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1. Functions in Mathematics

Function Definition

A function is a rule that pairs every element in one set, called the domain, with exactly

one element in another set, called the range. Formally, a function is a relation between

two non-empty sets  and , where each element in the domain  is assigned to

exactly one element in the range .

Function Notation

A function is typically denoted as:

where  is the function,  is the domain, and  is the range. For any element , the

function assigns it to an element .

For example, the function

assigns every element  in the domain to  in the range.

Function Notation with “:=”

A B A

B

f : A → B

f A B x ∈ A

f f(x) ∈ B

f(x) = x +2 6

x x +2 6
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The symbol “:=” is sometimes used in function definitions, indicating that the function is

being defined. For instance, if we write:

it means  is defined as  for all  in the domain.

Domain, Range, and Co-domain

Domain

The domain of a function is the set of all possible input values. For example, in the

function

the domain could be the set of real numbers, integers, or another specified set.

Range

The range of a function is the set of all possible output values that the function can

produce. In the case of

the range depends on the domain. If the domain is the set of real numbers, the range

would be all real numbers greater than or equal to 6.

Co-domain

The co-domain is the set in which the output values are considered to reside. The range

is a subset of the co-domain.

Examples of Sets in Functions

Set of integers:

f(n) := 2n + 7

f(n) 2n + 7 n

f(x) = x +2 6

f(x) = x +2 6

Z = {… , −3, −2, −1, 0, 1, 2, 3, …}
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Set of positive integers:

Set of non-negative integers:

Set of rational numbers:

Set of real numbers:

Intervals:

Open interval:

Half-open interval:

Closed interval:

Properties of Functions

1-to-1 Functions (Injective)

A function is called 1-to-1 (injective) if every element in the domain maps to a unique

element in the range. In other words, if  then .

Note: At most 1  such that .

Onto Functions (Surjective)

Z =+ {1, 2, 3, …}

Z ​ =≥0 {0, 1, 2, 3, …}

Q

R

(a, b) = x ∈ R ∣ a < x < b

[a, b) = x ∈ R ∣ a ≤ x < b

[a, b] = x ∈ R ∣ a ≤ x ≤ b

f(a) = f(b) a = b

x f(x) = y
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A function is onto (surjective) if every element in the co-domain has a preimage in the

domain. This means that for every , there exists an  such that . 

Note: 

Into Functions

A function is into if not every element in the co-domain is mapped by the function. This

means the range is a proper subset of the co-domain.

Note: 

Summary

A function is a pairing between two sets, with each element in the domain paired with

exactly one element in the range.

Important concepts include domain, range, co-domain, and function properties like

injective, surjective, and into.

Notation is crucial in understanding and defining functions, with  as

standard notation and “:=” used to define functions explicitly.

y ∈ B x ∈ A f(x) = y

range = codomain

range = codomain

f : A → B
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2. Functions, Polynomials, and
Trigonometric Functions

1-to-1 and Into Functions

1-to-1 (Injective) Function

A function  is called 1-to-1 or injective if different inputs produce different outputs, i.e., if

, then . In other words, each element of the domain maps to a

unique element in the codomain.

Into Function (Surjective)

A function  is called an into or surjective function if every element in the codomain

(output set) has at least one preimage in the domain. This means that for every  in the

codomain, there exists an  in the domain such that .

Both 1-to-1 and Onto (Bijective) Function

A function that is both injective and surjective is called a bijective function. This type of

function has an inverse because every element in the codomain is matched uniquely with

an element in the domain.

f

f(x ​) =1 f(x ​)2 x ​ =1 x ​2

f

y

x f(x) = y
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Composite Functions

A composite function is created when one function is applied to the result of another

function. If  and  are two functions, then the composite function  means that

the function  is applied first and then the function  is applied to the result of .

Notation

The composite of  and  is written as:

This reads as "f composed with g of x."

Inverse Functions

An inverse function reverses the operation of a function. If  is a function, its inverse 

 satisfies the following condition:

This means that applying a function followed by its inverse (or vice versa) will return the

original input.

Example

If , then the inverse function  can be found by solving for  in

terms of :

Thus, .

Polynomials

A polynomial  is a function of the form:

f g f(g(x))
g f g(x)

f g

(f ∘ g)(x) = f(g(x))

f(x)
f (x)−1

f(f (x)) =−1 f (f(x)) =−1 x

f(x) = 2x + 3 f (x)−1 x

y

y = 2x + 3 ⟹ x = ​

2
y − 3

f (x) =−1
​2

x−3

p(x)

p(x) = a ​x +n
n a ​x +n−1

n−1 ⋯ + a ​x +1 a ​0
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Where  are constants, and  is the degree of the polynomial.

Key Terms:

Constant Coefficient: The term  is the constant term in the polynomial.

Leading Coefficient: The coefficient  of the highest degree term is called the

leading coefficient.

Degree of a Polynomial (deg(p)): The degree of the polynomial is the highest

exponent of  that appears in the polynomial.

Roots of a Polynomial

A root (or zero) of a polynomial is a solution to the equation  If  is a root, then:

Discriminant and Roots of Quadratic Polynomials

For a quadratic polynomial , the discriminant  is given by:

If , the quadratic has two distinct real roots.

If , the quadratic has one real root (a repeated root).

If , the quadratic has two complex roots.

Rational Functions

A rational function is the ratio of two polynomials:

Where  and  are polynomials, and .

Domain and Range of Rational Functions

a ​, a ​, … , a ​n n−1 0 n

a ​0

a ​n

x

p(x) = 0 r

p(r) = 0

ax +2 bx + c = 0 Δ

Δ = b −2 4ac

Δ > 0

Δ = 0

Δ < 0

r(x) = ​

q(x)
p(x)

p(x) q(x) q(x) = 0
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Domain: The domain of a rational function excludes the values of  that make the

denominator .

Range: The set of possible output values of the function.

Degree of a Rational Function

The degree of a rational function  is:

This degree can be negative if the degree of the denominator  is larger than the

degree of the numerator .

Note: Rational functions can have negative degrees, unlike polynomials.

Trigonometric Functions

Trigonometric functions can be defined using the unit circle, which is a circle centered at

the origin with a radius of 1 in the coordinate plane.

Unit Circle Definition

For an angle  measured from the positive -axis (in radians), the trigonometric functions

can be understood as the coordinates of a point on the unit circle.

Sine:  represents the -coordinate of the point on the unit circle at angle .

Cosine:  represents the -coordinate of the point on the unit circle at angle 

.

Unit Circle

The unit circle is a circle with a radius of 1 centered at the origin. The coordinates of a

point on the unit circle are , where  is the angle from the positive -

axis.

Other Trigonometric Functions

Tangent: 

Cotangent: 

x

q(x) = 0

r(x) = ​

q(x)
p(x)

deg(r(x)) = deg(p) − deg(q)

q(x)
p(x)

θ x

sin(θ) y θ

cos(θ) x θ

(cos(θ), sin(θ)) θ x

tan(θ) = ​cos(θ)
sin(θ)

cot(θ) = ​tan(θ)
1
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Secant: 

Cosecant: 

Domains and Ranges of Trigonometric Functions

1. Sine Function 

Domain: The sine function is defined for all real numbers. Therefore, the domain of 

 is:

Range: The sine function oscillates between -1 and 1. Thus, the range of  is:

2. Cosine Function 

sec(θ) = ​cos(θ)
1

csc(θ) = ​sin(θ)
1

sin(x)

sin(x)

(−∞, ∞)

sin(x)

[−1, 1]

cos(x)
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Domain: The cosine function is also defined for all real numbers. Therefore, the

domain of  is:

Range: The cosine function oscillates between -1 and 1. Thus, the range of  is:

3. Tangent Function 

Domain: The tangent function is undefined at odd multiples of , because the cosine

function in the denominator equals 0 at these points. Therefore, the domain of 

 is:

cos(x)

(−∞, ∞)

cos(x)

[−1, 1]

tan(x)

​2
π

tan(x)

(−∞, ∞) except x = ​, n ∈
2

(2n + 1)π Z
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Range: The tangent function has a range of all real numbers, as it increases without

bound:

4. Cotangent Function 

Domain: The cotangent function is undefined where , at integer

multiples of . Therefore, the domain of  is:

Range: The range of  is:

because it behaves similarly to the tangent function, with vertical asymptotes at 

.

(−∞, ∞)

cot(x)

sin(x) = 0
π cot(x)

(−∞, ∞) except x = nπ, n ∈ Z

cot(x)

(−∞, ∞)

x = nπ
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5. Secant Function 

Domain: The secant function is undefined where , which occurs at odd

multiples of . Therefore, the domain of  is:

Range: The range of  is:

because , and  is between -1 and 1, excluding 0.

sec(x)

cos(x) = 0
​2

π sec(x)

(−∞, ∞) except x = ​, n ∈
2

(2n + 1)π Z

sec(x)

(−∞, −1] ∪ [1, ∞)

sec(x) = ​cos(x)
1 cos(x)

10/2/25, 3:41 PM 2. Functions, Polynomials, and Trigonometric Functions

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/2%20Functions,%20Polynomials,%20and%20Trigo… 8/10

Guest
Rectangle



6. Cosecant Function 

Domain: The cosecant function is undefined where . This happens at

integer multiples of . Therefore, the domain of  is:

Range: The range of  is:

since  and  is between -1 and 1, excluding 0.

csc(x)

sin(x) = 0
π csc(x)

(−∞, ∞) except x = nπ, n ∈ Z

csc(x)

(−∞, −1] ∪ [1, ∞)

csc(x) = ​sin(x)
1 sin(x)
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Inverse Trigonometric Functions

The inverse trigonometric functions return the angle whose trigonometric ratio is the

given value. For example:

 is the angle  such that .

 is the angle  such that .

1-to-1 and Onto Properties of Trigonometric Functions

Sine:  is 1-to-1 and onto in the interval , and its inverse  is

defined in this range.

Cosine:  is 1-to-1 and onto in the interval , and its inverse  is

defined in this range.

arcsin(x) θ sin(θ) = x

arccos(x) θ cos(θ) = x

sin(θ) [− ​, ​]2
π

2
π arcsin(x)

cos(θ) [0,π] arccos(x)
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3. Introduction to Limits and
Continuity

Informal Definition of Limit

A limit describes the behavior of a function as the input  approaches a particular value.

We are interested in what happens to  as  gets close to a certain value, rather than

the exact value at that point.

Definition:

Let  be a function. The limit of  as  approaches  is denoted by 

, which means:

 approaches the value  as  gets arbitrarily close to  from both sides (left

and right), without necessarily evaluating .

Left and Right Limits

For a given real number , the limit can approach from two directions:

Left-hand limit: If  approaches  as  approaches  from the left (i.e., ),

we write:

x

f(x) x

f(x) f(x) x a

lim ​ f(x) =x→a L

f(x) L x a

f(a)

a

f(x) L x a x < a
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Right-hand limit: If  approaches  as  approaches  from the right (i.e., 

), we write:

If the left-hand and right-hand limits are equal, the overall limit exists:

If the two are not equal, the limit does not exist.

Terminology

Neighborhood and Deleted Neighborhood

Neighborhood of : This refers to an open interval containing . For example, 

 is a neighborhood of , where  is a small positive number.

Deleted Neighborhood of : This is an open interval around , excluding  itself. It

can be written as  or  meaning the interval does not

include the point , though it approaches it from both sides.

Formal Definition of Limit

For a function , the limit of  as  approaches  is , written 

, if:

For every , there exists a  such that  whenever 

.

This formal definition captures the idea that  gets arbitrarily close to  as 

approaches , regardless of how close  is to .

Examples of Limits

​f(x) =
x→a−
lim L

f(x) L x a x >
a

​f(x) =
x→a+
lim L

​f(x) =
x→a
lim L

a a (a −
δ, a + δ) a δ

a a a

(b, c) ∖ {a} (b, a) ∪ (a, c)
a

f(x) f(x) x a L lim ​ f(x) =x→a

L

ϵ > 0 δ > 0 ∣f(x) − L∣ < ϵ 0 <
∣x − a∣ < δ

f(x) L x

a x a
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Example 1: 

As  approaches 0,  oscillates infinitely between -1 and 1. Since 

does not settle towards any particular value as , the limit does not exist.

Example 2: 

As , the function  is continuous for all . Evaluating the limit

by substituting small values of , we observe that the limit approaches a finite value.

Thus, the limit as  exists:

The function is continuous everywhere except a .

f(x) = sin ​(
x
1 )

x f(x) = sin ​(
x
1 ) f(x)

x → 0

​f(x) =
x→0
lim d.n.e

g(x) = ​

x2
1−cos(x)

x → 0 g(x) = ​

x2
1−cos(x) x = 0

x

x → 0

​g(x) =
x→0
lim ​.

2
1

x = 0
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Example 3: 

The function  is undefined at  where . The

limit does not exist at these points due to vertical asymptotes. For example, at ,

the limit as  approaches from the left or right is infinite.

Thus,  is continuous everywhere except at .

h(x) = cot(x)

h(x) = cot(x) = ​sin(x)
cos(x)

x = nπ sin(x) = 0
x = π

x

​h(x) =
x→π−
lim −∞, ​h(x) =

x→π+
lim +∞

h(x) x = nπ
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Summary of Key Concepts

Limit: The value that a function approaches as the input approaches a particular

point.

Left-hand limit: The limit as  approaches from the left.

Right-hand limit: The limit as  approaches from the right.

Neighborhood: An open interval around a point.

Deleted Neighborhood: An open interval around a point, excluding the point itself.

Oscillation: A situation where a function does not approach a single value as 

approaches a point (e.g., ).

x

x

x

sin(1/x)
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4. Limits and Their Properties

Example: Formal Definition of Limit

Let  be a function. Consider the formal definition of a limit.

 means that as  approaches , the values of  get arbitrarily

close to .

Example

Let , and we are interested in finding .

Applying the definition of the limit:

Thus, the limit exists and equals 3.

Properties of Limits

Given two functions  and , and let , such that:

Then the following properties hold:

f(x)

lim ​ f(x) =x→a L x a f(x)
L

f(x) = 2x + 1 lim ​ f(x)x→1

​(2x +
x→1
lim 1) = 2(1) + 1 = 3

f(x) g(x) a ∈ R

lim ​ f(x) =x→a L

lim ​ g(x) =x→a M
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1. Addition/Subtraction

2. Multiplication

3. Division (provided )

Example: Limit of a Polynomial

Consider  and find .

Using the properties of limits, compute the limit of each term:

Substituting the limit values:

Thus, .

Remark: Limits of Polynomials

If   is a polynomial, then for any ,

This means that you can find the limit of a polynomial at any point by simply substituting 

 into the polynomial.

Formal Definition of Limit Using Left and Right Limits

Let  be a function and . The limit of  as  is  if and only if:

​[f(x) ±
x→a
lim g(x)] = L ± M

​[f(x) ⋅
x→a
lim g(x)] = L ⋅ M

M = 0

​ ​ =
x→a
lim

g(x)
f(x)

​

M

L

f(x) = x −2 2x + 3 lim ​ f(x)x→a

​(x −
x→a
lim 2 2x + 3) = ​x −

x→a
lim 2

​ 2x +
x→a
lim ​ 3

x→a
lim

= a −2 2a + 3

lim ​(x −x→a
2 2x + 3) = a −2 2a + 3

p(x) a ∈ R

​p(x) =
x→a
lim p(a)

a

f(x) a ∈ R f(x) x → a L
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The left-hand limit:

The right-hand limit:

If the left and right limits exist and are equal, then:

If the left and right limits do not exist or are not equal, the overall limit does not exist

(d.n.e.).

Piecewise Defined Functions and Limits

For piecewise-defined functions, you evaluate the left and right limits at the point where

the function changes definition.

Example

Let 

To find :

Left limit: 

Right limit:

Since the left and right limits are not equal,  does not exist.

Fundamental Fact

​f(x) =
x→a−
lim L

​f(x) =
x→a+
lim L

​f(x) =
x→a
lim L

f(x) = ​ ​{x + 1
2x − 1

if x < 1
if x ≥ 1

lim ​ f(x)x→1

​f(x) =
x→1−
lim ​(x +

x→1−
lim 1) = 1 + 1 = 2

​f(x) =
x→1+
lim ​(2x −

x→1+
lim 1) = 2(1) − 1 = 1

lim ​ f(x)x→1
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The limit  if and only if the left-hand and right-hand limits exist and

are equal to each other. If they are unequal, the limit does not exist.

Homework

Prove: If  (a constant function), then:

 for any .

lim ​ f(x) =x→a L

f(x) = c

lim ​ f(x) =x→a c a ∈ R

10/2/25, 3:41 PM 4. Limits and Their Properties

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/4%20Limits%20and%20Their%20Properties%20122… 4/4

Guest
Rectangle



5. Continuity and Limits of Functions

Continuity: Definition

Let  be a function defined in a neighborhood of  in real numbers (meaning  is within the domain of ). We say that 

is continuous at  if:

This implies that the limit of  as  approaches  equals the value of  at .

Examples of Continuity

1. Constant Function

Let . We have:

So,  is continuous at  for any real .

2. Polynomials

For any polynomial , the limit as  approaches any real  is:

Therefore, all polynomials are continuous at any point  in the real numbers.

Remarks on Continuity of Special Functions

Rational Functions: All rational functions are continuous on their domains. For example:

f a a f f

x = a

​f(x) =
x→a
lim f(a)

f(x) x a f x = a

f(x) = λx

​λx =
x→a
lim λa = f(a)

f x = a a

p(x) x a

​p(x) =
x→a
lim p(a)

a

f(x) = ​

x − 42

x − 1
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Here, the domain of  is , and  is continuous at every point within its domain.

Note: For points outside of the domain (e.g.,  or ), continuity does not apply.

Trigonometric Functions: All trigonometric functions are continuous within their domains.

Inverse Trigonometric Functions: All inverse trigonometric functions are also continuous on their domains.

Properties of Continuous Functions

Let  and  be two continuous functions and let . Then:

1. Addition: 

2. Subtraction: 

3. Multiplication: 

4. Division:  provided .

Example of Continuity

Thus,

Floor and Ceiling Functions

1. Floor Function : Maps  to the greatest integer less than or equal to .

2. Ceiling Function : Maps  to the smallest integer greater than or equal to .

Examples:

Infinite Limits: Definition

Let  be a function defined in a deleted neighborhood of  in the real numbers. We say that the limit of  as 

approaches  is infinity, and we write:

if for any  there exists some  such that .

Similarly, we write:

if for any  there exists some  such that .

Homework

f R ∖ {2, −2} f

x = 2 x = −2

f g a ∈ R

lim ​(f(x) +x→a g(x)) = lim ​ f(x) +x→a lim ​ g(x)x→a

lim ​(f(x) −x→a g(x)) = lim ​ f(x) −x→a lim ​ g(x)x→a

lim ​(f(x) ⋅x→a g(x)) = lim ​ f(x) ⋅x→a lim ​ g(x)x→a

lim ​ ​ =x→a g(x)
f(x)

​lim ​ g(x)x→a

lim ​ f(x)x→a lim ​ g(x) =x→a  0

​ =
x→0
lim

cos(x)
sin (x) + sin(x) + 12

​ =
cos(0)

sin (0) + sin(0) + 12

​ =
1

0 + 0 + 1
​ =

1
1

1. 

