreasing on (0, o).
4. Classification of Critical Points:

e Atz = 0, f'(z) changes from positive to negative. Hence, z = 0 is a local

maximum.

Step 4: Second Derivative Analysis (f” (z))

1. Compute f"(z):

Differentiate f'(z) = ﬁ using the Quotient Rule:
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(2 — 4)*(=6) — (=62)(2)(z* — 4)(2z)

.f”(w) = (3(32 _ 4)

Simplify (tedious calculations omitted here):

wo oy —6(x? —4)* + 242% (2? — 4)
f (.’13) o (xQ o 4)3

2. Concavity:
e Analyze the sign of f”(x) to determine concavity.

e Solve f""(x) = 0to find inflection points.

Step 5: Sketch the Graph

Using all the information:
e Domain: (—oo, —2) U (—2,2) U (2, 00)
e x-intercepts:x = —1,1
e y-intercept: (0, %1)
e Asymptotes: Vertical at t = 12, horizontalaty = 1
e Critical Point: z = 0 (local maximum)
e Behavior:
o Increasing on (—00, 0),

o Decreasing on (0, 00).

Final Graph
The graph has the following features:

e Two vertical asymptotes at & = +2,
e A horizontal asymptoteaty = 1,

e Smooth curve connecting all points, respecting the intervals of increase/decrease
and concavity.
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16. Integration and Riemann Sums

Connection Between Integration and Sigma Notation

Integration is closely related to summation. The definite integral of a function over an
interval is the limit of the Riemann sums as the partition becomes infinitely fine. Formally:

/b f(z)dx = T}Lngoif(:cz)Aa:
a i=1

where:
e [a,b]istheinterval,
o Ax = b_Ta is the width of each subinterval,

e x; is the sample point in the 2-th subinterval.

Example: Connection with Sigma Notation
Let f(x) = x on [1, 5]. Divide [1, 5] into n subintervals:

e Partition points: ; = 1 + 1Ax where Az = = =

5-1 _ 4
-

Lower Sum:
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Simplify:

L(f,Pn):%Z(1+4(i;1)) :4-n;1+i—22(i—1).

i=1

Asn — oo, L(f, P,) — 12.

Upper Sum:

U(f,P,) = iﬂwi)Am = i (1 + %) %

Asn — oo, U(f, P,) — 12.

Hence, the integral is:

Definitions

Riemann Sums

Let f : [a,b] — Rbeafunctionand P :a =z < 1 < - -+ < z,, = bbe a partition
of [a, b]. Define:

¢ Lower Riemann Sum:
n
L(f,P) =) f@™) Az, Az;=z—x; 1.
i=1

e Upper Riemann Sum:
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Area

The exact area under the curve is the limit of the Riemann sums:

A= D LB =B UL B

Properties of Riemann Sums

1. Bounds on Area:

L(f,P)<A<U(f P).

2. Refinement of Partitions:
If P, is a finer partition than Pi:

L(f,P) < L(f, P) < A<U(f, P,) <U(f, P).

Definition of the Definite Integral

Let f : [a, b] — R.The function f is integrable on [a, b] if there exists a unique real
number I such that for any partition P:

L(f,P) < I <U(f,P).

This number [ is called the definite integral of f over [a, b], denoted as:

I= /abf(m)dx

Here:

e a:Lower limit of the integral,
e b: Upper limit of the integral,

e f(x):Integrand,
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e dx: Integration parameter.

Example: Riemann Sum Approximation

For f(z) = z on [1, 5], we calculated:

5
/ rdr = 12.
1

Algebraic Properties of the Definite Integral

1. Additivity:
/abf(:z:)dw—i—/bcf(m)da: _ /acf(a:)dm.

2. Scalar Multiplication:
b b
/ c-f(m)da::c/ f(z)dz

3. Linearity:

b

/ab[Cf(w) +g(z)] dx = c/abf(a:) dz +/a g(z) de.

4. Zero Interval:

/aaf(w)dm:O.

5. Order of Integration:

/abf(m) dx = _/ba f(x) dz.
6. Comparison:

If f(x) < g(x) forallz € [a, b], then:
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/a () de < / ' g(a)de.

/ab f(x)dz

7. Triangle Inequality:

</ (@) da.

Remarks

e The definite integral generalizes the sum of rectangles (Riemann sums) to infinitely
many subintervals.

e Finer partitions lead to more precise approximations of the integral.
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17. Integration and Fundamental
Theorem of Calculus

Continuous Functions and Integrability

Theorem: Integrability of Continuous Functions

If f is continuous on [a, b], then f is integrable on [a, b]. This means the definite integral:

/a b f(z) dz

exists.

Average Value of a Function

Definition
For a continuous and integrable function f on [a, b], the average value of f is defined
as:

1 b
fag = 7 / f(z) dz.
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Example
Let f(z) = x on [1, 5]. The integral is:

5
/ rzdr = 12.
1

1
favg =5 —7°12=3

The average value is:

Fundamental Theorem of Calculus (FTC)

Statement of FTC
Let f : [a,b] — R be a continuous function. The FTC consists of two parts:
1. Part 1 (Evaluation of Definite Integrals):

If F'(z) is an anti-derivative of f(x), meaning F'(x) = f(z) forallx € [a, b],
then:

Example

Compute f15 x dx:
Let F'(z) = %2 + 106.Then F'(z) = z = f(z), so F is an anti-derivative of f.
Using the FTC:

/15a:da::F(5) ~FQ1) = (52—2 +106> - (1;+106> = 12.

2. Part 2 (Derivative of an Integral Function):

Define G(t) = fj f(z) dz.Then G'(t) = f(t). This means the derivative of the
integral function recovers the original function f.
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Example
Compute fo7r sin(x) dz:

The anti-derivative of sin(x) is — cos(x). Thus:
/ sin(z) dz = [— cos(z)]§ = — cos(w) — (— cos(0)) = 2.
0

Properties of Anti-Derivatives

Remarks on Anti-Derivatives
1. Anti-derivative of cos(z) is sin(x) + C.
2. Anti-derivative of sin(x) is — cos(z) + C.
3. Anti-derivative of " is:

anrl

—1.
n+1+C’ n =

Techniques for Integration

Substitution Rule

Substitution is used for integrals that involve composite functions. It is based on the
chain rule for derivatives:

L lg(e)) = F(9(a)) - o (@),
For integration:
[ #(a@)d () do = fg(a)) + C.

Procedure
1. Letu = g(x), sodu = ¢'(z)dx.

2. Rewrite the integral in terms of w.
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3. Integrate with respect to u.

4. Substitute u = g(x) back into the result.

Example
VT 2 :
Compute [ cos(z?) - 2z d:
o Letu = 22 sodu = 2zdz.
e The limits change:when z = 0,4 = 0; whenz = /m,u = .

e The integral becomes:

/07r cos(u) du = sin(u)];T = sin(7) — sin(0) = 0.

Natural Logarithm and Exponential Functions

Definition of In(x)
The natural logarithm is defined as:

In(z) = /1 L

t

This definition provides a way to compute In(2), In(3), and other values.