​ ​ =
x→0
lim

cos(x)
sin (x) + sin(x) + 12

1. 

⌊x⌋ x x

⌈x⌉ x x

⌊2.3⌋ = 2

⌈2.3⌉ = 3

f a f x

a

​f(x) =
x→a
lim +∞ 

M > 0 δ > 0 0 < ∣x − a∣ < δ ⇒ f(x) > M

​f(x) =
x→a
lim −∞ 

m < 0 δ > 0 0 < ∣x − a∣ < δ ⇒ f(x) < m
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Problem: Define .

Solution:

1. For :

1. For :

Interpretation:

: As  approaches  from the left,  exceeds any positive number .

: As  approaches  from the left,  falls below any negative number .

lim ​ f(x) =x→a− ±∞

+∞

​f(x) =
x→a−
lim +∞ if for every M > 0,  there exists a δ > 0 such that if 0 < a − x < δ,  then f(x) > M .

−∞

​f(x) =
x→a−
lim −∞ if for every N < 0,  there exists a δ > 0 such that if 0 < a − x < δ,  then f(x) < N .

+∞ x a f(x) M

−∞ x a f(x) N
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6. Limits at Infinity, Infinite Limits,
and Squeeze Theorem

Limits at Infinity

Definition

The limit at infinity describes the behavior of a function  as  approaches  or 

. When we write:

it means that as  becomes very large in the positive or negative direction, 

approaches a particular finite value L .

Examples

1. Constant function:

For a constant function like :

f(x) x +∞
−∞

​f(x) =
x→∞
lim L or ​f(x) =

x→−∞
lim L

x f(x)

f(x) = 5

​ 5 =
x→∞
lim 5
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Here,  stays constant at  as .

2. Rational function with a degree comparison:

For :

As ,  gets smaller and approaches .

f(x) 5 x → ∞

f(x) = ​

x
2

​ ​ =
x→∞
lim

x

2
0

x → ∞ ​

x
2 0
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3. Polynomial function:

For :

Since  dominates as  becomes very large,  approaches 

f(x) = x −2 4x + 3

​(x −
x→∞
lim 2 4x + 3) = ∞

x2 x f(x) +∞.

10/2/25, 3:41 PM 6. Limits at Infinity, Infinite Limits, and Squeeze Theorem

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/6%20Limits%20at%20Infinity,%20Infinite%20Limits,… 3/16

Guest
Rectangle



4. Rational function example with degrees equal:

For , where the degrees of the numerator and denominator are equal:

This is because we focus on the leading coefficients when the degrees are equal.

f(x) = ​

x +52
3x −22

​ ​ =
x→∞
lim

x + 52

3x − 22

​ =
1
3

3 
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5. Exponential function:

For :

Here,  grows rapidly to infinity as .

f(x) = ex

​e =
x→∞
lim x ∞

ex x → ∞
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6. Inverse Exponential:

For :

Since , as ,  approaches .

f(x) = e−x

​e =
x→∞
lim −x 0

e =−x
​

ex
1 x → ∞ f(x) 0
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Infinite Limits

Definition

An infinite limit refers to the situation where  grows without bound as  approaches

a certain point . When we write:

it means that  increases or decreases without bound as  gets close to . This

typically indicates a vertical asymptote at .

Examples

1. Rational function with vertical asymptote:

For , the limit as  does not exist in the traditional sense because 

 grows infinitely large as it approaches  from the right and negatively large

from the left:

f(x) x

a

​f(x) =
x→a
lim ∞ or ​f(x) =

x→a
lim −∞

f(x) x a

x = a

f(x) = ​

x−1
1 x → 1

f(x) 1

1 1
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2. Logarithmic function:

For :

As  approaches  from the right,  decreases without bound.

​ ​ =
x→1+
lim

x − 1
1

+∞ and ​ ​ =
x→1−
lim

x − 1
1

−∞

f(x) = ln(x)

​ ln(x) =
x→0+
lim −∞ 

x 0 ln(x)
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3. Polynomial approaching zero with fractional exponent:

For , as  approaches :

Regardless of approaching from the left or right,  goes to infinity as ,

indicating a vertical asymptote at .

f(x) = ​

x2
1 x 0

​ ​ =
x→0+
lim

x2

1
∞ and ​ ​ =

x→0−
lim

x2

1
∞

f(x) x → 0
x = 0

10/2/25, 3:41 PM 6. Limits at Infinity, Infinite Limits, and Squeeze Theorem

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/6%20Limits%20at%20Infinity,%20Infinite%20Limits,… 9/16

Guest
Rectangle



4. Trigonometric function with infinite oscillations:

For :

As  approaches  from the left,  goes to ; from the right, it goes to .

f(x) = tan(x)

​ tan(x) =
x→ ​2

π −
lim +∞ and ​ tan(x) =

x→ ​2
π +

lim −∞

x ​2
π f(x) +∞ −∞
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5. Fractional power function:

For , as 

This function approaches  as  gets close to 0 from the right side.

f(x) = ​

​x
1 x → 0+

​ ​ =
x→0+
lim

​x

1
+∞ 

+∞ x
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Limits at Infinity for Rational Functions

Definition

For rational functions of the form , where  and  are polynomials,

limits at infinity can be found by comparing the degrees of the polynomials.

Cases

1. Degree of  < Degree of :

2. Degree of  = Degree of :

3. Degree of  > Degree of :

f(x) = ​

q(x)
p(x) p(x) q(x)

p(x) q(x)

​ ​ =
x→±∞
lim

q(x)
p(x)

0 

p(x) q(x)

​ ​ =
x→±∞
lim

q(x)
p(x)

​

leading coefficient of q(x)
leading coefficient of p(x)

p(x) q(x)
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In this case, the function approaches  or  depending on the sign.

Squeeze Theorem

Definition

The Squeeze Theorem states that if  for all  in an interval around 

 (excluding a itself) and:

then .

Example

To evaluate , we can use the Squeeze Theorem. Since:

we have:

Since both  and , it follows from the Squeeze Theorem

that:

∞ −∞

f(x) ≤ g(x) ≤ h(x) x

a

​f(x) =
x→a
lim ​h(x) =

x→a
lim L 

lim ​ g(x) =x→a L

lim ​ x sin ​x→0
2 (

x
1 )

−1 ≤ sin ​ ≤(
x

1
) 1 

−x ≤2 x sin ​ ≤2 (
x

1 ) x  2

lim ​ −x =x→0
2 0 lim ​ x =x→0

2 0

​x sin ​ =
x→0
lim 2 (

x

1 ) 0
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Min-Max Theorem

Definition

The Min-Max Theorem states that if a function  is continuous on a closed interval

, then  must attain both a minimum and a maximum value on that interval.

Formal Statement

If  is continuous on the interval , then there exist points  and  in  such

that:

Here:

 is the minimum value of  on .

 is the maximum value of  on .

f(x)
[a, b] f(x)

f(x) [a, b] c d [a, b]

f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b]

f(c) f(x) [a, b]

f(d) f(x) [a, b]
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Example

Consider the function  on the interval :

The minimum value is at , where .

The maximum value is at , where .

Key Points

The theorem guarantees absolute extremum values (not just local extrema).

It applies only to functions that are continuous on a closed interval.

f(x) = x2 [−2, 1]

x = 0 f(0) = 0

x = −2 f(−2) = 4
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7. Intermediate Value Theorem,
Mean Value Theorem, and
Derivative Basics

Intermediate Value Theorem (IVT)

Definition

The Intermediate Value Theorem (IVT) states that if a function  is continuous on

a closed interval  and  is any value between  and , then there exists at

least one point        such that: 

Formal Statement

If  is continuous on  and  (or ), then

there exists some  such that: 

Example

If f  and we are considering the interval 

 and .

f(x)
[a, b] L f(a) f(b)
c ∈ (a, b) f(c) = L

f(x) [a, b] f(a) ≤ L ≤ f(b) f(a) ≥ L ≥ f(b)
c ∈ (a, b) f(c) = L

(x) = x −3 2x + 1 [0, 2] :

f(0) = 1 f(2) = 5
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For , the IVT guarantees that there exists some  such that 

.

Key Points

The theorem is used to prove the existence of solutions within an interval.

It does not specify where the solution is located, only that at least one solution

exists

L = 2 c ∈ (0, 2) f(c) = 2
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Mean Value Theorem (MVT)

Definition

The Mean Value Theorem (MVT) states that if a function  is continuous on a 

closed interval  and differentiable on the open interval , then there exists

at least one point  such that:

This equation indicates that there is at least one point  where the instantaneous rate of

change (the derivative) is equal to the average rate of change over the interval .

f(x)
[a, b] (a, b)
c ∈ (a, b)

f (c) =′
​ 

b − a

f(b) − f(a)

c

[a, b]
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Problem 1: Prove that  has a

real solution using the Intermediate Value Theorem (IVT)

To use the Intermediate Value Theorem, we need to show that the function has values of

opposite signs at two points. Let's define:

So, we want to show that  has a solution.

Step 1: Choose Values for  and Calculate 

Let's evaluate  at a few points to see if there is a sign change:

1. At 

1. At 

Since , we get:

1. At 

arctan(x) − x + x =3 −5

f(x) = arctan(x) − x + x +3 5 

f(x) = 0

x f(x)
f(x)

x = 0 :

f(0) = arctan(0) − 0 + 0 +3 5 = 5 

x = 2 :

f(2) = arctan(2) − 2 + 2 +3 5 = arctan(2) − 2 + 8 + 5 

arctan(2) ≈ 1.107

f(2) ≈ 1.107 − 2 + 8 + 5 = 12.107 

x = −2 :
3
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Since , we get:

Step 2: Apply the Intermediate Value Theorem

Since  and , there is a sign change between 

 and . By the Intermediate Value Theorem, because  is continuous, there

exists a point  where .

Final Answer for Problem 1

Yes, the equation  has a real solution in the interval 

by the Intermediate Value Theorem.

f(−2) = arctan(−2) − (−2) + (−2) +3 5 = arctan(−2) + 2 − 8 + 5 

arctan(−2) ≈ −1.107

f(−2) ≈ −1.107 + 2 − 8 + 5 = −2.107 

f(0) = 5 > 0 f(−2) ≈ −2.107 < 0 x =
−2 x = 0 f(x)

x ∈ (−2, 0) f(x) = 0

arctan(x) − x + x =3 −5 (−2, 0)
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Problem 2: Prove that  has a root using

the Intermediate Value Theorem

Define .

Step 1: Analyze the Function

Since , we have:

The function  is continuous on intervals where , i.e., where  for

integers .

Step 2: Choose an Interval with a Sign Change

Let’s consider a small interval around 

1. At 

1. At 

Step 3: Apply the Intermediate Value Theorem

Since  and , and  is continuous in , there

exists a value  where .

Final Answer for Problem 2

The function  has a root in the interval  by the

Intermediate Value Theorem.

f(x) = x cot(x)2

f(x) = x cot(x)2

cot(x) = ​sin(x)
cos(x)

f(x) = x ​ 2

sin(x)
cos(x)

f(x) sin(x) = 0 x = nπ

n

x = π/2 :

x = π/4 :

f ​ =(
4
π

) ​ cot ​ =(
4
π

)
2

(
4
π

) ​ ⋅(
4
π

)
2

1 = ​ >
16
π2

0 

x = 3π/4 :

f ​ =(
4

3π) ​ cot ​ =(
4

3π)
2

(
4

3π) ​ ⋅(
4

3π)
2

(−1) = − ​ <
16

9π2

0 

f(π/4) > 0 f(3π/4) < 0 f(x) (π/4, 3π/4)
x ∈ (π/4, 3π/4) f(x) = 0

f(x) = x cot(x)2 (π/4, 3π/4)
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Tangent Lines and Derivative Definition

Tangent Lines and Secant Slope

Let  be a continuous function, and let  be fixed. For any 

, the slope of the secant line joining  and  is given by:

The slope of this line gives the average rate of change of  between  and .

Problem Point at c 

As , the secant line’s slope approaches a value (if it exists), which we define as the 

derivative of  at .

Definition of the Derivative

f : (a, b) → R c ∈ (a, b) x ∈
(a, b) ∖ {c} (x, f(x)) (c, f(c))

m(x) = ​ 
x − c

f(x) − f(c)

f x c

x → c

f c
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The derivative of  at , denoted by , is defined by the limit:

if this limit exists.

Other Notations for the Derivative

This definition captures the instantaneous rate of change of  at  and is the

foundation of differentiation in calculus.

f c f (c)′

f (c) =′
​ ​ 

x→c
lim

x − c

f(x) − f(c)

f (c)′

​ ​ ​

dx
df

x=c

Df(c)

​ify =
dx
dy f(x)

f c
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8. Differentiation and Derivatives

Tangent Lines and the Power Rule

Equation of the Tangent Line

The equation of the tangent line to the graph of  at  is:

Deriving the General Power Rule

To find the derivative of  for any integer , we use the limit definition of the

derivative:

Using the Binomial Theorem and simplifying, we arrive at:

Definition of Left and Right Derivatives

The left derivative of  at  is defined as:

f (a, f(a))

y = f(a) + f (a)(x −′ a) 

f(x) = xn n

f (x) =′
​ ​ 

h→0
lim

h

(x + h) − xn n

f (x) =′ nx  n−1

f a
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The right derivative of  at  is defined as:

Remarks on Differentiability

1. If  exists, then  is called differentiable (or d'able) at .

2.  is differentiable at if and only if both  and  exist and are equal.

3. Alternatively, setting , we have:

Example: Derivative of 

To find the derivative of , we use the limit definition of the derivative. For

a function , the derivative at any point  is given by

For , we want to compute .

Step-by-Step Solution

1. Set Up the Derivative Using the Definition:

Substitute :

2. Apply the Sine Addition Formula:

Using , we get:

f ​(a) =−
′ limx → a ​

−

x − a

f(x) − f(a)

f a

f ​(a) =+
′ limx → a ​

+

x − a

f(x) − f(a)

f (a)′ f x = a

f x = a f ​(a)−
′ f ​(a)+

′

h = x − a

f (a) =′
​ ​ =

x→a
lim

x − a

f(x) − f(a)
​ ​ 

h→0
lim

h

f(a + h) − f(a)

f(x) = sin(x)
f(x) = sin(x)

f(x) x = a

f (a) =′
​ ​ 

h→0
lim

h

f(a + h) − f(a)

f(x) = sin(x) f (a)′

f(x) = sin(x)

f (a) =′
​ ​ 

h→0
lim

h

sin(a + h) − sin(a)

sin(a + h) = sin(a) cos(h) + cos(a) sin(h)
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3. Factor Out  and :

Rewrite the expression by grouping terms with  and :

4. Evaluate Each Limit:

It is known that .

It is also known that .

Substituting these limits, we get:

Final Result

Thus, the derivative of  is

Algebra of Derivatives

Let  and  be two functions for which  and  exist. Then:

1. Sum and Difference Rules:

2. Product Rule (Leibniz Rule):

3. Quotient Rule:

f (a) =′
​ ​ 

h→0
lim

h

sin(a) cos(h) + cos(a) sin(h) − sin(a)

sin(a) cos(a)
sin(a) cos(a)

f (a) =′
​ sin(a) ​ + cos(a) ​  

h→0
lim (

h

cos(h) − 1
h

sin(h))

lim ​ ​ =h→0 h

sin(h) 1

lim ​ ​ =h→0 h

cos(h)−1 0

f (a) =′ sin(a) ⋅ 0 + cos(a) ⋅ 1 = cos(a) 

f(x) = sin(x)

f (x) =′ cos(x)

f g f (a)′ g (a)′

(f + g) (x) =′ f (x) +′ g (x), (f −′ g) (x) =′ f (x) −′ g (x) ′

(f ⋅ g) (x) =′ f (x)g(x) +′ f(x)g (x) ′

​ (x) =(
g

f )
′

​ for g(x) =
g(x)2

f (x)g(x) − f(x)g (x)′ ′

 0 
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4. Reciprocal Rule: If , then the derivative of  is given by:

Examples of Derivatives

1. 

1. 

1. 

Chain Rule and Applications

Chain Rule for Derivatives

For a composite function , the derivative is given by:

Example: 

Let  and . Then:

By the Chain Rule:

f(x) = 0 ​

f(x)
1

​ (x) =(
f

1 )
′

− ​ 
f(x)2

f (x)′

f(x) = x +4 sin(x)

f (x) =′ 4x +3 cos(x) 

f(x) = x ⋅ sin(x)

f (x) =′ sin(x) + x ⋅ cos(x) 

f(x) = tan(x) = ​cos(x)
sin(x)

f (x) =′
​ =

cos(x)2

cos(x) ⋅ cos(x) − sin(x) ⋅ (− sin(x))
1 + tan (x) =2 sec (x) 2

h(x) = f(g(x))

h (x) =′ f (g(x)) ⋅′ g (x) ′

h(x) = 1 + sin (x)2

f(x) = 1 + x2 g(x) = sin(x)

h(x) = f(g(x)) = 1 + sin (x) 2

h (x) =′ 2 sin(x) ⋅ cos(x) = sin(2x) 
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where we used the double-angle identity.

Another Example: 

To find the derivative of  using the Chain Rule, let’s go through

the steps:

1. Identify the Outer and Inner Functions:

The outer function is .

The inner function is .

2. Apply the Chain Rule:

According to the Chain Rule, .

3. Differentiate the Outer Function:

The derivative of  with respect to  is .

4. Differentiate the Inner Function:

The derivative of  with respect to  is .

5. Combine Results:

Substitute  and  into the Chain Rule formula:

Final Result

Thus, the derivative of  is

Remark on the Derivative of Inverse Functions

If  is differentiable in a neighborhood of a point , and if  is one-to-one and onto in

this neighborhood, then the composite . By using the Chain Rule, we

can differentiate this composition to find the derivative of the inverse function.

Derivation of the Formula for the Derivative of an Inverse Function

h(x) = sin(x +2 1) + 1
h(x) = sin(x +2 1) + 1

f(u) = sin(u) + 1

g(x) = x +2 1

h (x) =′ f (g(x)) ⋅′ g (x)′

f(u) = sin(u) + 1 u f (u) =′ cos(u)

g(x) = x +2 1 x g (x) =′ 2x

g(x) = x +2 1 g (x) =′ 2x

h (x) =′ f (g(x)) ⋅′ g (x) =′ cos(x +2 1) ⋅ 2x 

h(x) = sin(x +2 1) + 1

h (x) =′ cos(x +2 1) ⋅ 2x 

f a f

f(f (x)) =−1 x
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Suppose  is a function that is differentiable and has an inverse . We want to

find the derivative of  at a point , which is given by the formula:

provided that 

Step-by-Step Derivation

1. Express the Inverse Relationship:

Since  and  are inverses, for any point  in the domain of , we have:

2. Differentiate Both Sides with Respect to :

Differentiate the equation  with respect to . Using the Chain Rule

on the left side, we get:

3. Apply the Chain Rule:

By the Chain Rule, the derivative of  is . On the

right side, the derivative of  is . So we have:

4. Solve for 

To isolate , divide both sides by 

Conclusion

Thus, we have derived the formula for the derivative of an inverse function:

f(x) f (x)−1

f (x)−1 x

(f ) (x) =−1 ′
​ 

f (f (x))′ −1

1

f (f (x)) =′ −1  0.

f f−1 x f−1

f(f (x)) =−1 x 

x

f(f (x)) =−1 x x

​ f(f (x)) =
dx

d
( −1 ) ​(x) 

dx

d

f(f (x))−1 f (f (x)) ⋅′ −1 (f ) (x)−1 ′

x 1

f (f (x)) ⋅′ −1 (f ) (x) =−1 ′ 1 

(f ) (x) :−1 ′

(f ) (x)−1 ′ f (f (x)) :′ −1

(f ) (x) =−1 ′
​ 

f (f (x))′ −1

1
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This formula is valid as long as , ensuring the denominator is non-zero.