Properties of In(x)

1. Domain: The domain of In(z) is (0, 00).

2. Intercept:In(1) = 11 %d:c = 0, so the graph passes through (1, 0).
3. Asymptotes:
e Asz — 07, In(x) — —oo (vertical asymptote at = 0).

e Asz — 00, In(x) — 0o (no horizontal asymptote).
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Fundamental Relation Between In(x) and e
The function In(z) is related to the exponential function e” as follows:
e In(e) =1,

o e”istheinverse of In(x).

Exponential Function from Integration

Define G(z) = 1:6 % dt. Then:
° GI(Q'}) —_= %’

e G(z) is increasing, continuous, and 1-to-1.

Using G(x) = In(z), the inverse is G~ (z) = €~

Example
Compute fle %dm:
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In(e) —In(1)=1-0=1.

This means the area under the curve y = % fromx = 1tox = eisexactly 1.

Historical Note: Euler and the Number e

Leonhard Euler explored the number e as the base of the natural logarithm. He showed

that:
1 n
e = lim (1 + —)
n—00 n

and that In(x) is the integral of % from 1to , linking e to the concept of area.

Advanced Properties of G(x) and G~ }(x)

Derivatives
1. G'(z) = % > 0, so G(x) is increasing, continuous, and bijective (1-1and onto).

2. G71(z) = €% and:

(G (z) = GG @) e”.

Concavity

G'(z) = —;—2 < 0, s0 G(x) is concave down and has no inflection points.

Connection Between Natural Logarithms and Arithmetic

For a, B € dom G1, we can find @, b such that G(a) = aand G(b) = B. Using the
properties of G(z):

G(ab) = G(a) + G(b),

which leads to:
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By defining G~1(1) = e, the unique number satisfying G(e) = 1, we find:
G Hz) = €".

This means the area from 1to o under % determines In(«), and e is the number where
theareais 1.

Formulas for €%, In(x), and log(x)

e” (Exponential Function)
Definition

e — lim (1+f)
n

n—0o0

Derivatives

/

e First derivative: (e¥)" = e”

e Second derivative: (€7)" = e*

e Higher-order derivatives: (%)™ = e® foralln > 1
Integration
/e‘” de =e" 4+ C

Key Properties
[ ] 60 _= 1

o Y = e%e¥

In(x) (Natural Logarithm)


Guest
Rectangle


Definition
1
In(xz) :/ Zdt (z > 0)
1

Derivatives
e First derivative: (In(x))’ = %

e Second derivative: (In(z))" = —%

Integration
/ln(a:) de = zln(z) —z+C

Key Properties

e In(1)=0

e In(ab) =In(a) + In(b)
e In (%) =In(a) —In(b)

e In(a") =nln(a)

Relationship with Exponential
o @) =g (z>0)

e In(e”) ==

log; () (Logarithm to Base b)

Definition

log, (z) = 111;((‘2)) (b>0,b1)

Derivatives

e First derivative: (logb(x))' = ZIn(d) 111(1))
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Key Properties

o logy(1) =0

o log,(b) =1

e log,(ab) = log,(a) + log,(b)

* log, (z) = log;(a) — log;(b)
o log,(a") = nlog,(a)

Change of Base Formula

forany base b > 0,0 = 1

Combined Derivatives and Integrals

Exponential with Base b

e flz)=0b" = f'(x) =b"In(b)

X bw
/b dr = () +C

Natural Logarithm with Exponential

1
ar Jp — — 0%
/e T=—¢ +C (a#0)

(In(f(2)))" =

Logarithmic Integration

/ = drz = In(ln(z)) + C (x> 1)

z In(x)
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Special Limit

Key Relationships

e” and In(x)
o In(e®) = zand ™) = 2

e In(z%) = aln(z)

Logarithmic Properties

e Ifb>1,In(z) andlog,(x) grow unboundedly as x — o.

Integral Involving Logarithms

/ln(w) dp — 1112(:8) LC
T 2
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18. Exponential Functions and Integration
by Parts

Exponential Functions of Functions

Given two functions f and g, if f(z) > 0 for all z in the domain of f, we define:

()9 = @) _ gol@)n(r(e),
Example: Limit of /%

1. Rewrite the function using the exponential property:

:L,l/z _ eln(acl/z) — eln? .
2. Evaluate the limit of the exponent:
In(z )
lim () =0 (since In(x) grows slower than ).
Tr—00 X

3. Substituting back:

lim 2% = € = 1.
T—r00

Integration by Parts

Formula Derivation (Leibniz Rule)

Integration by parts is derived from the product rule for differentiation:
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Integrating both sides:
Rearranging:

This gives the integration by parts formula:

/udv:uv—/vdu.

Examples of Integration by Parts

1
fo xe® dx
o letu = zanddv = e*dz, sodu = dz and v = €*.

e Applying the formula:

/memdm:uv—/vdu:mew—/e“’d:p:mew—em—l—c.

e Evaluating fromOto 1:

1
/ ze”dr=[1-e' —e'] - [0-e"—e]=e—e+1=1.
0

e
[; In(z) dz
e letu =In(z)and dv = dz, sodu = idzandv = z.

e Applying the formula:

/ln(w)dm:u'v—/'vdu:wln(m)—/m-ldm:mln(m)—/ldm:mln(m)—m—I—C.

Z

e Evaluating from1toe:

/leln(m) dx =[eln(e) —e| — [1In(l) — 1] =[e—e¢e] — [0 —1] = 1.
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w/2 .
J, " sin(z)e” dx
o Letu = sin(z), dv = e*dz, so du = cos(z)dz, v = €.

e Applying the formula:
/sin(a:)e”” dz = uv — /v du = sin(z)e” — /cos(m)em dx.

e For [ cos(z)e” dz, repeat integration by parts:

o Letu = cos(z), dv = e"dx, so du = —sin(x)dz, v = €.

/cos(a:)e“‘” dx = cos(z)e” — / —sin(z)e” dz = cos(z)e” + /sin(w)ew dx.
o LetI = [sin(x)e” dz, then:
I =sin(z)e® — (cos(z)e® +1I) = 2I =sin(z)e” — cos(z)e”.
1

I= E(sin(ac)e“c — cos(z)e”).

e Evaluating from 0 to 7/2:
/2 1
/ sin(z)e® de = 3 [(sin(71'/2)e”/2 — cos(/2)e™?) — (sin(0)e® — cos(O)eO)] .
0

1
=5 e -1].

Notation and Anti-Derivatives

e Definite Integral:

/abf(x) dx

Represents the signed area between the graph of f and the interval [a, b].

/ f(z)dz

Represents an anti-derivative of f and is a function.

¢ Indefinite Integral:

Example: [ cot(z) dz

1. Rewrite using trigonometric identities:
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/m@mz/xﬁm

2. Letw = sin(z), so du = cos(z) d:
1 .
/cot(m) dz = / " du =1In|u| + C = In|sin(z)| + C.

Example: [ arctan(z) dz

Using integration by parts:

1

de' v =2

e Letu = arctan(z), dv = dz, sodu =
e Applying the formula:

T

15 22 dx.

/arctan(m) dr = x arctan(z) — /

e Simplify the remaining integral:

T 1
= —In(1 + 2?).
/1+w2dac 2n( +z%)

e Final result:

1
/arctan(:l:) dx = z arctan(z) — 5 In(1 +2%) +C.
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19. Integrals of Rational Functions and
Improper Integrals

Integrals of Rational Functions

Explanation

Rational functions are expressed as the ratio of two polynomials. To integrate rational functions:

1. If the degree of the numerator is greater than or equal to the degree of the denominator,
perform polynomial division to simplify the integrand.