Example: Finding the Derivative of  and Its Inverse 

Part 1: Derivative of 

1. Function Definition:

For , we want to find , the derivative of  with respect to

.

2. Differentiate 

We know that the derivative of  is given by:

So, the derivative of  is:

Part 2: Derivative of the Inverse Function 

Now, we’ll find the derivative of the inverse function  by using

implicit differentiation.

1. Relationship with the Tangent Function:

Since  is the inverse of , we have:

2. Implicit Differentiation:

Rewrite the relationship as  and differentiate both sides with respect to 

(f ) (x) =−1 ′
​ 

f (f (x))′ −1

1

f (f (x)) =′ −1  0

f(x) = tan(x)
f (x) =−1 arctan(x)

f(x) = tan(x)

f(x) = tan(x) f (x)′ tan(x)
x

tan(x) :

tan(x)

f (x) =′ sec (x) 2

f(x) = tan(x)

f (x) =′ sec (x) 2

f (x) =−1 arctan(x)
f (x) =−1 arctan(x)

arctan(x) tan(x)

y = arctan(x) ⇒ x = tan(y)

x = tan(y)
x :

d d
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Since the derivative of  with respect to  is , we get:

3. Solve for 

To find , isolate it by dividing both sides by 

4. Express  in Terms of 

Since , we can use the identity  to express 

 in terms of 

5. Substitute and Simplify:

Substitute  back into the equation for :

Final Answer

The derivative of  is:

Homework Exercises

1. HW1: If , find . Prove these rules using the limit definition of

the derivative.

2. HW2: Compute the derivatives of all inverse trigonometric functions.

​(x) =
dx

d
​(tan(y)) 

dx

d

x x 1

1 = sec (y) ⋅2
​

dx

dy

​ :
dx
dy

​

dx
dy sec (y) :2

​ =
dx

dy
​ 

sec (y)2

1

sec (y)2 x :

x = tan(y) sec (y) =2 1 + tan (y)2

sec (y)2 x :

sec (y) =2 1 + x  2

sec (y) =2 1 + x2
​

dx

dy

​ =
dx

dy
​ 

1 + x2

1

f (x) =−1 arctan(x)

​ arctan(x) =
dx

d
​ 

1 + x2

1

f(x) = cos(x) f (x)′
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HW1: If , Find . Prove Using the Limit Definition of

the Derivative

To find  using the limit definition of the derivative, we start

with

For , this becomes

Using the cosine addition formula ,

substitute this into the limit:

Factor out  from the first and last terms in the numerator:

Separate the terms in the numerator:

Now, we can use two well-known trigonometric limits:

1. 

2. 

Substituting these values gives:

f(x) = cos(x) f (x)′

f (x)forf(x) =′ cos(x)

f (x) =′
​ ​ 

h→0
lim

h

f(x + h) − f(x)

f(x) = cos(x)

f (x) =′
​ ​ 

h→0
lim

h

cos(x + h) − cos(x)

cos(x + h) = cos(x) cos(h) − sin(x) sin(h)

f (x) =′
​ ​ 

h→0
lim

h

cos(x) cos(h) − sin(x) sin(h) − cos(x)

cos(x)

f (x) =′
​ ​ 

h→0
lim

h

cos(x)(cos(h) − 1) − sin(x) sin(h)

f (x) =′
​ cos(x) ⋅ ​ − sin(x) ⋅ ​  

h→0
lim (

h

cos(h) − 1
h

sin(h))

lim ​ ​ =h→0 h

sin(h) 1

lim ​ ​ =h→0 h

cos(h)−1 0

f (x) =′ cos(x) ⋅ 0 − sin(x) ⋅ 1 
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Therefore, the derivative of  is

HW2: Compute the Derivatives of All Inverse Trigonometric Functions

Here we will find the derivatives of each inverse trigonometric function. We’ll use the fact

that if  , then .

1. Derivative of 

Let . Then .

Using the identity , we get 

Since , we have:

Thus,

So,

2. Derivative of 

Let . Then .

Differentiating with respect to 

f (x) =′ − sin(x) 

f(x) = cos(x)

f (x) =′ − sin(x) 

y = f (x)−1
​ =dx

dy
​f (f (x))′ −1

1

arcsin(x)
y = arcsin(x) x = sin(y)

cos (y) =2 1 − sin (y)2 cos(y) = ​.1 − x2

​ sin(y) =
dy
d cos(y)

=
dy

dx
cos(y) = ​ 1 − x2

​ =
dx

dy
​ 
​1 − x2

1

​ arcsin(x) =
dx

d
​ 
​1 − x2

1

arccos(x)
y = arccos(x) x = cos(y)

y :

​ =
dy

dx
− sin(y) = − ​ 1 − x2

10/2/25, 3:41 PM 8. Differentiation and Derivatives

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/8%20Differentiation%20and%20Derivatives%2013… 10/13

Guest
Rectangle



Thus,

So,

3. Derivative of 

Let . Then .

Using , we have 

Thus,

So,

4. Derivative of 

Let . Then .

Using , we have 

Thus,

So,

​ =
dx

dy
− ​ 

​1 − x2

1

​ arccos(x) =
dx

d
− ​ 

​1 − x2

1

arctan(x)
y = arctan(x) x = tan(y)

sec (y) =2 1 + tan (y)2 sec (y) =2 1 + x .2

​ =
dx

dy
​ 

1 + x2

1

​ arctan(x) =
dx

d
​ 

1 + x2

1

cot (x)−1

y = cot (x)−1 x = cot(y)

csc (y) =2 1 + cot (y)2 csc (y) =2 1 + x .2

​ =
dx

dy
− ​

1 + x2

1

​ cot (x) =
dx

d −1 − ​

1 + x2

1
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5. Derivative of 

Let . Then .

Using , we get .

Thus,

So,

6. Derivative of 

Let . Then .

Using , we get .

Thus,

So,

Derivatives of Inverse Trigonometric Functions

1. 

2. 

3. 

4. 

sec (x)−1

y = sec (x)−1 x = sec(y)

sec (y) −2 1 = tan (y)2 ∣ tan(y)∣ = ​x − 12

​ =
dx

dy
​ 

∣x∣ ​x − 12

1

​ sec (x) =
dx

d −1
​

∣x∣ ​x − 12

1

csc (x)−1

y = csc (x)−1 x = csc(y)

csc (y) −2 1 = cot (y)2 ∣ cot(y)∣ = ​x − 12

​ =
dx

dy
− ​ 

∣x∣ ​x − 12

1

​ csc (x) =
dx

d −1 − ​

∣x∣ ​x − 12

1

​ arcsin(x) =
dx
d

​

​1−x2
1

​ arccos(x) =
dx
d − ​

​1−x2
1

​ arctan(x) =
dx
d

​1+x2
1

​ cot (x) =dx
d −1 − ​1+x2

1
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5. 

6. 

​ sec (x) =
dx
d −1

​

∣x∣ ​x −12
1

​ csc (x) =dx
d −1 − ​

∣x∣ ​x −12
1
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9. Implicit Differentiation and
Tangent Lines

Implicit Differentiation

Often, the relationship between variables  and  is given by an equation rather than a

function. This requires implicit differentiation.

Example

Let 

Geometrically, this relation corresponds to the curve:

x y

F (x, y) = x sin(y) + y cos(x) − 1.

C := {(x, y) ∈ R ∣2 F (x, y) = 0} 
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Verifying a Point on the Curve

Let  Substitute  and  into 

Thus,  is on the curve 

Assume that around  can be expressed as a function of 

(α,β) = (0, 1). x = 0 y = 1 F (x, y) :

F (0, 1) = 0 ⋅ sin(1) + 1 ⋅ cos(0) − 1 = 1 − 1 = 0 

(0, 1) F (x, y) = 0.

(α,β) = (0, 1), y x : y =
y(x).
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Differentiating Implicitly

Differentiate both sides of  with respect to :

Setting 

Substitute (x, y) = (0, 1) :

This simplifies to:

Equation of the Tangent Line

Using the point-slope form, the tangent line at (0, 1) is:

F (x, y(x)) = 0 x

sin(y) + x cos(y(x)) ⋅ y (x) +′ y (x) cos(x) +′ y(x) ⋅ (− sin(x)) = 0 

(x, y) = (0, 1)

1 ⋅ sin(1) + 0 ⋅ cos(1) ⋅ y (0) +′ y (0) ⋅′ cos(0) + 1 ⋅ (− sin(0)) = 0 

y (0) =′ − sin(1) 
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Alternative Method: Assuming 

Similarly, if we assume  can be expressed as a function of , we differentiate with

respect to .

Remark on Expressibility

Around a point 

If  then  cannot generally be expressed as a function of  locally.

If  then  cannot generally be expressed as a function of  locally.

Exceptions to these general cases do exist.

Theorem: Differentiability Implies Continuity

(y − 1) = y (0)(x −′ 0) ⇒ y = − sin(1) ⋅ x + 1 

x = x(y)
x y

y

(α,β) :

y (α) =′ 0, x y

x (δ) =′ 0, y x
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Let  be a function, and let . If  exists (i.e.,  is

differentiable at ), then:

This means that  is continuous at . In particular, continuity is a necessary

condition for differentiability.

Example Problem

Let

Given that  is differentiable on , find  and .

Solution

1. Continuity at 

For continuity, 

2. Differentiability at 

We calculate the derivative at  from both sides:

f : (b, c) → R a ∈ (b, c) f (a)′ f

a

f(x) =
x→a
lim f(a) 

f x = a

f(x) = ​{sin(x) + 1
ax + b

if x ≥ 0
if x < 0

f R a b

x = 0 :

​f(x) =
x→0+
lim sin(0) + 1 = 1

= ​f(x) =
x→0−
lim a ⋅ 0 + b = b

b = 1.

x = 0 :

f (x) =′
​ ​{cos(x)

a

if x > 0
if x < 0

x = 0

​f (x) =
x→0+
lim ′ cos(0) = 1 
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For differentiability, 

Final Answer

 and 

​f (x) =
x→0−
lim ′ a 

a = 1.

a = 1 b = 1.
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10. Higher Order Derivatives and
the Mean Value Theorem (MVT)

Higher Order Derivatives

The higher order derivatives of a function  are obtained by repeatedly

differentiating .

1. First Derivative:  (rate of change or slope of )

2. Second Derivative: , obtained by differentiating . This represents the

rate of change of the slope (e.g., concavity of ).

3. Third Derivative: , obtained by differentiating .

4. -th Derivative: Denoted , obtained by differentiating  exactly  times.

Example: For :

 for  (constant derivative).

f(x)
f(x)

f (x)′ f(x)

f (x)′′ f (x)′

f(x)

f (x)′′′ f (x)′′

n f (x)(n) f(x) n

f(x) = x3

f (x) =′ 3x2

f (x) =′′ 6x

f (x) =′′′ 6

f (x) =(n) 0 n ≥ 4
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The Mean Value Theorem (MVT)

Statement of the Theorem

Let  be a function. If:

1.  is continuous on 

2.  is differentiable on 

then there exists some  such that:

Intuition

The Mean Value Theorem states that there is at least one point  in  where the

instantaneous rate of change (the derivative) equals the average rate of change over the

interval.

Remark on Monotonicity and Derivatives

Let  be a function. We define:

1.  is increasing on  if for all  with .

2.  is decreasing on  if for all  with .

3.  is non-decreasing on  if for all  with 

.

4.  is non-increasing on  if for all  with 

.

If  is continuous on  and differentiable on  then for any , the 

MVT ensures that:

Consequences

f : [a, b] → R

f [a, b],

f (a, b),

c ∈ (a, b)

f (c) =′
​

b − a

f(b) − f(a)

c (a, b)

f : [a, b] → R

f [a, b] x ​,x ​ ∈1 2 [a, b] x ​ <1 x ​, f(x ​) <2 1 f(x ​)2

f [a, b] x ​,x ​ ∈1 2 [a, b] x ​ <1 x ​, f(x ​) >2 1 f(x ​)2

f [a, b] x ​,x ​ ∈1 2 [a, b] x ​ <1 x ​, f(x ​) ≤2 1

f(x ​)2

f [a, b] x ​,x ​ ∈1 2 [a, b] x ​ <1 x , f(x ​) ≥2 1

f(x ​)2

f [a, b] (a, b), x ​,x ​ ∈1 2 [a, b]

​ =
x ​ − x ​2 1

f(x ​) − f(x ​)2 1
f (x) for some x ∈′ (x ​,x ​). 1 2
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1. If  is increasing on , then , which implies  for

all .

2. If  is decreasing on , then , which implies  for

all .

3. If  is non-decreasing on , then  for all .

4. If  is non-increasing on , then  for all .

Example: Monotonicity and the MVT

Let . Check monotonicity on .

1. Compute 

2. Analyze  on 

Since  for all ,  is non-decreasing on 

Moreover,  for all , so  is strictly increasing on 

3. Apply the MVT:

For  and , the MVT guarantees a point  such that:

Thus,  at some 

f [a, b] f(x ​) −2 f(x ​) >1 0 f (x) >′ 0
x ∈ (a, b)

f [a, b] f(x ​) −2 f(x ​) <1 0 f (x) <′ 0
x ∈ (a, b)

f [a, b] f (x) ≥′ 0 x ∈ (a, b)

f [a, b] f (x) ≤′ 0 x ∈ (a, b)

f(x) = x3 [−1, 1]

f (x) :′

f (x) =′ 3x  2

f (x)′ (−1, 1) :

f (x) ≥′ 0 x f(x) [−1, 1].

f (x) >′ 0 x = 0 f(x) [−1, 1].

x ​ =1 −1 x ​ =2 1 c ∈ (−1, 1)

f (c) =′
​ =

1 − (−1)
f(1) − f(−1)

​ =
2

1 − (−1)
1 

f (c) =′ 1 c ∈ (−1, 1).
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11. Solutions to Calculus Problems:
Preparation for MT 1

📌 Important Note:

"I couldn’t attend this lecture where students had an open Q&A session with the professor. To

ensure I stay on track, I’ve included the solutions to Self-Study Problems: MT 1 here as a

reference."

Problem 1: Evaluate the following limits if they exist. If not, indicate whether

the limit does not exist or is . Do not use L'Hopital's rule.

1. Simplify the argument of 

As , the standard limit property states:

Thus, the argument of  approaches:

2. Evaluate the limit:

±∞

(i) lim ​ tan ​x→0 (
x

sin(x) )

tan :

x → 0

​ →
x

sin(x)
1

tan

tan ​ →(
x

sin(x)) tan(1)
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Since  is a finite value, the limit exists and is:

To solve this, we need to analyze the one-sided limits, as the absolute values could behave

differently from either side of .

Step 1: Calculate the Left-Hand Limit 

For  the absolute values simplify as follows:

Substituting these expressions into the limit, we get:

Simplify the expression:

Cancel  from the numerator and denominator:

Step 2: Calculate the Right-Hand Limit 

For x > 3 , the absolute values simplify as follows:

tan(1)

​ tan ​ =
x→0
lim (

x

sin(x)) tan(1)

(ii) lim ​ ​x→3 ∣x−5∣−∣3x−7∣
∣5−2x∣−∣x−2∣

x = 3

(x → 3 )−

x < 3,

∣5 − 2x∣ = 5 − 2x

∣x − 2∣ = x − 2

∣x − 5∣ = 5 − x

∣3x − 7∣ = 7 − 3x

​ ​ =
x→3−
lim

5 − x − (7 − 3x)
2x − 5 − (x − 2)

​ ​

x→3−
lim

−4x + 12
x − 3

= ​ ​

x→3−
lim

−4(x − 3)
x − 3

x − 3

= ​ ​ =
x→3−
lim

−4
1

− ​

4
1

(x → 3 )+

∣5 − 2x∣ = 2x − 5

∣x − 2∣ = x − 2

∣x − 5∣ = x − 5

∣3x − 7∣ = 3x − 7
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Substituting these expressions into the limit, we get:

Simplify the expression:

Cancel  from the numerator and denominator:

Conclusion

Since both the left-hand and right-hand limits are equal:

1. Simplify the denominator:

Rewrite the denominator as:

2. Consider cases for  and 

For . The expression becomes:

As 

For . The expression becomes:

As .

​ ​ =
x→3+
lim

5 − x − (3x − 7)
2x − 5 − (x − 2)

​ ​

x→3+
lim

−4x + 12
x − 3

= ​ ​

x→3+
lim

−4(x − 3)
x − 3

x − 3

= ​ ​ =
x→3+
lim

−4
1

− ​

4
1

​ ​ =
x→3
lim

∣x − 5∣ − ∣3x − 7∣
∣5 − 2x∣ − ∣x − 2∣

− ​

4
1

(iii) lim ​ ​x→π x −πx2
∣x−π∣

x −2 πx = x(x − π)

x > π x < π :

x > π, ∣x − π∣ = x − π

​ =
x(x − π)
x − π

​

x

1

x → π , ​ →+
x
1

​.π
1

x < π, ∣x − π∣ = π − x

​ =
x(x − π)
π − x

− ​

x

1

x → π , − ​ →−
x
1 − ​

π
1
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3. Conclusion:

The left-hand and right-hand limits differ. Therefore, the limit does not exist.

1. Simplify the square root:

Factor  inside the square root:

since 

2. Simplify the expression:

Substitute the simplified square root into the fraction:

3. Evaluate the limit:

As , the denominator approaches , so:

Thus, the limit is:

1. Bound the oscillatory term:

Since , multiplying by  gives:

2. Apply the Squeeze Theorem:

As ,  and . By the Squeeze Theorem:

(iv) lim ​ ​x→−∞
​x −24

3x3

x4

​ =x − 24 ∣x ∣ ​ =2 1 − ​

x4

2
x ​

2 1 − ​

x4

2

x → −∞.

​ =
​x − 24

3x3

​ =
x ​

2 1 − ​

x4
2

3x3

​

​1 − ​

x4
2

3x

x → −∞ ​ =1 1

​ →
​1 − ​

x4
2

3x
3x

​ ​ =
x→−∞
lim

​x − 24

3x3

−∞

(v) lim ​ x sin ​x→0
2/3 (

x
1 )

−1 ≤ sin ​ ≤(
x
1 ) 1 x2/3

−x ≤2/3 x sin ​ ≤2/3 (
x

1 ) x2/3

x → 0 x →2/3 0 −x →2/3 0

( )
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1. Simplify the numerator:

Expand 

2. Simplify the fraction:

Divide the numerator by 

3. Evaluate the limit:

As . Thus:

Problem 2: Find all values of a that make  continuous everywhere.

The function  is defined piecewise as follows:

To ensure  is continuous at , we need the limit from the left and right at  to be

equal to .

Step 1: Evaluate the Left-Hand Limit 

For , . Thus:

Step 2: Evaluate the Right-Hand Limit 

For , . As , , so:

​x sin ​ =
x→0
lim 2/3 (

x

1 ) 0

(vi) lim ​ ​h→0 h

(h− ​ ) − ​3
1 2

9
1

(h − ​) −3
1 2

​ :9
1

(h − ​) −
3
1 2

​ =
9
1

h −2
​ +

3
2h

​ −
9
1

​ =
9
1

h −2
​

3
2h

h :

​ =
h

h − ​

2
3

2h

h − ​

3
2

h → 0, h − ​ →3
2 − ​3

2

​ ​ =
h→0
lim

h

(h − ​) − ​3
1 2

9
1

− ​

3
2

f(x)
f(x)

f(x) = ​ ​{2x − 3x + 52

7 sin (3x) + a2 2

if x ≤ 0
if x > 0

f(x) x = 0 x = 0
f(0)

(x → 0 )−

x ≤ 0 f(x) = 2x −2 3x + 5

​f(x) =
x→0−
lim ​(2x −

x→0−
lim 2 3x + 5) = 5 

(x → 0 )+

x > 0 f(x) = 7 sin (3x) +2 a2 x → 0+ sin (3x) →2 0
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Step 3: Set Limits Equal for Continuity

For  to be continuous at , we need:

Thus:

Step 4: Solve for 

Solving , we get:

Conclusion

The values of a that make  continuous everywhere are:

Problem 3: Intermediate Value Theorem (IVT)

(i) Intermediate Value Theorem (IVT) Statement

Let  be a continuous function on the closed interval . Suppose that  is any

value between  and . In other words, if  or , then

there exists at least one point  such that .

This property allows us to conclude that any value between  and  must be attained by

the function  at some point within the interval .

(ii) Application of the IVT

Prove that the equation  has at least 1 solution.

Define the function:

Note that both  and  are continuous functions over .

Consequently,  is continuous over , and particularly on the closed interval .

​f(x) =
x→0+
lim ​(7 sin (3x) +

x→0+
lim 2 a ) =2 a  2

f(x) x = 0

​f(x) =
x→0−
lim ​f(x) =

x→0+
lim f(0) 

5 = a  2

a

a =2 5

a = ± ​ 5

f(x)

a = ± ​ 5

f : [a, b] → R [a, b] y ​0

f(a) f(b) y ​ ∈0 (f(a), f(b)) y ​ ∈0 (f(b), f(a))
x ​ ∈0 [a, b] y ​ =0 f(x ​)0

f(a) f(b)
f [a, b]

arctan(x) = ​ −2
π x

f(x) := arctan(x) − ​ +
2
π

x 

arctan(x) − ​ +2
π x (−∞, ∞)

f(x) (−∞, ∞) [0, 1]
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1. Evaluate 

2. Evaluate 

3. Check if  lies between  and 

Since , we observe that  lies within the interval 

.

4. Conclude by IVT:

By the Intermediate Value Theorem, since  is continuous on  and  lies between 

and , there must exist a point  such that 

Therefore, we have:

Thus, there exists a solution  in  that satisfies the equation.

Problem 4: Differentiability and its Definition

(i) Definition of Differentiability at a Point 

A function  is differentiable at  if the following limit exists:

Alternatively, this can be written by setting  as:

This means that the derivative  represents the slope of the tangent line to the graph of 

 at , provided the limit exists.

(ii) General Differentiability of 

A function  is said to be differentiable at a general point  if:

f(0) :

f(0) = arctan(0) − ​ +
2
π

0 = − ​ 
2
π

f(1) :

f(1) = arctan(1) − ​ +
2
π

1 = ​ −
4
π

​ +
2
π

1 = − ​ +
4
π

1 

0 f(0) f(1) :

f(0) = − ​ <2
π 0 < − ​ +4

π 1 = f(1) 0
(f(0), f(1)) = (− ​, 1 −2

π
​)4

π

f [0, 1] 0 f(0)
f(1) x ​ ∈0 (0, 1) f(x ​) =0 0.

f(x ​) =0 0 ⇒ arctan(x ​) =0 ​ −
2
π

x ​ 0

x ​0 (0, 1)

x ​ :0

f(x) x = x ​0

f (x ​) =′
0 ​ ​

h→0
lim

h

f(x ​ + h) − f(x ​)0 0

x − x ​ =0 h

f (x ​) =′
0 ​ ​

x→x ​0
lim

x − x ​0

f(x) − f(x ​)0

f (x ​)′
0

f(x) x = x ​0

f(x) :

f(x) x
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exists. This definition implicitly assumes that  is within the domain of  and that  is smooth

enough to compute the above limit.

For example:

Polynomial functions like  or trigonometric functions like  are differentiable

everywhere within their domains.

This general definition applies at every point , but when we specify a particular point ,

it reduces to the case in part (i).

(iii) Differentiability at 

To check differentiability at , we use the limit definition:

Alternatively, it can also be expressed as:

This ensures that the derivative at  exists if and only if the above limit converges to a finite

value.

Problem 5: Differentiability Analysis

Part (a): Compute  for  at 

1. Use the definition of the derivative:

2. Substitute  and 

3. Simplify the numerator:

f (x) =′
​ ​ 

h→0
lim

h

f(x + h) − f(x)

x f(x) f

x2 sin(x)

x x = a

x = ​ :2
1

x = ​2
1

f ​ =′ (
2
1) ​ ​

h→0
lim

h

f ​ + h − f ​( 2
1 ) ( 2

1 )

f ​ =′ (
2
1) ​ ​

x→ ​2
1

lim
x − ​2

1

f(x) − f ​( 2
1 )

x = ​2
1

f (x)′ f(x) = x2 x = −1

f (x ​) =′
0 ​ ​

h→0
lim

h

f(x ​ + h) − f(x ​)0 0

f(x) = x2 x ​ =0 −1 :

f (−1) =′
​ ​

h→0
lim

h

(−1 + h) − (−1)2 2
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4. Substitute back into the limit:

5. Simplify the fraction:

Factor  from the numerator:

Cancel  (valid for ):

6. Evaluate the limit:

Part (b): Compute 

1. Set up the derivative using the definition:

2. Evaluate 

3. Substitute into the definition:

4. Simplify:

5. Evaluate the limit:

(−1 + h) −2 (−1) =2 (1 − 2h + h ) −2 1 = −2h + h2

f (−1) =′
​ ​

h→0
lim

h

−2h + h2

h

f (−1) =′
​ ​

h→0
lim

h

h(−2 + h)

h h = 0

f (−1) =′
​(−2 +

h→0
lim h)

f (−1) =′ −2

f (0)forf(x) =′
​2+x

2−x

f (0) =′
​ ​

x→0
lim

x

f(x) − f(0)

f(0) :

f(0) = ​ =
2 + 0
2 − 0

1

f (0) =′
​ ​

x→0
lim

x

​ − 12+x
2−x

f (0) =′
​ ​ =

x→0
lim

x

​2+x
−2x

​ ​

x→0
lim

2 + x

−2
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Part (c): Prove the Derivative of 

1. Use the definition of the derivative:

2. Simplify using trigonometric identity:

Use 

3. Substitute 

Rewrite the limit:

4. Simplify:

Using 

Problem 6: Differentiability of 

Part (a): For what values of  is  differentiable? Find a formula for 

1. Analyze the definition of 

Rewrite  using its piecewise definition:

2. Differentiate each piece:

For 

f (0) =′
​ =

2
−2

−1

f(x) = cos(x)

f (x ​) =′
0 ​ ​

x→x ​0
lim

x − x ​0

cos(x) − cos(x ​)0

cos(A) − cos(B) = −2 sin ​ sin ​ :( 2
A+B ) ( 2

A−B )

f (x ​) =′
0 ​ ​

x→x ​0
lim

x − x ​0

−2 sin ​ sin ​( 2
x+x ​0 ) ( 2

x−x ​0 )

h = x − x ​ :0

f (x ​) =′
0 ​ − sin x ​ ⋅

h→0
lim ( 0) ​

​2
h

sin ​( 2
h)

lim
​ ​

=h→0
​2

h

sin ​( 2
h ) 1 :

f (x ​) =′
0 − sin(x ​)0

f(x) = ∣x −2 9∣
x f(x) f (x).′

f(x) = ∣x −2 9∣ :

f(x)

f(x) = ​ ​{x − 92

9 − x2

if x ≥ 9,  i.e., x ≥ 3 or x ≤ −3,2

if  − 3 < x < 3.

x ≥2 9 :

f (x) =′
​(x −

dx

d 2 9) = 2x
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For 

3. Combine into a formula:

4. Check differentiability at  and 

The left-hand derivative at 

The right-hand derivative at 

Since ,  is not differentiable at .

Similarly, at 

so  is also not differentiable at .

5. Conclusion:

 is differentiable for 

Part (b): Sketch the Graphs of  and 

1. Graph of 

−3 < x < 3 :

f (x) =′
​(9 −

dx

d
x ) =2 −2x

f (x) =′
​ ​{

2x
−2x

if x > 3 or x < −3,
if  − 3 < x < 3.

x = 3 x = −3 :

x = 3 :

f (3) =′ limh → 0 ​ =−

h

f(3 + h) − f(3)
​ ​ =

h→0−
lim

h

(3 + h) − 92

6

x = 3 :

f +′ (3) = limh → 0 ​ =+

h

f(3 + h) − f(3)
​ ​ =

h→0+
lim

h

(3 + h) − 92

6

f ​(3) =−
′  f ​(3)+

′ f(x) x = 3

x = −3 :

f ​(3) =−
′

 f ​(3)+
′

f(x) x = −3

f(x) = ∣x −2 9∣ x ∈ R ∖ {−3, 3}.

f(x) f (x)′

f(x) :
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2. Graph of f (x) :′
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Problem 7: Analyze the Differentiability of 

(a) For what values of  is  differentiable?

1. Piecewise Definition of 

The absolute value terms introduce critical points at  and . Let us rewrite 

piecewise:

For ,  and , so:

For ,  and , so:

For ,  and , so:

The piecewise definition is:

2. Derivative in Each Interval:

For 

For 

For 

g(x) = ∣x − 1∣ + ∣x + 2∣
x g(x)

g(x) :

x = 1 x = −2 g(x)

x > 1 ∣x − 1∣ = x − 1 ∣x + 2∣ = x + 2

g(x) = (x − 1) + (x + 2) = 2x + 1

−2 ≤ x ≤ 1 ∣x − 1∣ = 1 − x ∣x + 2∣ = x + 2

g(x) = (1 − x) + (x + 2) = 3

x < −2 ∣x − 1∣ = 1 − x ∣x + 2∣ = −x − 2

g(x) = (1 − x) + (−x − 2) = −2x − 1

g(x) = ​ ​ ​

⎩
⎨
⎧2x + 1

3
−2x − 1

if x > 1,
if  − 2 ≤ x ≤ 1,
if x < −2.

x > 1 :

g (x) =′
​(2x +

dx

d
1) = 2

−2 ≤ x ≤ 1 :

g (x) =′
​(3) =

dx

d
0

x < −2 :

g (x) =′
​(−2x −

dx

d
1) = −2
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The derivative is:

3. Check Differentiability at 

Left-hand derivative:

Right-hand derivative:

Since ,  is not differentiable at .

4. Check Differentiability at 

Left-hand derivative:

Right-hand derivative:

Since ,  is not differentiable at .

Final Answer for (a):  is differentiable for .

Part (b): Sketch  and 

1. Graph of 

g (x) =′
​ ​ ​

⎩
⎨
⎧2

0
−2

if x > 1,
if  − 2 < x < 1,
if x < −2.

x = 1 :

g ​(1) =−
′ limh → 0 ​ =−

h

g(1 + h) − g(1)
​ ​ =

h→0−
lim

h

3 − 3
0

g ​(1) =+
′ limh → 0 ​ =+

h

g(1 + h) − g(1)
​ ​ =

h→0+
lim

h

(2(1 + h) + 1) − 3
2

g (1) =′  g +′ (1) g(x) x = 1

x = −2 :

g ​(2) =−
′ limh → 0 ​ =−

h

g(−2 + h) − g(−2)
​ ​ =

h→0−
lim

h

(−2(−2 + h) − 1) − 3
−2

g ​(2) =+
′ limh → 0 ​ =+

h

g(−2 + h) − g(−2)
​ ​ =

h→0+
lim

h

3 − 3
0

g (2) =′  g +′ (2) g(x) x = −2

g(x) x ∈ R ∖ {−2, 1}

g(x) g (x)′

g(x) :
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2. Graph of g (x) :′
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Problem 8: Compute the Following Derivatives

(i) Find  for 

1. Rewrite 

2. Apply the chain rule:

3. Differentiate \cos(\sqrt{t}) :

4. Combine:

5. Simplify:

(ii) Find  for 

1. Apply the chain rule:

2. Differentiate 

3. Combine:

​

dt
ds s(t) = ​

5 cos( ​)t

s(t) :

s(t) = cos( ​)t 1/5

​ =
dt

ds
​ cos( ​) ⋅

5
1

t −4/5
​[cos( ​)]

dt

d
t

​[cos( ​)] =
dt

d
t − sin( ​) ⋅t ​

2 ​t

1

​ =
dt

ds
​ cos( ​) ⋅

5
1

t −4/5 − sin( ​) ⋅ ​( t
2 ​t

1 )

​ =
dt

ds
− ​

10 ​ cos( ​)t t 4/5

sin( ​)t

​

dt
df f(t) = sin(cos(4t))

​ =
dt

df
cos(cos(4t)) ⋅ ​[cos(4t)]

dt

d

cos(4t) :

​[cos(4t)] =
dt

d
− sin(4t) ⋅ 4

​ =
dt

df
cos(cos(4t)) ⋅ (−4 sin(4t))
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4. Simplify:

(iii) Compute 

1. Rewrite:

2. First derivative using the product rule:

Substitute:

3. Simplify:

4. Second derivative:

Part (a): Differentiate  term by term:

For , the derivative is:

For , simplify to , then differentiate:

5. Combine:

​ =
dt

df
−4 cos(cos(4t)) sin(4t)

​ (x + 3) ​

dx2
d2

[ 2 x]

(x +2 3) ​ =x (x +2 3)x1/2

​[(x +
dx

d 2 3)x ] =1/2
​[x +

dx

d 2 3] ⋅ x +1/2 (x +2 3) ⋅ ​[x ]
dx

d 1/2

​[x +dx
d 2 3] = 2x.

​[x ] =
dx
d 1/2

​.
2 ​x

1

​[(x +
dx

d 2 3)x ] =1/2 2x ⋅ x +1/2 (x +2 3) ⋅ ​

2 ​x

1

​[(x +
dx

d 2 3)x ] =1/2 2x +3/2
​

2 ​x

x + 32

2x +3/2
​

2 ​x
x +32

2x3/2

​[2x ] =
dx

d 3/2 3x1/2

​

2 ​x
x +32

​ +2 ​x
x2

​ =
2 ​x

3
​ +2

x3/2
​x2

3 −1/2

​ ​ =
dx

d (
2

x3/2

) ​x , ​ ​x =
4
3 1/2

dx

d (
2
3 −1/2) − ​x

4
3 −3/2
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6. Simplify:

Part (b): Compute 

1. Set up the first derivative 

Using the quotient rule:

Substituting:

Simplify:

2. Compute the second derivative 

Differentiate  using the quotient rule again:

3. Differentiate 

Using the product rule for 

and for 

​[(x +
dx2

d2
2 3) ​] =x 3x +1/2

​x −
4
3 1/2

​x
4
3 −3/2

​[(x +
dx2

d2
2 3) ​] =x ​x −

4
15 1/2

​x
4
3 −3/2

g (x) =′′
​ ​ .

dx2
d2 [

x

sin(x) ]

g (x) :′

g (x) =′
​

x2

​[sin(x)] ⋅ x − sin(x) ⋅ ​[x]dx
d

dx
d

​[sin(x)] =
dx
d cos(x),

​ =
dx
d 1.

g (x) =′
​

x2

cos(x) ⋅ x − sin(x) ⋅ 1

g (x) =′
​

x2

x cos(x) − sin(x)

g (x) :′′

g (x)′

g (x) =′′
​

(x )2 2

​[x cos(x) − sin(x)] ⋅ x − (x cos(x) − sin(x)) ⋅ ​[x ]
dx
d 2

dx
d 2

x cos(x) − sin(x) :
x cos(x) :

​[x cos(x)] =
dx

d
cos(x) − x sin(x)

− sin(x) :

d
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So:

4. Simplify the second derivative:

Substituting back:

Simplify the numerator:

Expand:

5. Factorize:

(iv) Compute 

1. Apply the product rule:

2. Differentiate each term:

3. Combine:

​[− sin(x)] =
dx

d
− cos(x)

​[x cos(x) −
dx

d
sin(x)] = cos(x) − x sin(x) − cos(x) = −x sin(x)

g (x) =′′
​

x4

(−x sin(x)) ⋅ x − (x cos(x) − sin(x)) ⋅ 2x2

g (x) =′′
​

x4

−x sin(x) − 2x(x cos(x) − sin(x))3

g (x) =′′
​

x4

−x sin(x) − 2x cos(x) + 2x sin(x)3 2

g (x) =′′
​

x3

−x sin(x) − 2x cos(x) + 2 sin(x)2

​((z +
dz
d 1) tan(3z))2024

​((z +
dz

d
1) tan(3z)) =2024

​[(z +
dz

d
1) ] ⋅2024 tan(3z) + (z + 1) ⋅2024

​[tan(3z)]
dz

d

​[(z +
dz
d 1) ] =2024 2024(z + 1) .2023

​[tan(3z)] =
dz
d 3 sec (3z).2

​((z +
dz

d
1) tan(3z)) =2024 2024(z + 1) tan(3z) +2023 3(z + 1) sec (3z). 2024 2

d
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(v) Find , where , 

1. Use the chain rule:

2. Differentiate  and 

3. Substitute:

4. Evaluate at 

Substitute:

Problem 9: Theorems and Their Applications

Part (a): Rolle’s Theorem

Statement:

Let  be a continuous function on the closed interval  differentiable on the open interval 

 and satisfying . Then, there exists at least one point  such that:

Part (b): The Mean Value Theorem (MVT)

Statement:

Let  be a continuous function on the closed interval  and differentiable on the open interval 

 Then, there exists at least one point  such that:

​ ​

dx

dy

t= ​4
π x(t) = t +2 2 y(t) = tan(t) − 3

​ =
dx

dy
​

​

dt
dx

​

dt

dy

x(t) y(t) :

​ =dt
dx 2t.

​ =dt
dy sec (t).2

​ =
dx

dy

2t
sec (t)2

t = ​ :4
π

sec ​ =2 ( 4
π ) 2.

2t = ​.2
π

​ =
dx

dy
​ =

​2
π

2
​

π

4

f [a, b],
(a, b), f(a) = f(b) c ∈ (a, b)

f (c) =′ 0 

f [a, b]
(a, b). c ∈ (a, b)
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Part (c): Show that the equation  has exactly one solution in the open

interval 

1. Existence of a Solution

Define 

 is continuous on  because it is the difference of continuous functions.

Evaluate at endpoints:

By the Intermediate Value Theorem (IVT), there exists  such that 

2. Uniqueness of the Solution

Assume there are two distinct solutions,  and , such that . By Rolle’s

Theorem:

Since , there exists  such that 

Compute :

Since  for , we have .