2. For irreducible denominators, use partial fraction decomposition to break the integrand into

simpler fractions.

Example 1: Polynomial Division

Evaluate:

[
ar:—lx

1. Perform polynomial division:

2. Rewrite the integral:
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/xz d—/( +1)d+/ L g
——de= (@ T ——

z? 1
/a:dac:?, /1d:1:—x, /w_ldlen\m—u.

3. Solve:

Final result:

2 2

z x

de = — 4+z+Injz—-1]+C.
z—1 2

Example 2: Partial Fraction Decomposition

1
dx
/w3+1

2 +l1=(z+1)(z®—z+1).

Evaluate:

1. Factor the denominator:

2. Decompose:

I A N Bx +C
2+1 z+1 22—z+1

3. Solve for A, B, C, and substitute into the integral:

/ 1 dm:/ 4 dx+/Bx—+Cda:.
x3+1 z+1 22—z +1

4. Solve for A, B, C"

Multiply through by the denominator 3 + 1 = (z + 1)(2? — = + 1) to clear the fractions:
1=A(z*—z+1)+ (Bz+C)(z +1).

Expand the right-hand side:

1=A(x*—z+1)+(Bz+C)(x+1) = Az®> — Az + A+ Bx* + Bz + Cz + C.

Combine like terms:
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1=(A+B)z’+ (-A+B+C)z+ (A + ).

Equate coefficients with 1 = 0z2 + 0z + 1:
o Coefficientofz% A+ B = 0
e Coefficientofz: —A+ B+ C =0
e Constantterm: A+ C =1
Solve the system of equations:
1. A+B=0=B=-A
2. A+ (-A)+C=0=-24+C=0=C=24
3A+C=1=A4+24=1=3A=1=A4=1

Substitute back:

1
.A:§:
1
(] B:—A:—g,
« C=24=1%

. Rewrite the integral:

Substitute A, B, C' into the decomposition:

1 1 2
1 __ 8 _ —35%+%5
2+1 zz+1 x22—2+1

The integral becomes:

1 % —tz+ 2
= d —3= 3 _dx.
/azi’*—l—lda3 /:c—|—1 m+/:c2—a:+1 v

. Integrate each term:

e First term:

X 1
3
de = =1 1].
/x+1 T 3n|m—|— |

e Second term:
Split the numerator of the second fraction:
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_1 _|_2
/:c—d 1/Ld$+2/;dm.
z? —z+1 3J) #?—z+1 3 #?—z+1
o For [ L —dz, use substitution v = > — = + 1, du = (2z — 1)da. This leads to

a simpler mtegratlon (details skipped here for brevity).

o For f w+1 dx, complete the square:

1\*> 3

2
— 1: —_ - —.
x xr + (:c 2) +4

Then use a standard arctangent formula.
7. Combine results:

After integrating, combine all terms to express the final solution:

1 1
/ P dx = 3 In |z + 1| 4 (other terms from integrations) + C.

The "other terms" involve logarithms and arctangents based on the completed square and
substitution.

Improper Integrals

Improper integrals involve infinite limits of integration or unbounded integrands.

Type 1: Infinite Limits

If the limits of integration include —o0 or oo:

[ s@aa=im [ s
/awf(x)dx:éggo/ff(m)dx

Example 1: Convergent Integral

e Definition:

Evaluate:
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1. Rewrite as a limit:

2. Solve:
Substituting limits:

The improper integral converges to %

Example 2: Divergent Integral

Evaluate:

1. Rewrite as a limit:

| B
/ —dzr = lim —dzx.
1

2. Solve:

1
/—dx:1n|a:|+C.
z
Substituting limits:

lim InR —In1] = oo.

R—o0

The improper integral diverges to co.

Type 2: Unbounded Integrand
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If the integrand is unbounded on (a, b] or [a, b):

e Definition:

/abf(:r)d:r: lim /Rbf(a:)dm,

R—a™t

b R
[ 1@z =t [ i@y

R—b~ a

Example

Evaluate:

dx

/

S=

1. Rewrite as a limit:

11 1 /
—dz = li 12 dg.
/0\/5:1: 1%551+Rx T

2. Solve:
/:B_l/zda: =2yz+C.

Substituting limits:

lim {2\5 . 2%1_%} _ 2.

R—07*

The improper integral converges to 2.

Combination of Type 1 and Type 2

Evaluate:

1. Break into two improper integrals:
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0 -1 0
1 1 1

2. Evaluate each part using the respective definitions. Both diverge, so the integral diverges.

p-test (p-Integrals)
p-Integrals involve functions of the form w—lpz
1. For floo ml—p dx:
e Convergesifp > 1.
e Divergesifp < 1.
2. For fol m—lp dx:
e Convergesifp < 1.

e Divergesifp > 1.

Comparison Technique

Theorem

Let 0 < f(x) < g(z) forallz € [a, b], where a, b may be infinite.
1. If fab g(z) dzx converges, then fab f(x) dz also converges.
2. I fab f(x) dx diverges, then fab g(z) dz also diverges.

Example

Compare:
flz) =27 g(z) =2 1% 4+ 106.

1.0 < f(z) < g(z)forallz € [1,00).
2. By p-integrals, floo x 100 dg converges.

3. By comparison, floo (z71% 4 106) dx also converges.
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20. Integrals of Rational
Functions, Sequences, and Series

Integrals of Rational Functions

General Result

For the integral of a rational function &), where p(x) and g(z) are polynomials, the

q(x)
result typically involves:

1. Logarithmic Terms: In |x + c| for linear factors in the denominator.

2. Logarithmic and Arctangent Terms: For irreducible quadratic factors in the

denominator, the result involves In | f ()| or arctan (—£—).

The method depends on:
1. Polynomial division (if needed),

2. Partial fraction decomposition.

Example: Improper Integral

Evaluate:
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[ e
—— Al
0 \/54‘%2
T

Step 1: Substitution to Simplify the Square Root

Solution: fo dx

To simplify \/, substitute z = %

o dx = 2tdt,
o /T =tandz® =1t

> 1 2t
[ e [
0o Vr+z o t+t

Step 2: Simplify the Integrand

The integral becomes:

Factor t out of the denominator:

/ 2t4dt:/ R
0o t+t o t(1+13)

o 2t *© 1
[t waf L
o t(1+1°) o 1+

Thus, the integral reduces to:
* 1
I=2 dt.
o 1+13

Step 3: Split the Improper Integral

Simplify further:

The behavioratt = 0 and ¢ — oo must be checked. The integral fo dt converges

1—H&3
because the function decays quickly at infinity.

Step 4: Evaluate f 0 dt

1+t3
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The integral of 1%3 can be computed exactly using special functions (Beta or Gamma

functions). The result is:

/°° 1 g — T
o 1+87 33

Step 5: Substitute Back

From Step 2:

Substitute the result:
Simplify:

Final Answer:

The value of the integral is:

27

© 1
- dx = ——
/0 Ve + 3v3
Sequences and Series

Definition of a Sequence

A sequence is a function of the form:
a:D — R,

where D is an infinite subset of integers, and the range is a set of real numbers.

e Notation: a,, = a(n), where n is a positive integer.
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Examples of Sequences

1. Explicit Sequence:
Define the sequence:

n+1

an:—n2+1.

e Domain:n € Z>( (non-negative integers).

¢ Range: R (real numbers).

n+1
n2+1-

e The sequence maps eachn to a,, =

2. Logarithmic Sequence:
Define the sequence:

a, =In(n), n>1.

e Domain:nn € Z> (positive integers).
e Range: R (real numbers).
e This sequence grows without bound as n — oo.

3. Recursive Sequences
A sequence defined recursively specifies:

a. An initial condition (starting value(s)),

b. A recurrence relation to generate subsequent terms.

Example: Fibonacci Sequence

The Fibonacci sequence is defined as:
e Initial conditions: Fy = 1, F1 =1,

e Recursive relation:

Fn = Fn—l + Fn—2 for n 2 2.

Calculating Terms:
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0F2:F1—|—F0:1—|—1:2,
'F3=F2—|—F1:2-|—1:3,
0F4:F3—|—F2:3—|—2:5

The sequence continues as: 1,1, 2,3,5,8, .. ..

Example: Square Root Recursive Sequence

Define the sequence:
e Initial condition: a; = 1,

e Recurrence relation:

an =+/3+an-1 forn > 2.

Calculating Terms:

e a; =1,

e ay=+3+a;=+3+1=2,
e a3=+3+ay=v3+2=15

The sequence continues recursively based on the relation.
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21. Solutions to Calculus Problems:
Preparation for MT 2

# Important Note:

" couldn't attend this lecture where students had an open Q&A session with the professor. To ensure | stay on
track, I've included the solutions to Midterm 2 (May 4, 2015) here as a reference.”

MATH 106 - Calculus |

Midterm Il Solutions

Date: May 4, 2015

Problem 1 Solutions

(a) Evaluate lim, o+ (e* + 233)%.

Solution:

Blw

1. Define the expressionasy = (e” + 2x)=.

Take the natural logarithm on both sides to simplify the power:
3 T
Iny = —1In(e” + 2z).
T
2. The problem now reduces to finding the limit:

In(e* + 2

z—0t z—0t T
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3. Apply L'Hopital’s Rule:

e The numerator is In (e” 4 2z), and its derivative is:

d
— In (€* 4+ 22) = - (e® +2).
dz ( ) et + 2z ( )
e The denominator is x, and its derivative is:
d
—x =1
dx
Using L'Hopital’s Rule:
3ln(e® + 2z C:Jrz
lim ﬁ — lim 3. &f22
z—0t €T z—0t 1

4. Simplify the fraction:

et +2

———— =1 asz — 0",
er + 2z

because €* — 1and 2z — 0.

5. The limit becomes:

lim lIny=3-1=09.

z—0+

6. Exponentiate both sides to find y:

lim y = e”.
z—07T y

Final Answer:

(b) Evaluate

2
. Jo T 1% In(¢) dt
-0+ In(z+1)

Solution:
1. Write the limit as:
2
[ 106 In (1) dt

1- z+1
i In(z + 1)
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Both the numerator and denominator approach 0 as z — 07, creating an indeterminate form g. Thus, we
can apply L'Hopital’s Rule.

2. Differentiate the numerator using the formula for the derivative of an integral with variable limits:

d 1-z?

d d
— () dt = 'S In(t) |t =1— 22 —(1 — 22) — 'S In(t) |t = 1. — 1).
i /.. n(t) n(t) z dm( z%) n(t) z + dm(w+ )

3. Compute the derivatives of the bounds:
o Atg(z)=1-2:
flg(z)) = (1 —2*)Pn(1 -2%), g'(z)= -2
e Ath(z) =z +1:
f(h(z)) = (z +1)%In(z +1), A (z)=1.
Substituting:

2
d 11—z

- "% 1n(t) dt = —22(1 — %) In(1 — 2?) — (z + 1) In(z + 1).
T Ja+1

4. Differentiate the denominator:

d 1
—1 1) = .
dx n(@+1) x+1
5. Apply L'Hopital’s Rule:
2
. Jort t%In(t)dt o —22(1—2)" (1 —¢?) — (2 + 1) In(e + 1)
ml%l+ ln(:z: + 1) N wg})%f _1 '

z+1

6. Substitute x = 0 directly:

lim =
z—0*" m ]_

—2(0)(1-)(0)?)% In(1 — (032) —((0) + )% In((0)+1) 0-0

Thus:

[ 10610 (1) gt
lim Lo = O
z—0*  In(xz +1)

Final Answer: @

(c) Evaluate
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Solution:

1. Recognize this as a Riemann sum:
n . 5
1 /2¢
lim - —+1
i3 (5+)
i=1
Compare it to the definition of a definite integral:

/b f(z)dz = lim if(:cf)Aw,
a n—00 P

where Az = b*T“ andz; = a + 1Az

2. ldentify the corresponding integral:
e Theintervalis [0, 1], since £ — 2.

e Thefunctionis f(z) = (2z + 1)°.

"1 (2 5 !
lim » = (— + 1) = / (2z 4 1)° dz.
n—00 ; n n 0

i=

Thus:

3. Evaluate the integral:
Use substitution:

o letu =22+ 1 sodu = 2dzx.
e Whenz =0, u = 1;whenz = 1,u=3.

The integral becomes:

4. Compute the integral:

Substituting back:
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5. Evaluate the bounds:

Final Answer:| —

Problem 2

Find the global maximum and minimum values of the function f(z) = z%e™%".

Solution:

1. Find the derivative:
To locate the critical points, compute the derivative of f () using the product rule:

d

fl(z) = . (.’132 . 642) = 2ze® + z? di <e’x2> .

2
The derivative of e ™% s:

— 7172

—e = —2ze

dz

Substitute back:
f'(z) = 2ze” @ _9gle ™.
Factor:
Fl(z) = 2ze ™ (1 — 22).

2. Set f'(z) = 0:
The factors of f'(z) = 2:156*’”2(1 — x?) give:

=0 = =0, 1—-2?=0 = z=+1.

Critical points:z = 0,x = 1,z = —1.
3. Analyze the critical points:

o Atz =0:
£(0) = (0)% " =0
o Atx = 1:

F) =)W =€,
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o Atz = —1:

f-1) = (-1 Y =
4. Global maximum and minimum:

2
o Asz — +oo, f(z) = 2%~ — 0, since the exponential decay dominates the growth of z2.

e The global maximum value occursatx = 1 and ¢ = —1, where f(m) =e L
e The global minimum valueis f(0) = 0.

Final Answer:

e Global Maximum:|e ! |atz = landz = —1.

e Global Minimum:@atm =0.