This contradicts , so there cannot be two distinct solutions.

Conclusion: The equation has exactly one solution in 

Part (d): Prove  given  is differentiable and ,  for 

.

1. Apply MVT:

Since  is differentiable on  and continuous on  there exists  such that:

Given , we have:

f (c) =′
​ 

b − a

f(b) − f(a)

2x − 1 = sin(x)
(0,π).

f(x) = 2x − 1 − sin(x).

f(x) [0,π]

f(0) = −1 and f(π) = 2π − 1 − sin(π) = 2π − 1 > 0

x ​ ∈1 (0,π) f(x ​) =1

0.

x ​1 x ​2 f(x ​) =1 f(x ​) =2 0

f(x ​) =1 f(x ​)2 c ∈ (x ​,x ​)1 2 f (c) =′ 0.

f (x)′

f (x) =′ 2 − cos(x)

−1 ≤ cos(x) ≤ 1 x ∈ (0,π) f (x) =′ 2 − cos(x) > 1

f (c) =′ 0

(0,π).

0 < f(5) < 3 f f(2) = −3 1 < f (x) <′ 2
x ∈ (2, 5)

f (2, 5) [2, 5], c ∈ (2, 5)

f (c) =′
​ =

5 − 2
f(5) − f(2)

​

3
f(5) + 3

1 < f (c) <′ 2
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2. Simplify the inequalities:

Multiply through by :

Subtract :

Part (e): Show that  for .

1. Define a function:

Let . Then,  is differentiable on 

2. Compute the derivative:

For , , so .

3. Conclusion:

Since ,  is increasing on 

At , . Therefore,  for .

Hence,  for .

Part (f): Discuss whether  contradicts MVT.

1. Conditions for MVT:

 is continuous on  but not differentiable at .

2. Conclusion:

MVT requires differentiability on the open interval . Since  is not differentiable at

, MVT does not apply, and there is no contradiction.

Problem 10 Solutions

(a) Tangent Line to  at 

Step 1: Find the slope of the tangent line

The given function is , which can be written as:

1 < ​ <
3

f(5) + 3
2

3

3 < f(5) + 3 < 6

3

0 < f(5) < 3

tan(x) > x 0 < x < ​2
π

f(x) = tan(x) − x f(x) (0, ​).2
π

f (x) =′ sec (x) −2 1 = tan (x)2

0 < x < ​2
π tan (x) >2 0 f (x) >′ 0

f (x) >′ 0 f(x) = tan(x) − x (0, ​).2
π

x = 0 f(0) = 0 f(x) > 0 0 < x < ​2
π

tan(x) > x 0 < x < ​2
π

h(x) = ∣x∣

h(x) = ∣x∣ [−1, 1] x = 0

(−1, 1) h(x)
x = 0

y = ​

4 x (2, ​)4 2

y = ​

4 x
/
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Differentiate y with respect to 

Substitute  into 

Simplify  using exponent rules:

Thus:

Step 2: Equation of the tangent line

The equation of the tangent line is:

where , and .

Substitute these values:

Simplify:

Final Answer:

The equation of the tangent line is:

y = x1/4

x :

y (x) =′
​x

4
1 −3/4

x = 2 y (x) :′

y (2) =′
​(2)

4
1 −3/4

(2)−3/4

(2) =−3/4
​ =
​

4 23

1
​

​

4 8

1

y (2) =′
​

4 ⋅ ​

4 8
1

y − y ​ =0 m(x − x ​)0

m = y (2) =′
​,x ​ =

4⋅ ​

4 8
1

0 2 y ​ =0 ​

4 2

y − ​ =4 2 ​(x −
4 ⋅ ​

4 8

1
2)

y = ​ +4 2 ​(x −
4 ⋅ ​

4 8
1

2)

2
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(b) Find a Parabola  Such That Its Tangent Line at  is 

1. Conditions:

The point  lies on the parabola:

This simplifies to:

The slope of the tangent line at x = 1 is equal to 3:

At 

This simplifies to:

2. Solve the System of Equations:

From  and 

Subtract from 

Substitute  into 

3. Equation of the Parabola:

y = ​ +4 2 ​

4 ⋅ ​

4 8

x − 2

y = ax +2 bx (1, 1) y = 3x − 2

(1, 1)

a(1) +2 b(1) = 1

a + b = 1 (1)

​ ax + bx =
dx

d
( 2 ) 2ax + b

x = 1 :

2a(1) + b = 3

2a + b = 3 (2)

(1) (2) :

(1) (2) :

2a + b − (a + b) = 3 − 1

a = 2

a = 2 (1) :

2 + b = 1

b = −1
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The equation is:

y = 2x −2 x
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12. Applications of Derivatives

1. Extreme Values

Definitions

Let  be a function defined on an interval 

Local Minimum:

 is a local minimum of  if:

for some 

Local Maximum:

 is a local maximum of  if:

for some 

Global (Absolute) Minimum:

 is a global minimum of  on  if:

f : I → R I :

(c, f(c)) f

f(c) ≤ f(x), ∀x ∈ (c − δ, c + δ) ∩ I  

δ > 0.

(c, f(c)) f

f(c) ≥ f(x), ∀x ∈ (c − δ, c + δ) ∩ I  

δ > 0.

(c, f(c)) f I
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Global (Absolute) Maximum:

 is a global maximum of  on  if:

Extreme Value Theorem (EVT)

The Extreme Value Theorem states:

If  is continuous on a closed interval  then:

1.  attains both an absolute maximum and an absolute minimum on 

2. That is, there exist points  and  in  such that:

 for all  (absolute maximum).

 for all  (absolute minimum).

Key Points

1. The function must be continuous on the closed interval

2. The absolute maximum and minimum values may occur at:

Endpoints of the interval  or , or

Critical points where  or  is undefined.

Why the Theorem is True

1. Continuity on a Closed Interval:

A continuous function on  is bounded and does not "blow up" to infinity.

2. Compactness of 

The interval  is compact (closed and bounded), ensuring that  has

both a greatest and a least value on this interval.

2. Critical Points and Local Extrema

f(c) ≤ f(x), ∀x ∈ I  

(c, f(c)) f I

f(c) ≥ f(x), ∀x ∈ I  

f(x) [a, b],

f(x) [a, b].

c d [a, b]

f(c) ≥ f(x) x ∈ [a, b]

f(d) ≤ f(x) x ∈ [a, b]

[a, b].

a b

f (x) =′ 0 f (x)′

[a, b]

[a, b] :

[a, b] f(x)
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Theorem: Critical Points and Local Extrema

Let  be a function, and  is a local extremum of . Then  is one of

the following:

1. A critical point: 

2. A singular point:  does not exist

3. An endpoint of the interval .

3. First Derivative Test

The First Derivative Test is used to determine whether a critical point is a local

maximum, local minimum, or neither.

Theorem: First Derivative Test

Suppose  is a critical point of  and  changes sign around 

1. If  changes from positive to negative at ,  is a local maximum.

2. If  changes from negative to positive at ,  is a local minimum.

3. If  does not change sign at ,  is neither a local maximum nor a local

minimum.

Example

Let . Find local extrema:

1. Find 

2. Solve 

3. Analyze the sign of 

 for 

 for 

 for 

4. Conclusion:

 Local maximum.

f : I → R (c, f(c)) f c

f (c) =′ 0

f (c)′

I

c f f (x)′ c :

f (x)′ c f(c)

f (x)′ c f(c)

f (x)′ c f(c)

f(x) = x −3 3x2

f (x) =′ 3x −2 6x.

f (x) =′ 0 : x = 0,x = 2.

f (x) :′

f (x) >′ 0 x < 0,

f (x) <′ 0 0 < x < 2,

f (x) >′ 0 x > 2.

x = 0 :
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 Local minimum.

4. Second Derivative Test

The Second Derivative Test determines the nature of a critical point based on concavity.

Theorem: Second Derivative Test

Let  be a twice-differentiable function. If  is a critical point  then:

1. If ,  is a local minimum.

2. If ,  is a local maximum.

3. If , the test is inconclusive.

Example

Let . Find local extrema:

1. Find 

2. Solve 

3. Find 

4. Evaluate  at critical points:

, local maximum.

, local minimums.

Example: Absolute Extrema of a Continuous Function

Let  on 

1. Endpoints:

2. Critical Points:

Solve 

, so 

x = 2 :

f c (f (c) =′ 0),

f (c) >′′ 0 f(c)

f (c) <′′ 0 f(c)

f (c) =′′ 0

f(x) = x −4 4x2

f (x) =′ 4x −3 8x.

f (x) =′ 0 : x = 0,x = − ​,x =2 ​.2

f (x) =′′ 12x −2 8.

f (x)′′

x = 0 : f (0) =′′ −8

x = ± ​ :2 f (± ​) =′′ 2 16

f(x) = ∣x −2 4∣ [−3, 3].

f(−3) = ∣9 − 4∣ = 5,

f(3) = ∣9 − 4∣ = 5.

f (x) =′ 0 :

f (x) =′ 2x x = 0.
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Evaluate 

3. Absolute Extrema:

Absolute Minimum: 

Absolute Maximum: 

Remark: Critical Points and Extrema

Not every critical point or singular point corresponds to a local extremum.

For example, let . The derivative  has a critical point at 

. However,  has no local maximum or minimum at  because  is

increasing both before and after 

f(0) = ∣0 − 4∣ = 4.

(0, 4),

(−3, 5), (3, 5).

f(x) = x3 f (x) =′ 3x2 x =
0 f(x) x = 0 f(x)

x = 0.
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13. Derivative Tests and
Concavity

Second Derivative and Its Role in Concavity

Definitions

1. Concave Up:

A function  is said to be concave up on an interval  if the graph of 

lies above all its tangent lines within 

Mathematically,  is concave up if:

2. Concave Down:

A function  is said to be concave down on an interval  if the graph of 

 lies below all its tangent lines within 

Mathematically,  is concave down if:

f(x) (a, b) f(x)
(a, b).

f

f (x) >′′ 0 ∀x ∈ (a, b). 

f(x) (a, b)
f(x) (a, b).

f

f (x) <′′ 0 ∀x ∈ (a, b). 
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3. Inflection Point:

A point  is an inflection point of  if  changes concavity at 

In other words,  transitions from concave up to concave down (or vice versa) at 

Necessary condition for  to be an inflection point:

Derivative Tests

First Derivative Test (Recap)

The First Derivative Test determines whether a critical point is a local extremum:

1. If  changes from positive to negative at ,  is a local maximum.

2. If  changes from negative to positive at ,  is a local minimum.

3. If  does not change sign at ,  is neither a local maximum nor a local

minimum.

Second Derivative Test

The Second Derivative Test is used to determine the nature of a critical point based on

concavity:

1. If  is a local minimum (concave up at ).

2. If  is a local maximum (concave down at ).

3. If , the test is inconclusive, and other methods (like the First Derivative

Test) must be used.

Concavity Analysis on an Interval

To determine concavity:

1. Find the second derivative, .

2. Solve  or  to identify potential inflection points.

3. Test the sign of  in each subinterval formed by the critical points of 

c f(x) f(x) c.

f(x)
c.

c

f (c) =′′ 0 or f (c) does not exist. ′′

f (x)′ c f(c)

f (x)′ c f(c)

f (x)′ c f(c)

f (c) >′′ 0, f(c) c

f (c) <′′ 0, f(c) c

f (c) =′′ 0

f (x)′′

f (x) =′′ 0 f (x) does not exist′′

f (x)′′ f (x) :′′
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If ,  is concave up on that interval.

If ,  is concave down on that interval.

Example 1: Determine Concavity and Inflection Points

Let 

1. Compute the first derivative:

2. Compute the second derivative:

3. Solve  to find potential inflection points:

4. Test the sign of  in intervals  and 

For  , so  is concave down.

For  , so  is concave up.

5. Inflection Point:

Since  changes sign at ,  is an inflection point:

Inflection Point: 

Example 2: Application of Second Derivative Test

Let 

1. Compute  and 

f (x) >′′ 0 f(x)

f (x) <′′ 0 f(x)

f(x) = x −3 3x +2 4.

f (x) =′ 3x −2 6x

f (x) =′′ 6x − 6

f (x) =′′ 0

6x − 6 = 0 ⟹ x = 1

f (x)′′ (−∞, 1) (1, ∞) :

x < 1 : f (x) =′′ 6x − 6 < 0 f(x)

x > 1 : f (x) =′′ 6x − 6 > 0 f(x)

f (x)′′ x = 1 (1, f(1))

f(1) = 1 −3 3(1) +2 4 = 2. 

(1, 2).

f(x) = x −4 4x .2

f (x)′ f (x) :′′

f (x) =′ 4x −3 8x, f (x) =′′ 12x −2 8

10/2/25, 3:41 PM 13. Derivative Tests and Concavity

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/13%20Derivative%20Tests%20and%20Concavity%2… 3/4

Guest
Rectangle



2. Find critical points by solving 

3. Use the Second Derivative Test:

 : Concave down,  is a local maximum.

 : Concave up,  are local minima.

4. Conclusion:

Local maximum: .

Local minima: , .

Remark: Inflection Points

Inflection points occur where the concavity of a function changes. These points are not

necessarily critical points (i.e.,  at an inflection point).

For example,  has an inflection point at , but  and 

, yet concavity changes from down to up.

f (x) =′ 0 :

4x(x −2 2) = 0 ⟹ x = 0,x = ± ​. 2

f (0) =′′ −8 x = 0

f (± ​) =′′ 2 16 x = ± ​2

(0, 0)

( ​, −4)2 (− ​, −4)2

f (x) =′  0

f(x) = x3 x = 0 f (0) =′ 0 f (0) =′′

0
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14. Sketching the Graph of a
Function

Procedure for Graph Sketching

To sketch the graph of a function , follow these systematic steps:

Step 1: Determine the Domain and Intercepts

1. Domain: Identify all values of  for which  is defined. Exclude any points where

the denominator equals zero or the function involves undefined operations (e.g.,

square root of a negative number).

2. Intercepts:

x-intercepts: Solve .

y-intercept: Evaluate  if  is in the domain.

Step 2: Asymptotes

1. Vertical Asymptotes: Solve for  where the denominator of  equals zero (if 

 diverges at those points).

f(x)

x f(x)

f(x) = 0

f(0) x = 0

x f(x)
f(x)
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2. Horizontal Asymptotes: Check the behavior of  as . This often

involves finding limits:

Step 3: First Derivative Analysis ( )

1. Critical Points:

Solve  to find where the slope is zero (local maxima/minima

candidates).

Identify points where  does not exist (singular points).

2. Intervals of Increase and Decrease:

Determine the sign of  on each interval separated by critical points. If 

, the function is increasing; if , the function is decreasing.

3. Classification:

Use the First Derivative Test to classify critical points as local maxima, minima,

or neither.

Step 4: Second Derivative Analysis ( )

1. Intervals of Concavity:

Determine the sign of  on each interval. If , the graph is

concave up; if , the graph is concave down.

2. Inflection Points:

Solve  or find where  changes sign. These points indicate a

change in concavity.

Step 5: Sketch the Graph

1. Combine all the information from Steps 1-4.

2. Plot:

Domain restrictions and asymptotes.

f(x) x → ±∞

​f(x) and ​f(x).
x→∞
lim

x→−∞
lim

f (x)′

f (x) =′ 0

f (x)′

f (x)′

f (x) >′ 0 f (x) <′ 0

f (x)′′

f (x)′′ f (x) >′′ 0
f (x) <′′ 0

f (x) =′′ 0 f (x)′′

10/2/25, 3:41 PM 14. Sketching the Graph of a Function

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/14%20Sketching%20the%20Graph%20of%20a%20… 2/6

Guest
Rectangle



Intervals of increase, decrease, concavity, and inflection points.

Key points such as intercepts, local maxima/minima, and asymptotes.

3. Draw a smooth curve connecting the points.

Example: Sketch the Graph of 

We will sketch the graph of  by following the steps.

Step 1: Domain and Intercepts

Domain: The function  is undefined where the denominator . Solve:

So, the domain is .

x-intercepts: Solve . The numerator , so:

The x-intercepts are  and .

y-intercept: Evaluate :

The y-intercept is .

Step 2: Asymptotes

Vertical Asymptotes: The denominator  leads to vertical asymptotes at 

.

Horizontal Asymptote: Analyze the behavior of  as :

f(x) = ​

x −42
x −12

f(x) = ​

x −42
x −12

f(x) x −2 4 = 0

x −2 4 = 0 ⟹ x = ±2

(−∞, −2) ∪ (−2, 2) ∪ (2, ∞)

f(x) = 0 x −2 1 = 0

x −2 1 = 0 ⟹ x = ±1

x = 1 x = −1

f(0)

f(0) = ​ =
0 − 42

0 − 12

​ =
−4
−1

​

4
1

0, ​( 4
1 )

x −2 4 = 0
x = ±2

f(x) x → ±∞

​ ​ =
x→±∞
lim

x − 42

x − 12

​ =
x2

x2

1
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The horizontal asymptote is .

Step 3: First Derivative Analysis ( )

1. Compute  using the Quotient Rule:

Simplify:

2. Critical Points:

Solve :

So,  is the only critical point.

3. Intervals of Increase/Decrease:

Analyze the sign of :

For ,  (decreasing).

For ,  (increasing).

The function is increasing on  and decreasing on .

4. Classification of Critical Points:

At ,  changes from positive to negative. Hence,  is a local

maximum.

Step 4: Second Derivative Analysis ( )

1. Compute :

Differentiate  using the Quotient Rule:

y = 1

f (x)′

f (x)′

f (x) =′
​

(x − 4)2 2

(x − 4)(2x) − (x − 1)(2x)2 2

f (x) =′
​ =

(x − 4)2 2

2x(x − 4 − x + 1)2 2

​

(x − 4)2 2

−6x

f (x) =′ 0

​ =
(x − 4)2 2

−6x
0 ⟹ x = 0

x = 0

f (x)′

x > 0 f (x) <′ 0

x < 0 f (x) >′ 0

(−∞, 0) (0, ∞)

x = 0 f (x)′ x = 0

f (x)′′

f (x)′′

f (x) =′
​(x −4)2 2

−6x

2 2 2
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Simplify (tedious calculations omitted here):

2. Concavity:

Analyze the sign of  to determine concavity.

Solve  to find inflection points.

Step 5: Sketch the Graph

Using all the information:

Domain: 

x-intercepts: 

y-intercept: 

Asymptotes: Vertical at , horizontal at 

Critical Point:  (local maximum)

Behavior:

Increasing on ,

Decreasing on .

Final Graph

The graph has the following features:

Two vertical asymptotes at ,

A horizontal asymptote at ,

Smooth curve connecting all points, respecting the intervals of increase/decrease

and concavity.

f (x) =′′
​

(x − 4)2 4

(x − 4) (−6) − (−6x)(2)(x − 4)(2x)2 2 2

f (x) =′′
​

(x − 4)2 3

−6(x − 4) + 24x (x − 4)2 2 2 2

f (x)′′

f (x) =′′ 0

(−∞, −2) ∪ (−2, 2) ∪ (2, ∞)

x = −1, 1

0, ​( 4
1 )

x = ±2 y = 1

x = 0

(−∞, 0)

(0, ∞)

x = ±2

y = 1
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16. Integration and Riemann Sums

Connection Between Integration and Sigma Notation

Integration is closely related to summation. The definite integral of a function over an

interval is the limit of the Riemann sums as the partition becomes infinitely fine. Formally:

where:

 is the interval,

 is the width of each subinterval,

 is the sample point in the -th subinterval.