Problem 3

() f04 x2e2 dx

We will use integration by parts, which is given by:

/udv:uv—/vdu

Let:

o u=u1x%sodu=2zxdr

e2w

N =

o dv=e¥dz, sov =
Now, applying the integration by parts formula:

4

4 2 4
1
/ r2e® dx = [m—eh] —/ —e2* . 2z dx
0 2 0 0 2

Simplifying:
Now, evaluate the boundary terms:

Thus, we now need to solve:
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4 4
/ z2e®® dx = 8e® — / ze?® dz
0 0

For the remaining integral, we apply integration by parts again on f04 ze?® dzx.
Let:

e u=uxsodu=dx

o dv=e?dx sov = %62’”

Now, apply the integration by parts formula again:

4 4 4 1
/ ze?® dx = [fe%} — / —e* dx
0 2 0 0 2

Simplifying:

Evaluating the boundary terms:

Thus, we now have:

Simplifying:

. . . .. . 4
Now substitute this back into the original equation for fo z?e? d:

4
7 1
2 2z 8 .8 -
/Ome dx = 8e —(46 —|—4>

Simplifying:

7 1 32 7 1
_ g8 _ '8 1 _ 948 g 1
= 8e 46 1 46 46 1
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s 1
4 4
Thus, the final answer is:
25 5 1
7°¢ 1

—3dz
b) [ 250
We begin by factoring the denominator:

z® — 32% = 2%(z — 3)

Now, we perform partial fraction decomposition:

3 4
?(z—-3) =

Multiplying through by the denominator z*(z — 3):
—3 = Az(z — 3) + B(z — 3) + Cx?

We now find the values of A, B and C' by substituting values of x:

o Atz = 0:
—-3=-3B=B=1

o Atz =3:
3=3C=C=_1.
3

To find A, we substitute z = 1:
A+C=0
A=-C=-
Thus, the partial fraction decomposition is:
-3 1 1 1/3

?(z—3) 3z x*2 =x-3

[t an L[ [ 1 e
z2(z — 3) T3] % 2 3) -3

Now we integrate:
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The integrals are:

1 1 1

Thus, the final answer is:

1 1
Injz—3|+C

1
—Injz|— - — -
3 z 3

Problem 4

(a) Determine whether the following improper integral

/°° dz
. z(lnz)?

is convergent or divergent.

We first apply the limit as ¢ — oo:

fm [ 9%
t—oo J, z(lnz)?

Letu =Inz sodu = %dm, thus the integral becomes:

) Int du
= lim —
t—o00 ne U

This simplifies to:

Evaluating the boundary terms:

. -1
= lim (m “)

1

ey i 0, so the result is:

Ast — oo
=1

Since the limit exists and is finite, the integral is convergent.

(b) Find the area of the finite region between y = x3 and Yy = 3z2 — 2.

The problem asks us to find the area between the curves y = z3 and Yy = 3x? — 2z. First, we set up the
integral by determining the points where the curves intersect.
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Equating the two functions:
2} =322 — 2z
Rearranging:
2 — 32> +22 =0
Factoring:
z(z? — 3z +2) =0
z(z—1)(z—2)=0

Thus, the points of intersectionarex = 0, = 1,and x = 2.

Now, to find the area between the curves, we set up the integral:
1 2
Area = / (m3 — 322+ 2x) dx + / (3:1:2 — 2z — :1:3) dx
0 1

We now calculate each integral separately.

First integral:
1
/ (x* — 32% 4 22) dz
0

The integral is:
Second integral:

The integral is:

Evaluating the bounds:

Atz = 2
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Atz = 1:

Thus, the second integral evaluates to:

Now, adding the results of both integrals:

Thus, the area of the finite region is:

N | =
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22. Sequence Properties and
Mathematical Induction

Definitions

Sequence Behavior
Let (@, )nez+ be a sequence. The following properties describe its behavior:
1. Increasing:
Qpi1 > ap foralln € Z+.
2. Decreasing:

api1 < apforalln € Z+.

1

Example:a, = —>:

e n<n+1l = n?<(n+1)*foralln € Z",

e n?+1<(n+1)%+1,

. 1 1
n?+1 n+1)2+1"

Thus, a, > ap1, S0 ay, is decreasing.

Z 1

3. Non-Decreasing/Non-Increasing:
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Api1 > Qp/Api1 < a, foralln € ZT.
4. Monotone:
a,, is either increasing, decreasing, non-increasing, or non-decreasing.
. _ 1 .
Example: a,, = 1352 Is monotone.
Example: a,, = In(n):

e n<n+1 = In(n) <In(n + 1) because f(z) = In(x) is increasing on

(0, 00)
(f'(z) = £ > Oforallz > 0).

T

e Thus, a, < an+1,and a, is increasing. Therefore, ln(n) is monotone.

Boundedness
1. Bounded Above:
a,, is bounded above by some M € Rifa, < M foralln € Z™.
2. Bounded Below:
an, is bounded below by some M € Rifa, > M foralln € Z*.
Example: a,, = sin(n):

e —1 <sin(n) < 1foralln € Z*.
Thus, a,, is bounded above by 1 and bounded below by —1.

e Example:a, = n? + 1,n € Z", is bounded below by 2:
n>1 = n*>1=— n+1>2>1
3. Bounded:
a,, is bounded if it is bounded both above and below.
e Example: a,, = sin(n) is bounded.
e Counterexample: a,, = n? + 1 is unbounded because it has no upper bound.
4. Alternating:
a, is alternating if a,, - a1 < 0 for any n.

Example: a,, = (—1)™
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e Forn=1,a; = —1,
e Forn =2,as =1,

e Alternates between positive and negative.

Function Modeling Sequences

Given a sequence (a, )n € Z7, if there exists a function f : R~g — R such that
f(n) = ay, then we say f models a,,.

Example:
Consider a,, = lné—?), n > 3.Define f : Ro3 — R:

f(z) = lngff), so that f(n) = a.
e Compute f'(z):
122 -1 -2 —2In
f(z) = 2 ;14(:6) z 1 13 ()

e Forz >3,In(z) >In(3) >1 = 1—2In(z) <O0.
Thus, f'(z) < Oforallz > 3.
Since f is decreasing for x > 3, a,, is decreasing forn > 3.

Mathematical Induction

Principle of Mathematical Induction

To prove a statement P, forallm € Z™", we perform two steps:
1. Base Case: Show P is true.

2. Inductive Step: Assume P, is true for some k > 1 (inductive hypothesis). Show that
P, — Py

If both steps are satisfied, P,, is true foralln € Z™.

Example: Prove a,, = v/3 — a,,_1 is Increasing
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leta; = landa, = /3 —an,_1,n > 2.

Claim:a,, < a,foralln € Z™.

Proof by Mathematical Induction
1. Base Case:
Forn=1,a; =landay =43 —a; =3 —-1= V2.
Sincel < ﬂ the base case holds.

2. Inductive Step:

Assume aj, < ap.1 forsome k > 1.

Thatis, ap < /3 — ag.
We need to prove ag+1 < ak+2,i.e, ag+1 < /3 — Qk+1.

From the inductive hypothesis, ar, < ag41.
Since ay, is increasingand ag.1 < 4/3 — agr1, it follows that ar < api1 < apio.

By the principle of mathematical induction, a,, is increasing forallm € Z™.

Additional Examples

Example 1: Alternating Sequence
Leta, = (—1)™
e a1 =—1,a2=1,a3 =—1,...,

e Sinceay, : a,11 < 0, a, is alternating.

Example 2: Bounded Sequence
Let a,, = sin(n):
e —1<sin(n) <1,

e Bounded above by 1 and below by —1.

Example 3: Unbounded Sequence
Leta, = n® + 1:


Guest
Rectangle


e a, has no upper bound, so it is unbounded.
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23. Sequences and Series

Definitions and Properties of Sequences

Limit of a Sequence

Let (@, )nez+ be a sequence. We say that the limit of a,, is L, and write:

lim a, = L,
n—oo

if for every € > 0, there exists N € Z™ such that:
la, —L| <€, ¥n>N.
Remark: All standard limit rules for functions apply to sequences.

Examples:

1. an:%:

lim — = 0.
n—oo M

2. an = sin(n):
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lim sin(n) does not exist (d.n.e).
n—00

3. a, = (—1)" = cos(mn):

lim cos(7n) does not exist (d.n.e).
n—o0

Limit Properties for Sequences

Let lim,,_,o, a,, = L andlim,,_,. b, = M.Then:

1. Sum Rule:

lim (a, +b,) =L+ M.

n—0o0

2. Difference Rule:

lim (a, — b,) = L — M.

n—0o0

3. Product Rule:

lim (a,b,) = L - M.

n—oo
4. Quotient Rule (if M va 0):
lim & = L
nsoo by M

5. Scalar Multiplication:

lim (ca,) = cL, for any constant c.
n—o0

Squeeze Theorem
ifa, <b, <c,holdsforalln € Z*, and:

lim a, = lim ¢, = L,
n—oo n—,oo

then:
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lim b, = L.

n—00

Example:
sin’(n)

Evaluate lim,, ., a,, where a,, = e

1. Bound the numerator:

0< sinz(n) <1, Vn>1.

2. Rewrite the sequence:

sin’(n) 1
n+1 " nd4+1

0<

3. Apply limits to the bounds:

0.

. 1
lim =
n—oo n3 + 1

By the Squeeze Theorem:

lim a, = 0.
n—oo

Monotone Convergence Theorem (MCT)

Given a sequence (an )nez+:
1. If a,, is monotone (either increasing or decreasing), and
2. a, is bounded (above or below),

then lim,, ., a,, exists.

Example:
Consider the sequence a,,11 = /3 + a,, a1 = 1.
1. Monotonicity:

Previously shown that a,, is increasing:
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a, < Gpi1 VN > 1.
2. Boundedness:
Prove by induction that a,, < 6:
e BaseCase:a; = 1 < 6.

¢ Inductive Step: Assume a; < 6. Show ag 1 < 6:

a1 =V3+ar<V3+6=v9=3<6.

By induction, a,, < 6 for all n.
Since a,, is monotone increasing and bounded above, lim,, ., a,, exists.

3. Find the Limit:
Let lim,,_, @, = a.Then:

a=+3+a.

Square both sides:
a’=3+a.

Rearrange:

Solve the quadratic equation:

Thus:
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. 1++v13
lim a, = ———.

n—00 2

Subsequences

A subsequence of (an)nez+ is a sequence (akn)ke%, where k,, is a strictly increasing
sequence of indices.

Remark:

If lim,, ,o0 @, = L, then any subsequence (ay, ) also converges to L.

Example:
Leta, = (—1)" (1 + -»).
1. Define subsequences:

. azn:(1+ﬁ)%1.

® G2p41 = — (1—|—m> — —1

2. Since subsequences have different limits (1 and —1), the sequence a,, does not
converge:

lim a, does not exist (d.n.e).
n—oo

Series

Definition of a Series

Given a sequence (an)ncz+, the series Y . | an is defined as the limit of its partial
sums Sy, where:

N
SN=Zan:a1—|—a2—|—---—|—aN.

n=1

If imy_.o, Sy = S, we say the series converges to S. Otherwise, it diverges.

Examples:
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N

SN:Z’N,:M

n=1
As N — 00, Sy — 00.Thus, Y~ | ndiverges.
2.a, = (—1)™

SN—{l if N is odd,

0 if N is even.

The series does not converge, as Sy oscillates.

Summary of Key Concepts

1. Monotone Convergence Theorem ensures convergence of bounded monotonic
sequences.

2. Squeeze Theorem applies to bounding sequences to find their limits.
3. A series converges if the limit of its partial sums exists.

4. Subsequences inherit the limits of their parent sequences but can indicate
divergence when limits differ.
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24. Sequence of Partial Sums and
Convergence Tests of Series

Partial Sums and Series

Definition of a Partial Sum

Definition: Given a sequence (a,,) where n € 7, the N -th partial sum is
defined as

N
SN: E an
n=1

The collection { Sn }3_, is called the sequence of partial sums for (a,).

Definition of a Series

Definition: The series associated to the sequence (a,,) is defined as the limit of
its sequence of partial sums:
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00 N

g a, = lim Sy = lim g an,
N—o0 N—o0

n=1 n=1

If this limit exists (and is a finite number), we say that the series converges.

Otherwise, we say that the series diverges.

Example: A Geometric-Type Sequence
Consider (a, ) defined by a,, = A - ™.

1. The partial sum is

1 — TN+1
Sy =A+ Ar + Ar® + .-+ ArY :Aﬁ (assuming 7 = 1)
2. Convergence:
o If|r| < 1,thenlimy .o 7V = 0,50
1-0 A
N—00 11— 1-7r

o Ifr| > 1, limpy_ o V! does not converge to 0, and { Sy} diverges.
o Ifr =1,then Sy = A(N + 1), which divergesas N — o0.
o Ifr = —1, the partial sums oscillate: Sy does not settle to a single limit, so the
series diverges.
Example: sin(n)

If a,, = sin(n), we do not have a simple closed form for the partial sums, and in fact, the
partial sums do not converge. Hence, Y . ; sin(n) diverges.

n-th Term Test for Divergence (Test for Divergence)

Statement and Proof

Theorem (nth Term Test):
If the series Zzozl a, converges, then


Guest
Rectangle


| lim a, =0
n—oo

Proof (by contradiction / limit argument):
1. Suppose ZZOZI a,, converges to some limit L.
. . N
2. This means the partial sums Sy = anl a.,, converge to L.

3. Iflimy,, . an # 0, then eventually a,, stays away from 0, making { S } fail to
converge properly.

4. Therefore, a necessary condition for convergence is limy, o0 an, = 0.

Remark: The converse is not true. If lim,,_,,, a,, = 0, it does not imply 2:;1 a,
converges. A standard counterexample is:

1
an:_
n

Although lim,, % = 0, the harmonic series 220:1 % diverges.

Contrapositive Form

I If lim,, .- a, va 0 (or does not exist), then the series Zzo:l a,, diverges.

Example: a,, = sin(n). The limit lim,, ,, sin(n) does not exist (and is not 0), so
Y~ sin(n) diverges by the nth Term Test.

Tests for Positive Series

We now focus on positive term series, i.e., a, > 0 forall n.

1) Integral Test

Integral Test: Suppose {an} is a positive sequence, and there is a function f :
[1,00) — R such that

1. f is continuous,

2. f is non-increasing,

3. f(n) = a,foralln € Z™ .
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Then the improper integral [’ 100 f(z) dz and the series >~ | a,, have the same
behavior: if one converges, the other converges; if one diverges, the other
diverges.

Example: > 1457 We compare it with the integral

/°° dz
1 1—|‘:132

which is a convergent improper integral (arctan(x) from 1to 00). Thus, by the Integral

Test, the series > > | ﬁ converges.