Example: Connection with Sigma Notation

Let  on . Divide  into  subintervals:

Partition points:  where .

Lower Sum:

​ f(x) dx =∫
a

b

​ ​f(x ​)Δx 
n→∞
lim

i=1

∑
n

i

[a, b]

Δx = ​

n
b−a

x ​i i

f(x) = x [1, 5] [1, 5] n

x ​ =i 1 + iΔx Δx = ​ =
n

5−1
​

n
4
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Simplify:

As , .

Upper Sum:

As , .

Hence, the integral is:

Definitions

Riemann Sums

Let  be a function and  be a partition

of . Define:

Lower Riemann Sum:

Upper Riemann Sum:

L(f ,P ​) =n ​f(x ​)Δx =
i=1

∑
n

i−1 ​ 1 + ​ ​. 
i=1

∑
n

(
n

4(i − 1))
n

4

L(f ,P ​) =n ​ ​ 1 + ​ =
n

4

i=1

∑
n

(
n

4(i − 1)) 4 ⋅ ​ +
n

n − 1
​ ​(i −

n2

16

i=1

∑
n

1). 

n → ∞ L(f ,P ​) →n 12

U(f ,P ​) =n ​f(x ​)Δx =
i=1

∑
n

i ​ 1 + ​ ​. 
i=1

∑
n

(
n

4i)
n

4

n → ∞ U(f ,P ​) →n 12

​ x dx =∫
1

5

12. 

f : [a, b] → R P : a = x ​ <0 x ​ <1 ⋯ < x ​ =n b

[a, b]

L(f ,P ) = ​f(x ​)Δx ​, Δx ​ =
i=1

∑
n

i
min

i i x ​ −i x ​. i−1
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Area

The exact area under the curve is the limit of the Riemann sums:

Properties of Riemann Sums

1. Bounds on Area:

2. Refinement of Partitions:

If  is a finer partition than :

Definition of the Definite Integral

Let . The function  is integrable on  if there exists a unique real

number  such that for any partition :

This number  is called the definite integral of  over , denoted as:

Here:

: Lower limit of the integral,

: Upper limit of the integral,

: Integrand,

U(f ,P ) = ​f(x ​)Δx . 
i=1

∑
n

i
max

i

A = ​L(f ,P ​) =
n→∞
lim n ​U(f ,P ​). 

n→∞
lim n

L(f ,P ) ≤ A ≤ U(f ,P ). 

P ​2 P ​1

L(f ,P ​) ≤1 L(f ,P ​) ≤2 A ≤ U(f ,P ​) ≤2 U(f ,P ). 1

f : [a, b] → R f [a, b]
I P

L(f ,P ) ≤ I ≤ U(f ,P ). 

I f [a, b]

I = ​ f(x) dx. ∫
a

b

a

b

f(x)
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: Integration parameter.

Example: Riemann Sum Approximation

For  on , we calculated:

Algebraic Properties of the Definite Integral

1. Additivity:

2. Scalar Multiplication:

3. Linearity:

4. Zero Interval:

5. Order of Integration:

6. Comparison:

If  for all , then:

dx

f(x) = x [1, 5]

​ x dx =∫
1

5

12. 

​ f(x) dx +∫
a

b

​ f(x) dx =∫
b

c

​ f(x) dx. ∫
a

c

​ c ⋅∫
a

b

f(x) dx = c f(x) dx ∫
a

b

​[cf(x) +∫
a

b

g(x)] dx = c ​ f(x) dx +∫
a

b

​ g(x) dx. ∫
a

b

​ f(x) dx =∫
a

a

0. 

​ f(x) dx =∫
a

b

− ​ f(x) dx. ∫
b

a

f(x) ≤ g(x) x ∈ [a, b]

b b
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7. Triangle Inequality:

Remarks

The definite integral generalizes the sum of rectangles (Riemann sums) to infinitely

many subintervals.

Finer partitions lead to more precise approximations of the integral.

​ f(x) dx ≤∫
a

b

​ g(x) dx. ∫
a

b

​ ​ f(x) dx ​ ≤∫
a

b

​ ∣f(x)∣ dx. ∫
a

b
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17. Integration and Fundamental
Theorem of Calculus

Continuous Functions and Integrability

Theorem: Integrability of Continuous Functions

If  is continuous on , then  is integrable on . This means the definite integral:

exists.

Average Value of a Function

Definition

For a continuous and integrable function  on , the average value of  is defined

as:

f [a, b] f [a, b]

​ f(x) dx∫
a

b

f [a, b] f

f ​ =avg ​ ​ f(x) dx. 
b − a

1 ∫
a

b
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Example

Let  on . The integral is:

The average value is:

Fundamental Theorem of Calculus (FTC)

Statement of FTC

Let  be a continuous function. The FTC consists of two parts:

1. Part 1 (Evaluation of Definite Integrals):

If  is an anti-derivative of , meaning  for all ,

then:

Example

Compute :

Let . Then , so  is an anti-derivative of .

Using the FTC:

2. Part 2 (Derivative of an Integral Function):

Define . Then . This means the derivative of the

integral function recovers the original function .

f(x) = x [1, 5]

​ x dx =∫
1

5

12. 

f ​ =avg ​ ⋅
5 − 1

1
12 = 3. 

f : [a, b] → R

F (x) f(x) F (x) =′ f(x) x ∈ [a, b]

​ f(x) dx =∫
a

b

F (b) − F (a). 

​ x dx∫1
5

F (x) = ​ +2
x2

106 F (x) =′ x = f(x) F f

​ x dx =∫
1

5

F (5) − F (1) = + 106 −(
2
52

) ​ + 106 =(
2
12

) 12. 

G(t) = ​ f(x) dx∫a
t

G (t) =′ f(t)
f
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Example

Compute :

The anti-derivative of  is . Thus:

Properties of Anti-Derivatives

Remarks on Anti-Derivatives

1. Anti-derivative of  is .

2. Anti-derivative of  is .

3. Anti-derivative of  is:

Techniques for Integration

Substitution Rule

Substitution is used for integrals that involve composite functions. It is based on the

chain rule for derivatives:

For integration:

Procedure

1. Let , so .

2. Rewrite the integral in terms of .

​ sin(x) dx∫0
π

sin(x) − cos(x)

​
sin(x) dx =∫

0

π

[− cos(x)] ​ =0
π − cos(π) − (− cos(0)) = 2. 

cos(x) sin(x) + C

sin(x) − cos(x) + C

xn

​ +
n + 1
xn+1

C, n = −1. 

​f(g(x)) =
dx

d
f (g(x)) ⋅′ g (x). ′

f (g(x))g (x) dx =∫ ′ ′ f(g(x)) + C. 

u = g(x) du = g (x)dx′

u
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3. Integrate with respect to .

4. Substitute  back into the result.

Example

Compute :

Let , so .

The limits change: when ; when .

The integral becomes:

Natural Logarithm and Exponential Functions

Definition of 

The natural logarithm is defined as:

This definition provides a way to compute  and other values.

Properties of 

1. Domain: The domain of  is .

2. Intercept: , so the graph passes through .

3. Asymptotes:

As ,  (vertical asymptote at ).

As ,  (no horizontal asymptote).

u

u = g(x)

​ cos(x ) ⋅∫0
​π 2 2x dx

u = x2 du = 2xdx

x = 0,u = 0 x = ​,u =π π

​ cos(u) du =∫
0

π

sin(u) ​ =0
π

sin(π) − sin(0) = 0. 

ln(x)

ln(x) = ​ ​ dt. ∫
1

x

t

1

ln(2), ln(3),

ln(x)

ln(x) (0, ∞)

ln(1) = ​ ​ dx =∫1
1
x
1 0 (1, 0)

x → 0+ ln(x) → −∞ x = 0

x → ∞ ln(x) → ∞
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Fundamental Relation Between  and 

The function  is related to the exponential function  as follows:

,

 is the inverse of .

Exponential Function from Integration

Define . Then:

,

 is increasing, continuous, and 1-to-1.

Using , the inverse is .

Example

Compute :

ln(x) e

ln(x) ex

ln(e) = 1

ex ln(x)

G(x) = ​ ​ dt∫1
x

t
1

G (x) =′
​x

1

G(x)

G(x) = ln(x) G (x) =−1 ex

​ ​ dx∫1
e

x
1
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This means the area under the curve  from  to  is exactly 1.

Historical Note: Euler and the Number 

Leonhard Euler explored the number  as the base of the natural logarithm. He showed

that:

and that  is the integral of  from 1 to , linking  to the concept of area.

Advanced Properties of  and 

Derivatives

1. , so  is increasing, continuous, and bijective (1-1 and onto).

2. , and:

Concavity

, so  is concave down and has no inflection points.

Connection Between Natural Logarithms and Arithmetic

For , we can find  such that  and . Using the

properties of :

which leads to:

ln(e) − ln(1) = 1 − 0 = 1. 

y = ​

x
1 x = 1 x = e

e

e

e = ​ 1 + ​

n→∞
lim (

n

1 )
n

ln(x) ​

x
1 x e

G(x) G (x)−1

G (x) =′
​ >x

1 0 G(x)

G (x) =−1 ex

(G ) (x) =−1 ′
​ =

G (G (x))′ −1

1
e . x

G (x) =′′ − ​ <
x2
1 0 G(x)

α,β ∈ dom G−1 a, b G(a) = α G(b) = β

G(x)

G(ab) = G(a) + G(b),  

G (α +−1 β) = G (α) ⋅−1 G (β). −1
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By defining , the unique number satisfying , we find:

This means the area from 1 to  under  determines , and  is the number where

the area is 1.

Formulas for , , and 

 (Exponential Function)

Definition

Derivatives

First derivative: 

Second derivative: 

Higher-order derivatives:  for all 

Integration

Key Properties

 (Natural Logarithm)

G (1) =−1 e G(e) = 1

G (x) =−1 e . x

α ​

x
1 ln(α) e

ex ln(x) log(x)

ex

e =x
​ 1 + ​  

n→∞
lim (

n

x)
n

(e ) =x ′ ex

(e ) =x ′′ ex

(e ) =x (n) ex n ≥ 1

e dx =∫ x e +x C 

e =0 1

e =x+y e ex y

e =−x
​

ex
1

ln(x)

10/2/25, 3:41 PM 17. Integration and Fundamental Theorem of Calculus

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/17%20Integration%20and%20Fundamental%20Th… 7/10

Guest
Rectangle



Definition

Derivatives

First derivative: 

Second derivative: 

Integration

Key Properties

Relationship with Exponential

 (Logarithm to Base )

Definition

Derivatives

First derivative: 

ln(x) = ​ ​ dt (x >∫
1

x

t

1
0) 

(ln(x)) =′
​

x
1

(ln(x)) =′′ − ​

x2
1

ln(x) dx =∫ x ln(x) − x + C 

ln(1) = 0

ln(ab) = ln(a) + ln(b)

ln ​ =(
b
a) ln(a) − ln(b)

ln(a ) =n n ln(a)

e =ln(x) x (x > 0)

ln(e ) =x x

log ​(x)b b

log ​(x) =b ​ (b >
ln(b)
ln(x)

0, b = 1) 

(log ​(x)) =b
′

​x ln(b)
1
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Key Properties

Change of Base Formula

for any base 

Combined Derivatives and Integrals

Exponential with Base 

Natural Logarithm with Exponential

Logarithmic Integration

log ​(1) =b 0

log ​(b) =b 1

log ​(ab) =b log ​(a) +b log ​(b)b

log ​ ​ =b (
b
a) log ​(a) −b log ​(b)b

log ​(a ) =b
n n log ​(a)b

log ​(x) =a ​ ,
log ​(a)b

log (x)b

b > 0, b = 1

b

f(x) = b ⇒x f (x) =′ b ln(b)x

b dx =∫ x
​ +

ln(b)
bx

C 

e dx =∫ ax
​e +

a

1 ax C (a = 0) 

(ln(f(x))) =′
​ 

f(x)
f (x)′

​ dx =∫
x ln(x)

1
ln(ln(x)) + C (x > 1) 
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Special Limit

Key Relationships

 and 

 and 

Logarithmic Properties

If ,  and  grow unboundedly as .

Integral Involving Logarithms

​ ​ =
x→∞
lim

xa
ln(x)

0 (a > 0) 

ex ln(x)

ln(e ) =x x e =ln(x) x

ln(x ) =a a ln(x)

b > 1 ln(x) log ​(x)b x → ∞

​ dx =∫
x

ln(x)
+

2
ln (x)2

C 
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18. Exponential Functions and Integration
by Parts

Exponential Functions of Functions

Given two functions  and , if  for all  in the domain of , we define:

Example: Limit of 

1. Rewrite the function using the exponential property:

2. Evaluate the limit of the exponent:

3. Substituting back:

Integration by Parts

Formula Derivation (Leibniz Rule)

Integration by parts is derived from the product rule for differentiation:

f g f(x) > 0 x f

f(x) =g(x) e =ln(f(x) )g(x)
e .g(x)⋅ln(f(x))

x1/x

x =1/x e =ln(x )1/x
e .​

x

ln(x)

​ ​ =
x→∞
lim

x

ln(x)
0 (since  ln(x) grows slower than x).

​x =
x→∞
lim 1/x e =0 1.

d
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Integrating both sides:

Rearranging:

This gives the integration by parts formula:

Examples of Integration by Parts

Let  and , so  and .

Applying the formula:

Evaluating from 0 to 1:

Let  and , so  and .

Applying the formula:

Evaluating from 1 to :

​[u(x) ⋅
dx

d
v(x)] = u (x)v(x) +′ u(x)v (x).′

u (x)v(x) dx +∫ ′ u(x)v (x) dx =∫ ′ u(x)v(x). 

u(x)v (x) dx =∫ ′ u(x)v(x) − u (x)v(x) dx. ∫ ′

u dv =∫ uv − v du. ∫

​ xe dx∫0
1 x

u = x dv = e dxx du = dx v = ex

xe dx =∫ x uv − v du =∫ xe −x e dx =∫ x xe −x e +x C. 

​ xe dx =∫
0

1
x [1 ⋅ e −1 e ] −1 [0 ⋅ e −0 e ] =0 e − e + 1 = 1. 

​ ln(x) dx∫1
e

u = ln(x) dv = dx du = ​dx
x
1 v = x

ln(x) dx =∫ uv − v du =∫ x ln(x) − x ⋅∫ ​ dx =
x

1
x ln(x) − 1 dx =∫ x ln(x) − x + C. 

e

​
ln(x) dx =∫

1

e

[e ln(e) − e] − [1 ln(1) − 1] = [e − e] − [0 − 1] = 1. 
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Let , , so , .

Applying the formula:

For , repeat integration by parts:

Let , , so , .

Let , then:

Evaluating from 0 to :

Notation and Anti-Derivatives

Definite Integral:

Represents the signed area between the graph of  and the interval .

Indefinite Integral:

Represents an anti-derivative of  and is a function.

Example: 

1. Rewrite using trigonometric identities:

​ sin(x)e dx∫0
π/2 x

u = sin(x) dv = e dxx du = cos(x)dx v = ex

sin(x)e dx =∫ x uv − v du =∫ sin(x)e −x cos(x)e dx. ∫ x

cos(x)e dx∫ x

u = cos(x) dv = e dxx du = − sin(x)dx v = ex

cos(x)e dx =∫ x cos(x)e −x − sin(x)e dx =∫ x cos(x)e +x sin(x)e dx. ∫ x

I = sin(x)e dx∫ x

I = sin(x)e −x (cos(x)e +x I) ⇒ 2I = sin(x)e −x cos(x)e . x

I = ​(sin(x)e −
2
1 x cos(x)e ). x

π/2

​ sin(x)e dx =∫
0

π/2
x

​ (sin(π/2)e − cos(π/2)e ) − (sin(0)e − cos(0)e ) . 
2
1 [ π/2 π/2 0 0 ]

= ​ e − 1 . 
2
1 [ π/2 ]

​ f(x) dx ∫
a

b

f [a, b]

f(x) dx ∫

f

cot(x) dx∫
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2. Let , so :

Example: 

Using integration by parts:

Let , , so , .

Applying the formula:

Simplify the remaining integral:

Final result:

cot(x) dx =∫ ​ dx. ∫
sin(x)
cos(x)

u = sin(x) du = cos(x) dx

cot(x) dx =∫ ​ du =∫
u

1
ln ∣u∣ + C = ln ∣ sin(x)∣ + C. 

arctan(x) dx∫

u = arctan(x) dv = dx du = ​dx1+x2
1 v = x

arctan(x) dx =∫ x arctan(x) − ​ dx. ∫
1 + x2

x

​ dx =∫
1 + x2

x
​ ln(1 +

2
1

x ). 2

arctan(x) dx =∫ x arctan(x) − ​ ln(1 +
2
1

x ) +2 C. 
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19. Integrals of Rational Functions and
Improper Integrals

Integrals of Rational Functions

Explanation

Rational functions are expressed as the ratio of two polynomials. To integrate rational functions:

1. If the degree of the numerator is greater than or equal to the degree of the denominator,

perform polynomial division to simplify the integrand.

2. For irreducible denominators, use partial fraction decomposition to break the integrand into

simpler fractions.

Example 1: Polynomial Division

Evaluate:

1. Perform polynomial division:

2. Rewrite the integral:

​ dx∫
x − 1
x2

​ =
x − 1
x2

x + 1 + ​.
x − 1

1
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3. Solve:

Final result:

Example 2: Partial Fraction Decomposition

Evaluate:

1. Factor the denominator:

2. Decompose:

3. Solve for , and substitute into the integral:

4. Solve for :

Multiply through by the denominator  to clear the fractions:

Expand the right-hand side:

Combine like terms:

​ dx =∫
x − 1
x2

(x +∫ 1) dx + ​ dx.∫
x − 1

1

x dx =∫ ​, 1 dx =
2
x2

∫ x, ​ dx =∫
x − 1

1
ln ∣x − 1∣.

​ dx =∫
x − 1
x2

​ +
2
x2

x + ln ∣x − 1∣ + C.

​ dx∫
x + 13

1

x +3 1 = (x + 1)(x −2 x + 1).

​ =
x + 13

1
​
+

x + 1
A

​
.

x − x + 12

Bx + C

A,B,C

​ dx =∫
x + 13

1
​ dx +∫

x + 1
A

​ dx.∫
x − x + 12

Bx + C

A,B,C

x +3 1 = (x + 1)(x −2 x + 1)

1 = A(x −2 x + 1) + (Bx + C)(x + 1). 

1 = A(x −2 x + 1) + (Bx + C)(x + 1) = Ax −2 Ax + A + Bx +2 Bx + Cx + C. 
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Equate coefficients with :

Coefficient of : 

Coefficient of : 

Constant term: 

Solve the system of equations:

1.  ⟹ 

2.  ⟹  ⟹ 

3.  ⟹  ⟹  ⟹ .

Substitute back:

,

,

.

5. Rewrite the integral:

Substitute  into the decomposition:

The integral becomes:

6. Integrate each term:

First term:

Second term:

Split the numerator of the second fraction:

1 = (A + B)x +2 (−A + B + C)x + (A + C). 