2) p-Test (p-Series)

o
1
p-Test: Consider the series Z ot

n=1

e Ifp > 1, the series converges.

e If0 < p < 1, the series diverges.

Example:
o« Y L converges (herep = 3 > 1).

n=1 n3

o Y, % diverges (here p = % <1.

3) Comparison Test

Comparison Test:
Let {a,, } and {b,, } be sequences of positive terms with 0 < a,, < b, forall n.

e If ) b, converges, then > a, converges.

e (Contrapositively) If Y _ a,, diverges, then > _ b, diverges.
Example:

3n+1
a, =
nd4+7
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1. Note that forn > 1,a,, > 0.

2. Compare

3 1 1
n -+ with 3n +
S+ 7 n3

n

3. Forlarge n, == ~ 5

Snil 3+ % which converges by the p-test (sincep = 2orp = 3
both > 1). Thus 2:;1 an converges by the Comparison Test.

4) Limit Comparison Test

Limit Comparison Test:
Let {a,, } and {b,, } be positive sequences, and consider

. an
L= 1lim —
n—oo n

e If0) < L < oo, then ) a, and > by, either both converge or both diverge.
e If L = 0, that means b,, > a,,. Then:
o If)_ b, converges, )  a, converges.
o If)_ a, diverges, Y b, diverges.
e If L = oo, that means a,, > b,,. Then:
o If)  a, converges, Y b, converges.

o If)_ b, diverges, > a, diverges.

Example:
n® -7 1
a’I’L _— 3 y bn = —
n’+n n
For large n,
n’—7 2 3
n _ ofgm D" T - n’—1Tn
nd+n nd+n


Guest
Rectangle


As n — 09, this fraction behaves like

soL =1 € (0,00). Therefore, > a,, converges or diverges if and only if > _ b,

oo p’-7

n=1 n3n also

converges or diverges. But Y % diverges (harmonic series). Hence, >
diverges by the Limit Comparison Test.

Formulas for Summing Powers of "
The summation formulas for powers of " (geometric series) are derived as follows,

assuming |r| < 1 (so the series converges).

1. Sum of " fromn = (0 to oc:
For the geometric series:

Zr”:1+r—|—r2—|—r3—|—...
n=0

The formula is:

= 1
"= , f < 1.
Zr - or |r]|

n=0

2. Sum of r" from n = k to oo:
For the geometric series starting atn = k:

(.¢]

E rt =k Rt 2
n=~k

Factor out ’rk:
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Z 1+r+r+ )

n=k

The sum inside the parentheses is the full geometric series fromn = 0 to oo:

1
l4r+r24+-.. = .
1—r
Thus:
0.9] ’]"k
Er": , for|r| <1.
1—r
n=~k
3.Sumofr” fromn = 1 to oc:
For the geometric series starting at n = 1:
(0.9]
Zr":r+r2—|—r3—|—...
n=1

Factor out 7:

Zr" 1—i—r—|—r +. )

n=1
The sum inside the parentheses is the full geometric series from n = 0 to oo:

1

l+r+ri+... = .
1—r

Thus:

Sort=—, forlr|<1l.
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25. Series Convergence Tests and
Techniques

Ratio Test

Let {a,, } be a sequence of positive terms, and define

L = lim 2 (where L € [0, 0]).

n—oo Qg

Then:
e IfL € [0,1), the series ) | a,, converges.

e If L € (1,00), the series ) | a,, diverges.

e If L = 1, the Ratio Test is inconclusive.

Example Using the Ratio Test

Consider the series

8

n 7.‘.2n

I~
I
—_
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en ﬂ_Zn

Here, a, = = —. We calculate:
Ani1 e 1 p2(n+l) / em m2n ent1p2(n+1) o) e 2
an (n+1)! n! (n+Dlerw?  n4+1
Taking the limit as n — o0:
2
i em
L = lim =0
n—oomn 4+ 1

Because L = 0 < 1, the Ratio Test tells us the series converges.

Root Test

Let {a, } be a sequence of positive terms. Define

L = lim (a,)"" (where L € [0, x]).

n—oo

Then:
e If L €[0,1), the series Y a, converges.
e If L € (1,00), the series ) _ a,, diverges.

e If L = 1, the Root Test is inconclusive.

Example Using the Root Test

Consider the series

00
n2n

z : 7.‘.2n+1 T :

n=1

(As stated, a,, > 0.
We look at /a,, and attempt to find:

L = lim {/a,.

n—o0
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2n
The exact details depend on how we simplify 7”71'++1 but the main point is that once

we compute L, we compare L with 1:
e If L < 1, convergent;
e If L > 1, divergent;

e L =1, noconclusion.

Other Tests and Examples
1. No conclusion from Ratio Test

Sometimes, Ratio (or Root) Test yields L = 1. For instance, consider

<1
Z3n—i—2'

n=1

Applying the Ratio Test here might give a limit of 1, so it is inconclusive. We can then
try other tests (e.g., Limit Comparison Test, Integral Test, etc.).

2. Alternating Series Test

Suppose {a,n} is a sequence with
(i) a,, is alternating (i.e., a,, - a,, -1 < 0 forall n),
(i) |ay, | is non-increasing, and

(iii) lim,, ., a,, = 0.

Then the series ) _ a,, converges.

Example:

— (=1)"
; 3n+2

e We check it is alternating ((—1)™ changes sign).

1
3n+2

o ‘ | is decreasing.
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: 1
° hmn_mo 312 = 0.

By the Alternating Series Test, this series converges.

Absolute and Conditional Convergence

Aseries Y a, is
e Absolutely convergentif > |a,| converges.

e Conditionally convergentif » _ a, converges but ) _ |a,| diverges.
Examples

00 1)
1'Zf+7)z2

n=1

(="

1+n?2

= 1+1n2’ which converges (it resembles a 1/7’&2 type). So the original

series is absolutely convergent.

o0
(—1)"
2.
; 3n + 2

e By the Alternating Series Test, it converges.

e But Z |3n—1+2| diverges (similar to the harmonic series).

e Thus this series is conditionally convergent.

Power Series

A power series centered at ) is a series of the form

o

F(x) = Zan (z — a:o)n.

n=0

The set of x € IR for which this series converges is the domain of F'.

Examples of Power Series
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o0
1. F(z) = Z z", centered at £y = 0.

n=0

o
2. F(z) = Z n x", also centered at 0.

n=0

4 2
3. F(z) = Z nTEn) (x — 2)", centered at xg = 2.

n=0

Domain of Convergence

Using the Ratio Test on

a
it~ a0)*™| [ lanle —20) = 251 o |

e Iflim jans1| — L, the condition for convergenceis L - |x — xo| < 1.
n—00 ‘an| g 0

(i) If L = oo, theonly way L |z — zy| < 1canholdis if £ = (. So the domain is
{zo}-

(ii) If L = 0, then L |z — xy| = O for all z, so the series converges for every = €
R.

(i) If L € (0,00), we get |z — x| < 1/L.We must also check endpoints for

convergence.

Radius of Convergence
The radius of convergence of a power series >  a,(x — x)" is

1

11mn—>oo‘ an+1/an ‘

R =

(If the limit is zero, R = oo. If the limit is infinity, R = 0.)