1 = 0x +2 0x + 1

x2 A + B = 0

x −A + B + C = 0

A + C = 1

A + B = 0 B = −A

−A + (−A) + C = 0 −2A + C = 0 C = 2A

A + C = 1 A + 2A = 1 3A = 1 A = ​3
1

A = 3
1

B = −A = − ​3
1

C = 2A = ​3
2

A,B,C

​ =
x + 13

1
​ +

x + 1
​3

1

​. 
x − x + 12

− ​x + ​3
1

3
2

​ dx =∫
x + 13

1
​ dx +∫

x + 1
​3

1

​ dx. ∫
x − x + 12

− ​x + ​3
1

3
2

​ dx =∫
x + 1

​3
1

​ ln ∣x +
3
1

1∣. 
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For , use substitution , . This leads to

a simpler integration (details skipped here for brevity).

For , complete the square:

Then use a standard arctangent formula.

7. Combine results:

After integrating, combine all terms to express the final solution:

The "other terms" involve logarithms and arctangents based on the completed square and

substitution.

Improper Integrals

Improper integrals involve infinite limits of integration or unbounded integrands.

Type 1: Infinite Limits

If the limits of integration include  or :

Definition:

Example 1: Convergent Integral

Evaluate:

​ dx =∫
x − x + 12

− ​x + ​3
1

3
2

− ​ dx +
3
1 ∫

x − x + 12

x
​ ​ dx. 

3
2 ∫

x − x + 12

1

​ dx∫
x −x+12

x u = x −2 x + 1 du = (2x − 1)dx

​ dx∫ x −x+12
1

x −2 x + 1 = x − ​ +(
2
1)

2

​. 
4
3

​
dx =∫

x + 13

1
​ ln ∣x +

3
1

1∣ + (other terms from integrations) + C. 

−∞ ∞

​ f(x) dx =∫
−∞

b

​ ​ f(x) dx,
R→−∞

lim ∫
R

b

​ f(x) dx =∫
a

∞

​ ​ f(x) dx.
R→∞
lim ∫

a

R
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1. Rewrite as a limit:

2. Solve:

Substituting limits:

The improper integral converges to .

Example 2: Divergent Integral

Evaluate:

1. Rewrite as a limit:

2. Solve:

Substituting limits:

The improper integral diverges to .

Type 2: Unbounded Integrand

​ e dx∫
−∞

−1
x

​ e dx =∫
−∞

−1
x

​ ​ e dx.
R→−∞

lim ∫
R

−1
x

e dx =∫ x e +x C.

​ e − e =
R→−∞

lim [ −1 R] ​.
e

1

​

e
1

​ ​ dx∫
1

∞

x

1

​ ​
dx =∫

1

∞

x

1
​ ​ ​ dx.

R→∞
lim ∫

1

R

x

1

​
dx =∫

x

1
ln ∣x∣ + C.

​ lnR − ln 1 =
R→∞
lim [ ] ∞.

∞
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If the integrand is unbounded on  or :

Definition:

Example

Evaluate:

1. Rewrite as a limit:

2. Solve:

Substituting limits:

The improper integral converges to .

Combination of Type 1 and Type 2

Evaluate:

1. Break into two improper integrals:

(a, b] [a, b)

​ f(x) dx =∫
a

b

​ ​ f(x) dx,
R→a+
lim ∫

R

b

​ f(x) dx =∫
a

b

​ ​ f(x) dx.
R→b−
lim ∫

a

R

​ ​ dx∫
0

1

​x

1

​ ​ dx =∫
0

1

​x

1
​ ​ x dx.

R→0+
lim ∫

R

1
−1/2

x dx =∫ −1/2 2 ​ +x C.

​ 2 ​ − 2 ​ =
R→0+
lim [ 1 R] 2.

2

​ ​ dx∫
−∞

0

x2

1
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2. Evaluate each part using the respective definitions. Both diverge, so the integral diverges.

-test ( -Integrals)

-Integrals involve functions of the form :

1. For :

Converges if .

Diverges if .

2. For :

Converges if .

Diverges if .

Comparison Technique

Theorem

Let  for all , where  may be infinite.

1. If  converges, then  also converges.

2. If  diverges, then  also diverges.

Example

Compare:

1.  for all .

2. By -integrals,  converges.

3. By comparison,  also converges.

​ ​ dx =∫
−∞

0

x2

1
​ ​ dx +∫

−∞

−1

x2

1
​ ​ dx.∫

−1

0

x2

1

p p

p ​

xp
1

​ ​ dx∫1
∞

xp
1

p > 1

p ≤ 1

​ ​ dx∫0
1
xp
1

p < 1

p ≥ 1

0 ≤ f(x) ≤ g(x) x ∈ [a, b] a, b

​ g(x) dx∫
a

b
​ f(x) dx∫

a

b

​ f(x) dx∫
a

b
​ g(x) dx∫

a

b

f(x) = x , g(x) =−106 x +−106 106.

0 ≤ f(x) ≤ g(x) x ∈ [1, ∞)

p ​ x dx∫1
∞ −106

​(x +∫1
∞ −106 106) dx
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20. Integrals of Rational
Functions, Sequences, and Series

Integrals of Rational Functions

General Result

For the integral of a rational function , where  and  are polynomials, the

result typically involves:

1. Logarithmic Terms:  for linear factors in the denominator.

2. Logarithmic and Arctangent Terms: For irreducible quadratic factors in the

denominator, the result involves  or .

The method depends on:

1. Polynomial division (if needed),

2. Partial fraction decomposition.

Example: Improper Integral

Evaluate:

q(x)
p(x) p(x) q(x)

ln ∣x + c∣

ln ∣f(x)∣ arctan ​( constant
x )
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Solution: 

Step 1: Substitution to Simplify the Square Root

To simplify , substitute :

,

, and .

The integral becomes:

Step 2: Simplify the Integrand

Factor  out of the denominator:

Simplify further:

Thus, the integral reduces to:

Step 3: Split the Improper Integral

The behavior at  and  must be checked. The integral  converges

because the function decays quickly at infinity.

Step 4: Evaluate 

​ ​ dx∫
0

∞

​ + xx 2

1

​ ​ dx∫0
∞

​+xx 2
1

​x x = t2

dx = 2t dt

​ =x t x =2 t4

​ ​ dx =∫
0

∞

+ xx 2

1
​ ​ dt. ∫

0

∞

t + t4

2t

t

​ ​
dt =∫

0

∞

t + t4

2t
​ ​

dt. ∫
0

∞

t(1 + t )3

2t

​ ​ dt =∫
0

∞

t(1 + t )3

2t
2 ​ ​ dt. ∫

0

∞

1 + t3

1

I = 2
​ ​

dt. ∫
0

∞

1 + t3

1

t = 0 t → ∞ ​ ​ dt∫0
∞

1+t3
1

​ ​ dt∫0
∞

1+t3
1
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The integral of  can be computed exactly using special functions (Beta or Gamma

functions). The result is:

Step 5: Substitute Back

From Step 2:

Substitute the result:

Simplify:

Final Answer:

The value of the integral is:

Sequences and Series

Definition of a Sequence

A sequence is a function of the form:

where  is an infinite subset of integers, and the range is a set of real numbers.

Notation: , where  is a positive integer.

​1+t3
1

​ ​ dt =∫
0

∞

1 + t3

1
​. 

3 ​3

π

I = 2 ​ ​ dt. ∫
0

∞

1 + t3

1

I = 2 ⋅ ​. 
3 ​3
π

I = ​. 
3 ​3

2π

​ ​ dx =∫
0

∞

​ + xx 2

1
​

3 ​3
2π

a : D → R,

D

a ​ =n a(n) n
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Examples of Sequences

1. Explicit Sequence:

Define the sequence:

Domain:  (non-negative integers).

Range:  (real numbers).

The sequence maps each  to .

2. Logarithmic Sequence:

Define the sequence:

Domain:  (positive integers).

Range:  (real numbers).

This sequence grows without bound as .

3. Recursive Sequences

A sequence defined recursively specifies:

a. An initial condition (starting value(s)),

b. A recurrence relation to generate subsequent terms.

Example: Fibonacci Sequence

The Fibonacci sequence is defined as:

Initial conditions: ,

Recursive relation:

Calculating Terms:

a ​ =n ​.
n + 12

n + 1

n ∈ Z ​≥0

R

n a ​ =n ​n +12
n+1

a ​ =n ln(n), n ≥ 1.

n ∈ Z ​≥1

R

n → ∞

F ​ =0 1,F ​ =1 1

F ​ =n F ​ +n−1 F ​ for n ≥n−2 2.
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,

,

.

The sequence continues as: .

Example: Square Root Recursive Sequence

Define the sequence:

Initial condition: ,

Recurrence relation:

Calculating Terms:

,

,

.

The sequence continues recursively based on the relation.

F ​ =2 F ​ +1 F ​ =0 1 + 1 = 2

F ​ =3 F ​ +2 F ​ =1 2 + 1 = 3

F ​ =4 F ​ +3 F ​ =2 3 + 2 = 5

1, 1, 2, 3, 5, 8, …

a ​ =1 1

a ​ =n ​ for n ≥3 + a ​n−1 2.

a ​ =1 1

a ​ =2 ​ =3 + a ​1 =3 + 1 2

a ​ =3 ​ =3 + a ​2 =3 + 2 ​5
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21. Solutions to Calculus Problems:
Preparation for MT 2

📌 Important Note:

"I couldn’t attend this lecture where students had an open Q&A session with the professor. To ensure I stay on

track, I’ve included the solutions to Midterm 2 (May 4, 2015) here as a reference."

MATH 106 - Calculus I
Midterm II Solutions

Date: May 4, 2015

Problem 1 Solutions

(a) Evaluate .

Solution:

1. Define the expression as .

Take the natural logarithm on both sides to simplify the power:

2. The problem now reduces to finding the limit:

lim ​ e + 2xx→0+ ( x ) ​

x
3

y = e + 2x( x ) ​

x
3

ln y = ​ ln e + 2x .
x

3
( x )

​ ln y =
x→0+
lim ​ ​.

x→0+
lim

x

3 ln e + 2x( x )
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3. Apply L’Hôpital’s Rule:

The numerator is , and its derivative is:

The denominator is , and its derivative is:

Using L’Hôpital’s Rule:

4. Simplify the fraction:

because  and .

5. The limit becomes:

6. Exponentiate both sides to find :

Final Answer:

(b) Evaluate 

Solution:

1. Write the limit as:

ln e + 2x( x )

​ ln e + 2x =
dx

d
( x ) ​ ⋅

e + 2xx

1
e + 2 .( x )

x

​x =
dx

d
1.

​ ​ =
x→0+
lim

x

3 ln e + 2x( x )
​ 3 ⋅

x→0+
lim ​.

1

​

e +2xx
e +2x

​ →
e + 2xx

e + 2x

1 as x → 0 ,+

e →x 1 2x → 0

​ ln y =
x→0+
lim 3 ⋅ 1 = 9.

y

​y =
x→0+
lim e .9

​e9

​ ​. 
x→0+
lim

ln(x + 1)

​ t ln(t) dt∫
x+1
1−x2

106

​ ​. 
x→0+
lim

ln(x + 1)

​ t ln(t) dt∫
x+1
1−x2

106
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Both the numerator and denominator approach  as , creating an indeterminate form . Thus, we

can apply L’Hôpital’s Rule.

2. Differentiate the numerator using the formula for the derivative of an integral with variable limits:

3. Compute the derivatives of the bounds:

At 

At 

Substituting:

4. Differentiate the denominator:

5. Apply L’Hôpital’s Rule:

6. Substitute  directly:

Thus:

Final Answer:

(c) Evaluate 

0 x → 0+
​0

0

​ ​ t ln(t) dt =
dx

d ∫
x+1

1−x2

106 t ln(t) ​t = 1 − x ⋅106 2
​(1 −

dx

d
x ) −2 t ln(t) ​t = x + 1 ⋅106

​(x +
dx

d
1). 

g(x) = 1 − x :2

f(g(x)) = (1 − x ) ln(1 −2 106 x ), g (x) =2 ′ −2x. 

h(x) = x + 1 :

f(h(x)) = (x + 1) ln(x +106 1), h (x) =′ 1. 

​ ​ t ln(t) dt =
dx

d ∫
x+1

1−x2

106 −2x(1 − x ) ln(1 −2 106 x ) −2 (x + 1) ln(x +106 1). 

​ ln(x +
dx

d
1) = ​. 

x + 1
1

​ ​ =
x→0+
lim

ln(x + 1)

​ t ln(t) dt∫
x+1
1−x2

106

​ ​. 
x→0+
lim

​

x+1
1

−2x(1 − x ) ln(1 − x ) − (x + 1) ln(x + 1)2 106 2 106

x = 0

​ ​ =
x→0+
lim

​(0)+1
1

−2(0)(1−)(0) ) ln(1 − (0) ) − ((0) + 1) ln((0) + 1)2 106 2 106

​

1
0 − 0

​ ​ =
x→0+
lim

ln(x + 1)

​ t ln(t) dt∫
x+1
1−x2

106

0

​0
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Solution:

1. Recognize this as a Riemann sum:

Compare it to the definition of a definite integral:

where  and 

2. Identify the corresponding integral:

The interval is , since .

The function is .

Thus:

3. Evaluate the integral:

Use substitution:

Let , so .

When , ; when , u = 3.

The integral becomes:

4. Compute the integral:

Substituting back:

​ ​ ​ ​ + 1 .
n→∞
lim

i=1

∑
n

n

1 (
n

2i )
5

​ ​ ​ ​ + 1 .
n→∞
lim

i=1

∑
n

n

1 (
n

2i )
5

   ​ f(x) dx =∫
a

b

​ ​f x ​ Δx,  
n→∞
lim

i=1

∑
n

( i
∗)

Δx = ​n
b−a x ​ =i a + iΔx

[0, 1] ​ →
n
i x

f(x) = (2x + 1)5

​ ​ ​ ​ + 1 =
n→∞
lim

i=1

∑
n

n

1 (
n

2i )
5

​(2x +∫
0

1

1) dx. 5

u = 2x + 1 du = 2 dx

x = 0 u = 1 x = 1

​(2x +∫
0

1

1) dx =5
​ ​ u du. 

2
1 ∫

1

3
5

u du =∫ 5
​. 

6
u6

​ ​ u du =
2
1 ∫

1

3
5

​ ​ . 
2
1 [

6
u6

]
1

3
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5. Evaluate the bounds:

Final Answer:

Problem 2

Find the global maximum and minimum values of the function .

Solution:

1. Find the derivative:

To locate the critical points, compute the derivative of  using the product rule:

The derivative of  is:

Substitute back:

Factor:

2. Set :

The factors of  give:

Critical points: .

3. Analyze the critical points:

At :

At :

​ ​ − =
2
1 [

6
36

6
16

] ​ ​ − ​ =
2
1 [

6
729

6
1] ​ ⋅

2
1

​ =
6

728
​ =

12
728

​. 
3

182

​​

3
182

f(x) = x e2 −x2

f(x)

f (x) =′
​ x ⋅ e =

dx

d ( 2 −x2
) 2xe +−x2

x ⋅2
​ e .

dx

d ( −x2
)

e−x2

​e =
dx

d −x2
−2xe .−x2

f (x) =′ 2xe −−x2
2x e .3 −x2

f (x) =′ 2xe (1 −−x2
x ).2

f (x) =′ 0
f (x) =′ 2xe (1 −−x2

x )2

2x = 0 ⟹ x = 0, 1 − x =2 0 ⟹ x = ±1.

x = 0,x = 1,x = −1

x = 0

f(0) = (0) e =2 −(0)2
0.

x = 1

f(1) = (1) e =2 −(1)2
e .−1
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At :

4. Global maximum and minimum:

As , , since the exponential decay dominates the growth of .

The global maximum value occurs at  and , where .

The global minimum value is .

Final Answer:

Global Maximum:  at and .

Global Minimum:  at .

Problem 3

(a) 

We will use integration by parts, which is given by:

Let:

, so 

, so 

Now, applying the integration by parts formula:

Simplifying:

Now, evaluate the boundary terms:

Thus, we now need to solve:

x = −1

f(−1) = (−1) e =2 −(−1)2
e .−1

x → ±∞ f(x) = x e →2 −x2
0 x2

x = 1 x = −1 f(x) = e−1

f(0) = 0

​e−1 x = 1 x = −1

​0 x = 0

​ x e dx∫0
4 2 2x

u dv =∫ uv − v du ∫

u = x2 du = 2x dx

dv = e dx2x v = e2
1 2x

​ x e dx =∫
0

4
2 2x

​e ​ −[
2
x2

2x]
0

4

​ ​e ⋅∫
0

4

2
1 2x 2x dx 

= ​e ​ −[
2
x2

2x]
0

4

​ xe dx ∫
0

4
2x

​e ​ =[
2
x2

2x]
0

4

​ ⋅
2
1

16 ⋅ e −8 0 = 8e  8
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For the remaining integral, we apply integration by parts again on .

Let:

, so 

, so 

Now, apply the integration by parts formula again:

Simplifying:

Evaluating the boundary terms:

Now, evaluate the remaining integral:

Thus, we now have:

Simplifying:

Now substitute this back into the original equation for :

Simplifying:

​ x e dx =∫
0

4
2 2x 8e −8 xe dx ∫

0

4
2x

​ xe dx∫0
4 2x

u = x du = dx

dv = e dx2x v = e2
1 2x

​ xe dx =∫
0

4
2x

​e ​ −[
2
x 2x]

0

4
​ ​e dx ∫

0

4

2
1 2x

= ​e ​ −[
2
x 2x]

0

4
​ ​ e dx 

2
1 ∫

0

4
2x

​e ​ =[
2
x 2x]

0

4
​e −

2
4 8 0 = 2e  8

​ e dx =∫
0

4
2x

​e ​ ​ =
2
1 2x

0

4
​ e − 1  

2
1

( 8 )

​ xe dx =∫
0

4
2x 2e −8

​ ⋅
2
1

​(e −
2
1 8 1) = 2e −8

​(e −
4
1 8 1) 

= 2e −8
​e +

4
1 8

​ =
4
1

​e +
4
7 8

​ 
4
1

​ x e dx∫0
4 2 2x

​ x e dx =∫
0

4
2 2x 8e −8

​e + ​  (
4
7 8

4
1)

= 8e −8
​e −

4
7 8

​ =
4
1

​e −
4

32 8
​e −

4
7 8

​ 
4
1
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Thus, the final answer is:

(b) 

We begin by factoring the denominator:

Now, we perform partial fraction decomposition:

Multiplying through by the denominator :

We now find the values of ,  and  by substituting values of :

At :

At :

To find , we substitute :

Thus, the partial fraction decomposition is:

Now we integrate:

= ​e −
4

25 8
​ 

4
1

​ ​e − ​

4
25 8

4
1

​∫
x −3x3 2
−3 dx

x −3 3x =2 x (x −2 3)

​ =
x (x − 3)2

−3
​ +

x

A
​ +

x2

B
​

x − 3
C

x (x −2 3)

−3 = Ax(x − 3) + B(x − 3) + Cx2

A B C x

x = 0

−3 = −3B ⇒ B = 1

x = 3

−3 = 3 C ⇒2 C = − ​

3
1

A x = 1

A + C = 0

A = −C = ​

3
1

​ =
x (x − 3)2

−3
​ +

3x
1

​ −
x2

1
​

x − 3
1/3

​ dx =∫
x (x − 3)2

−3
​ ​ +

3
1 ∫

x

dx
​ −∫

x2

dx
​ ​

3
1 ∫

x − 3
dx
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The integrals are:

Thus, the final answer is:

Problem 4

(a) Determine whether the following improper integral

is convergent or divergent.