Example: Y " x" has a,, = 1. Then laniil — 1 5o [, = 1, hence R = 1.

|ay|

Differentiation and Integration of Power Series
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If

F(z) = Zan (z — wo)n

convergence
(|z — xo| < R):

1. F'is differentiable term by term:
- 1
F'(z) = Znan (z — azg)n_ .
n=1

2. F' can be integrated term by term:

/F(:c)dx =) ‘j’:l ( —2)"" +C.

= "
Example:
ﬁ = >,z for|z| < 1.
e Differentiate: %(1;) — (1_196)2 =" pgnl,

e Integrate similarly.

is a power series with radius of convergence R, then inside its interval of
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26. Solutions to Calculus
Problems: Preparation for Final
Exam

26. Solutions to Calculus Problems:
Preparation for Final Exam

What This Note Is About

We have three problems to analyze:

! 1
1. Integral/ dx.
0 vVz(l—x)

e Investigate convergence by splitting the integral and using comparison tests.

o0 N l
2. Series Z sm((n i 2> W).

— In (ln(n))

e Show how sin((n + 1) 7) simplifies to (—1)".

e Use absolute convergence tests (comparison with 1/n).
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e Conclude conditional convergence via the Alternating Series Test.

=2
3. Series — .
Z n In’(n)
n=2
e Use the Integral Test by defining f(z) = #g,(w)

e Show all conditions are satisfied and evaluate the improper integral to check
convergence.

Below, we provide all solutions with detailed checks of convergence criteria, step-by-
step proofs, and tests.

1 1
Problem 1:/ dx
0 v/z(l—x)

Objective

Determine whether the improper integral converges or diverges, and justify the result by
splitting the integral and using appropriate comparison tests.

Step-by-Step Solution

We notice that the integrand becomes problematic near x = Qand x = 1. We

1
z(1—z)

will split the integral into two parts and analyze each endpoint separately:

1 1 1/2 1 1 1
/ —dw:/ B R .
0 Va(l—x) 0 +z(l—2x) 12 V(1 —z)
Nearxz = 0
1/2 1
1. Focus on

———d.
0 Vez(l—=2x)

Asz — 0%, /z(1 — x) & /z. Hence the integrand ——— behaves similarly to
1

z(l—2x

\/E'

2. Comparison
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1 1
vs. ——.

Ve(l—2x) VT

_m(ll_m) <C- % for some constant C' > 0.

Near x = 0,
3. Convergence of f01/2 % dx

Recall

/2
R d — — -_—— 0 < .

1 1

Since 7 is integrable near 0, by the Comparison Test,

is also integrable

z(l—z
near 0.
Nearz = 1
1 1
1. Focus on/ —dx.
172 vVz(1l — )

Asz — 17, y/2(1 — z) & v/1 — z. Hence the integrand ———— behaves
z(l—z)
similarly to \/11—7

2. Comparison

1 1

—F———— VS.

Vel —z) 1—z

1 1
= < .
Nearz = 1, ) K 17— for some constant K > 0.

1
3. Convergence of f1/2 \/%—w dx

We know

1
1 1
de = |—2v1 —
/1/2 vli—z v [ 93}1/2

Hence, by the Comparison Test,

=0—(-2y/1-1)=2.

Sl -

is also integrable near 1.
z(l—z
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Conclusion for Problem 1

Since the integral converges at both endpoints £ = 0 and £ = 1, we conclude:

is convergent.

/01 ﬁdw

X sin((n+ 1) 7)
Problem 2: n:ZlO In (1H(n))

Objective

Determine whether the series

$ sinl(n4)

— In (ln(n))

converges absolutely, converges conditionally, or diverges.

Step-by-Step Solution

Absolute convergence of a series » . a,, means Y _ |a,| converges. If Y |a,|

diverges but ) _ a,, converges, we say the series is conditionally convergent.

Simplifying the Terms

First, observe:
sin((n + %)ﬂ') = sin(nw + %) = cos(nm) = (—1)".

Hence each termis:

(="
In(In(n))

an =

Absolute Convergence Test

Consider
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- - 1
IEDY In(ln(n))’

n=10 n=10

1 1.
We compare m(ln(n)) to -

1. Inequality
Forn > 10, we typically have

1 1
In(In(n)) < In(n) <n In(in(m)) >
2. Divergent Comparison
= 1
: , , . 1 1
Since Zlo - diverges (harmonic series), and () >(C - - for large m, then by
n—=

Comparison Test:

o0

1
———— alsodi .
21:0 In(In(n)) also diverges

n=

Therefore, the series > | |a,,| does not converge.

Conditional Convergence via Alternating Series Test

Now check the original (non-absolute) series:

1. Alternating terms: (—1)" provides the sign changes.

2. Magnitude is decreasing:

1

"~ ()

Asn — oo, In(In(n)) — oo, so b, decreases to 0.

3. Limit to zero:
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1
li — lim ———— = 0.
lim b, = lim In(In(n)) 0

By the Alternating Series Test (Leibniz Test), an alternating series with terms that
decrease in absolute value to 0 converges.

Conclusion for Problem 2

e Absolute convergence: Fails (the series Y | |a,,| diverges).
e Conditional convergence: Succeeds, by the Alternating Series Test.

Hence, the series

is conditionally convergent.

Problem 3: > 2

n=2 n In’(n)

Objective

Determine whether the series
=~ 2
Z n In*(n)
n=2
converges or diverges by using the Integral Test.

Step-by-Step Solution

Theorem (Integral Test)

Suppose f(x) is continuous, positive, and decreasing for x > x. Then the

(0.0)
series ) f(n) converges if and only if the integral / f(x) dz converges.
T

1. Define
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f(x) = :c%?’(m)’ x> 2.

e Continuous: f is continuous for z > 1, so certainly on [2, 00).
e Positive: f(z) > Oforz > 1.
e Decreasing: As x increases, In(z) grows, so In® () grows, making x1+3(m)

decrease.

o 2
2. Evaluate/ — dzx.
o« In"(z)

Letu = In(z). Then du = = dz.Whenz = 2, u = In(2). Whenz — oo, u —
00. Thus the integral becomes

/ L‘gdm:/ %du:2/ w3 du.
2z In°(x) In(2) ¥ In(2)

3. Compute the improper integral
2/00 u_3du:2[—%]oo :2<0— (—%)) :# < 00.
1n(2) 202 1n(2) 2(In(2)) (In(2))?
Hence the integral converges.

4. Conclusion by Integral Test

(0.9)

2

Since / —5 dx converges and f satisfies the conditions of the Integral
s zln’(x)

Test, the series

=~ 2
Z n In®(n)

converges.

Final Summary
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e Problem 1: The integral [, —=—== dx converges by splitting into two intervals
g fo \/x(i_) ges by sp g
[0, ] and [2, 1] and comparing with \/— and \/f near the endpoints.
(=1)"
"=10In(In(n))

Alternating Series Test, but fails absolute convergence since » |

¢ Problem 2: The series E converges conditionally by the

1
In(In(n))

diverges
by comparison with %
2
e Problem 3: The series > >

=2 n In®(n)
corresponding improper integral from 2 to 0o converges.

converges by the Integral Test, as the
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