We first apply the limit as :

Let , so , thus the integral becomes:

This simplifies to:

Evaluating the boundary terms:

As , , so the result is:

Since the limit exists and is finite, the integral is convergent.

(b) Find the area of the finite region between  and .

The problem asks us to find the area between the curves  and . First, we set up the

integral by determining the points where the curves intersect.

​ ln ∣x∣ −
3
1

​ −
x

1
​ ln ∣x −

3
1

3∣ + C

​ ln ∣x∣ −
3
1

​ −
x

1
​ ln ∣x −

3
1

3∣ + C

​ ​∫
e

∞

x(lnx)2

dx

t → ∞

​ ​ ​

t→∞
lim ∫

e

t

x(lnx)2

dx

u = lnx du = ​dx
x
1

= ​ ​ ​

t→∞
lim ∫

ln e

ln t

u2

du

= ​ ​ ​

t→∞
lim [

u

−1]
ln e

ln t

= ​ ​ + 1
t→∞
lim (

ln t

−1 )

t → ∞ ​ →ln t
1 0

= 1

y = x3 y = 3x −2 2x
y = x3 y = 3x −2 2x
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Equating the two functions:

Rearranging:

Factoring:

Thus, the points of intersection are , , and .

Now, to find the area between the curves, we set up the integral:

We now calculate each integral separately.

First integral:

The integral is:

Second integral:

The integral is:

Evaluating the bounds:

At :

x =3 3x −2 2x

x −3 3x +2 2x = 0

x(x −2 3x + 2) = 0

x(x − 1)(x − 2) = 0 

x = 0 x = 1 x = 2

Area = ​ x − 3x + 2x dx +∫
0

1

( 3 2 ) ​ 3x − 2x − x dx ∫
1

2

( 2 3)

​(x −∫
0

1
3 3x +2 2x) dx 

−
4
x4

x +3 x ​ ​ =2

0

1
​ − 1 + 1 −(

4
1 ) (0) = ​ 

4
1

​(3x −∫
1

2
2 2x − x ) dx 3

x − x − ​ ​  [ 3 2

4
x4

]
1

2

x = 2

2 −3 2 −2
​ =

4
24

8 − 4 − 4 = 0 
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At :

Thus, the second integral evaluates to:

Now, adding the results of both integrals:

Thus, the area of the finite region is:

x = 1

1 −3 1 −2
​ =

4
14

1 − 1 − ​ =
4
1

− ​ 
4
1

0 − − ​ =(
4
1) ​ 

4
1

​ +
4
1

​ =
4
1

​ 
2
1

​ ​

2
1
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22. Sequence Properties and
Mathematical Induction

Definitions

Sequence Behavior

Let  be a sequence. The following properties describe its behavior:

1. Increasing:

 for all .

2. Decreasing:

 for all .

Example: :

 for all ,

,

.

Thus, , so  is decreasing.

3. Non-Decreasing/Non-Increasing:

(a ​) ​n n∈Z+

a ​ >n+1 a ​n n ∈ Z+

a ​ <n+1 a ​n n ∈ Z+

a ​ =n ​1+n2
1

n < n + 1 ⟹ n <2 (n + 1)2 n ∈ Z+

n +2 1 < (n + 1) +2 1

​ >
n +12

1
​(n+1) +12

1

a ​ >n a ​n+1 a ​n
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 /  for all .

4. Monotone:

 is either increasing, decreasing, non-increasing, or non-decreasing.

Example:  is monotone.

Example: :

 because  is increasing on

(  for all ).

Thus, , and  is increasing. Therefore,  is monotone.

Boundedness

1. Bounded Above:

 is bounded above by some  if  for all .

2. Bounded Below:

 is bounded below by some  if  for all .

Example: :

 for all .

Thus,  is bounded above by  and bounded below by .

Example: , is bounded below by :

.

3. Bounded:

 is bounded if it is bounded both above and below.

Example:  is bounded.

Counterexample:  is unbounded because it has no upper bound.

4. Alternating:

 is alternating if  for any .

Example: :

a ​ ≥n+1 a ​n a ​ ≤n+1 a ​n n ∈ Z+

a ​n

a ​ =n ​1+n2
1

a ​ =n ln(n)

n < n + 1 ⟹ ln(n) < ln(n + 1) f(x) = ln(x)
(0, ∞)

f (x) =′
​ >

x
1 0 x > 0

a ​ <n a ​n+1 a ​n ln(n)

a ​n M ∈ R a ​ <n M n ∈ Z+

a ​n M ∈ R a ​ >n M n ∈ Z+

a ​ =n sin(n)

−1 ≤ sin(n) ≤ 1 n ∈ Z+

a ​n 1 −1

a ​ =n n +2 1,n ∈ Z+ 2

n ≥ 1 ⟹ n ≥2 1 ⟹ n +2 1 ≥ 2 > 1

a ​n

a ​ =n sin(n)

a ​ =n n +2 1

a ​n a ​ ⋅n a ​ <n+1 0 n

a ​ =n (−1)n
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For ,

For ,

Alternates between positive and negative.

Function Modeling Sequences

Given a sequence , if there exists a function  such that 

, then we say  models .

Example:

Consider . Define :

Compute :

For .

Thus,  for all .

Since  is decreasing for ,  is decreasing for .

Mathematical Induction

Principle of Mathematical Induction

To prove a statement  for all , we perform two steps:

1. Base Case: Show  is true.

2. Inductive Step: Assume  is true for some  (inductive hypothesis). Show that

.

If both steps are satisfied,  is true for all .

Example: Prove  is Increasing

n = 1, a ​ =1 −1

n = 2, a ​ =2 1

(a ​)n ∈ Zn
+ f : R ​ →>0 R

f(n) = a ​n f a ​n

a ​ =n ​,n ≥
n2

ln(n) 3 f : R ​ →≥3 R

f(x) = ​, so that f(n) =
x2

ln(x)
a ​.n

f (x)′

f (x) =′
​ =

x4

​x − ln(x) ⋅ 2x
x
1 2

​.
x3

1 − 2 ln(x)

x ≥ 3, ln(x) ≥ ln(3) > 1 ⟹ 1 − 2 ln(x) < 0
f (x) <′ 0 x ≥ 3
f x ≥ 3 a ​n n ≥ 3

P ​n n ∈ Z+

P ​1

P ​k k ≥ 1
P ​ ⟹k P ​k+1

P ​n n ∈ Z+

a ​ =n ​3 − a ​n−1
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Let  and .

Claim:  for all .

Proof by Mathematical Induction

1. Base Case:

For ,  and .

Since , the base case holds.

2. Inductive Step:

Assume  for some .

That is, .

We need to prove , i.e., .

From the inductive hypothesis, .

Since  is increasing and , it follows that .

By the principle of mathematical induction,  is increasing for all .

Additional Examples

Example 1: Alternating Sequence

Let :

,

Since ,  is alternating.

Example 2: Bounded Sequence

Let :

,

Bounded above by  and below by .

Example 3: Unbounded Sequence

Let :

a ​ =1 1 a ​ =n ​,n ≥3 − a ​n−1 2

a ​ <n a ​n+1 n ∈ Z+

n = 1 a ​ =1 1 a ​ =2 ​ =3 − a ​1 ​ =3 − 1 ​2

1 < 2

a ​ <k a ​k+1 k ≥ 1

a ​ <k ​3 − a ​k

a ​ <k+1 a ​k+2 a ​ <k+1 ​3 − a ​k+1

a ​ <k a ​k+1

a ​k a ​ <k+1 ​3 − a ​k+1 a ​ <k a ​ <k+1 a ​k+2

a ​n n ∈ Z+

a ​ =n (−1)n

a ​ =1 −1, a ​ =2 1, a ​ =3 −1, …

a ​ ⋅n a ​ <n+1 0 a ​n

a ​ =n sin(n)

−1 ≤ sin(n) ≤ 1

1 −1

a ​ =n n +2 1

10/2/25, 3:41 PM 22. Sequence Properties and Mathematical Induction

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/22%20Sequence%20Properties%20and%20Mathem… 4/5

Guest
Rectangle



 has no upper bound, so it is unbounded.a ​n
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23. Sequences and Series

Definitions and Properties of Sequences

Limit of a Sequence

Let  be a sequence. We say that the limit of  is , and write:

if for every , there exists  such that:

Remark: All standard limit rules for functions apply to sequences.

Examples:

1. :

2. :

(a ​) ​n n∈Z+ an L

​a ​ =
n→∞
lim n L,

ϵ > 0 N ∈ Z+

∣a ​ −n L∣ < ϵ, ∀n ≥ N .

a ​ =n ​

n
1

​ =
n→∞
lim

n

1
0.

a ​ =n sin(n)
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3. :

Limit Properties for Sequences

Let  and . Then:

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Quotient Rule (if ):

5. Scalar Multiplication:

Squeeze Theorem

If  holds for all , and:

then:

​ sin(n) does not exist (d.n.e).
n→∞
lim

a ​ =n (−1) =n cos(πn)

​ cos(πn) does not exist (d.n.e).
n→∞
lim

lim ​a ​ =n→∞ n L lim ​ b ​ =n→∞ n M

​(a ​ +
n→∞
lim n b ​) =n L + M .

​(a ​ −
n→∞
lim n b ​) =n L − M .

​(a ​b ​) =
n→∞
lim n n L ⋅ M .

M = 0

​ ​ =
n→∞
lim

b ​n

a ​n
​.

M

L

​(ca ​) =
n→∞
lim n cL, for any constant c.

a ​ ≤n b ​ ≤n c ​n n ∈ Z+

​a ​ =
n→∞
lim n ​c ​ =

n→∞
lim n L,
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Example:

Evaluate , where .

1. Bound the numerator:

2. Rewrite the sequence:

3. Apply limits to the bounds:

By the Squeeze Theorem:

Monotone Convergence Theorem (MCT)

Given a sequence :

1. If  is monotone (either increasing or decreasing), and

2.  is bounded (above or below),

then  exists.

Example:

Consider the sequence .

1. Monotonicity:

Previously shown that  is increasing:

​b ​ =
n→∞
lim n L.

lim ​a ​n→∞ n a ​ =n ​

n +13
sin (n)2

0 ≤ sin (n) ≤2 1, ∀n ≥ 1.

0 ≤ ​ ≤
n + 13

sin (n)2

​.
n + 13

1

​ ​ =
n→∞
lim

n + 13

1
0.

​a ​ =
n→∞
lim n 0.

(a ​) ​n n∈Z+

a ​n

a ​n

lim ​a ​n→∞ n

a ​ =n+1 ​, a ​ =3 + a ​n 1 1

a ​n

10/2/25, 3:41 PM 23. Sequences and Series

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/23%20Sequences%20and%20Series%2016834575… 3/6

Guest
Rectangle



2. Boundedness:

Prove by induction that :

Base Case: .

Inductive Step: Assume . Show :

By induction,  for all .

Since  is monotone increasing and bounded above,  exists.

3. Find the Limit:

Let . Then:

Square both sides:

Rearrange:

Solve the quadratic equation:

Since , take the positive root:

Thus:

a ​ <n a ​ ∀n ≥n+1 1.

a ​ ≤n 6

a ​ =1 1 ≤ 6

a ​ ≤k 6 a ​ ≤k+1 6

a ​ =k+1 ​ ≤3 + a ​k ​ =3 + 6 ​ =9 3 ≤ 6.

a ​ ≤n 6 n

a ​n lim ​a ​n→∞ n

lim ​a ​ =n→∞ n α

α = ​.3 + α

α =2 3 + α.

α −2 α − 3 = 0.

α = ​.
2

1 ± ​13

a ​ >n 0

α = ​.
2

1 + ​13
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Subsequences

A subsequence of is a sequence , where  is a strictly increasing

sequence of indices.

Remark:

If , then any subsequence  also converges to .

Example:

Let .

1. Define subsequences:

.

.

2. Since subsequences have different limits (  and ), the sequence  does not

converge:

Series

Definition of a Series

Given a sequence , the series  is defined as the limit of its partial

sums , where:

If , we say the series converges to . Otherwise, it diverges.

Examples:

​a ​ =
n→∞
lim n ​.

2
1 + ​13

(a ​) ​n n∈Z+ (a ​) ​k ​n k∈Z+ k ​n

lim ​a ​ =n→∞ n L (a ​)k ​n
L

a ​ =n (−1) 1 + ​

n ( n2
1 )

a ​ =2n 1 + →( (2n)2
1 ) 1

a ​ =2n+1 − 1 + ​ →( (2n+1)2
1 ) −1

1 −1 a ​n

​a ​ does not exist (d.n.e).
n→∞
lim n

(a ​) ​n n∈Z+ ​a ​∑n=1
∞

n

S ​N

S ​ =N a ​ =
n=1

∑
N

n a ​ +1 a +2 ⋯ + a ​.N

lim ​S ​ =N→∞ N S S
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1. :

As , . Thus,  diverges.

2. :

The series does not converge, as  oscillates.

Summary of Key Concepts

1. Monotone Convergence Theorem ensures convergence of bounded monotonic

sequences.

2. Squeeze Theorem applies to bounding sequences to find their limits.

3. A series converges if the limit of its partial sums exists.

4. Subsequences inherit the limits of their parent sequences but can indicate

divergence when limits differ.

a ​ =n n, n ≥ 1

S ​ =N ​n =
n=1

∑
N

​.
2

N(N + 1)

N → ∞ S ​ →N ∞ ​n∑n=1
∞

a ​ =n (−1)n

S ​ =N ​ ​{−1
0

if N  is odd,
if N  is even.

S ​N
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24.  Sequence of Partial Sums and
Convergence Tests of Series

Partial Sums and Series

Definition of a Partial Sum

Definition: Given a sequence  where , the -th partial sum is

defined as

The collection  is called the sequence of partial sums for .

Definition of a Series

Definition: The series associated to the sequence  is defined as the limit of

its sequence of partial sums:

(a ​)n n ∈ Z+ N

S ​ =N ​a ​

n=1

∑
N

n

{S ​} ​N N=1
∞ (a ​)n

(a ​)n
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If this limit exists (and is a finite number), we say that the series converges.

Otherwise, we say that the series diverges.

Example: A Geometric-Type Sequence

Consider  defined by .

1. The partial sum is

2. Convergence:

If , then , so

If ,  does not converge to 0, and  diverges.

If , then , which diverges as .

If , the partial sums oscillate:  does not settle to a single limit, so the

series diverges.

Example: 

If , we do not have a simple closed form for the partial sums, and in fact, the

partial sums do not converge. Hence,  diverges.

n-th Term Test for Divergence (Test for Divergence)

Statement and Proof

Theorem (nth Term Test):

If the series  converges, then

​a ​ =
n=1

∑
∞

n ​S ​ =
N→∞
lim N ​ ​a ​

N→∞
lim

n=1

∑
N

n

(a ​)n a ​ =n A ⋅ rn

S ​ =N A + Ar + Ar +2 ⋯ + Ar =N A ​ (assuming r =
1 − r

1 − rN+1

 1)

∣r∣ < 1 lim ​ r =N→∞
N+1 0

​S ​ =
N→∞
lim N A ​ =

1 − r

1 − 0
​

1 − r

A

∣r∣ > 1 lim ​ rN→∞
N+1 {S ​}N

r = 1 S ​ =N A(N + 1) N → ∞

r = −1 S ​N

sin(n)
a ​ =n sin(n)

​ sin(n)∑n=1
∞

​a ​∑n=1
∞

n
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Proof (by contradiction / limit argument):

1. Suppose  converges to some limit .

2. This means the partial sums  converge to .

3. If , then eventually  stays away from 0, making  fail to

converge properly.

4. Therefore, a necessary condition for convergence is 

Remark: The converse is not true. If , it does not imply 

converges. A standard counterexample is:

Although , the harmonic series  diverges.

Contrapositive Form

If  (or does not exist), then the series  diverges.

Example: . The limit  does not exist (and is not 0), so 

 diverges by the nth Term Test.

Tests for Positive Series

We now focus on positive term series, i.e.,  for all .

1) Integral Test

Integral Test: Suppose  is a positive sequence, and there is a function 

 such that

1.  is continuous,

2.  is non-increasing,

3.  for all .

​a ​ =
n→∞
lim n 0

​a ​∑n=1
∞

n L

S ​ =N ​a ​∑n=1
N

n L

lim ​a ​ =n→∞ n  0 a ​n {S ​}N

lim ​a ​ =n→∞ n 0.

lim ​a ​ =n→∞ n 0 ​a ​∑n=1
∞

n

a ​ =n ​

n

1

lim ​ ​ =n→∞ n
1 0 ​ ​∑n=1

∞
n
1

lim ​a ​ =n→∞ n  0 ​a ​∑n=1
∞

n

a ​ =n sin(n) lim ​ sin(n)n→∞

​ sin(n)∑n=1
∞

a ​ >n 0 n

{a ​}n f :
[1, ∞) → R

f

f

f(n) = a ​n n ∈ Z+
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Then the improper integral  and the series  have the same

behavior: if one converges, the other converges; if one diverges, the other

diverges.

Example: . We compare it with the integral

which is a convergent improper integral (  from 1 to ). Thus, by the Integral

Test, the series  converges.

2) p-Test (p-Series)

p-Test: Consider the series .

If , the series converges.

If , the series diverges.

Example:

 converges (here ).

 diverges (here ).

3) Comparison Test

Comparison Test:

Let  and  be sequences of positive terms with  for all .

If  converges, then  converges.

(Contrapositively) If  diverges, then  diverges.

Example:

​ f(x) dx∫1
∞

​a ​∑n=1
∞

n

​ ​∑n=1
∞

1+n2
1

​ ​∫
1

∞

1 + x2

dx

arctan(x) ∞
​ ​∑n=1

∞
1+n2

1

​ ​

n=1

∑
∞

np
1

p > 1

0 < p ≤ 1

​ ​∑n=1
∞

n3
1 p = 3 > 1

​ ​∑n=1
∞

​n
1 p = ​ ≤2

1 1

{a ​}n {b ​}n 0 ≤ a ​ ≤n b ​n n

b ​∑ n a ​∑ n

a ​∑ n b ​∑ n

a ​ =n ​

n + 73

3n + 1
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1. Note that for , .

2. Compare

3. For large , , which converges by the p-test (since  or 

both ). Thus  converges by the Comparison Test.

4) Limit Comparison Test

Limit Comparison Test:

Let  and  be positive sequences, and consider

If , then  and  either both converge or both diverge.

If , that means . Then:

If  converges,  converges.

If  diverges,  diverges.

If , that means . Then:

If  converges,  converges.

If  diverges,  diverges.

Example:

For large ,

n ≥ 1 a ​ >n 0

​ with ​

n + 73

3n + 1
n3

3n + 1

n ​ ∼
n3

3n+1
​ +

n2
3

​

n3
1 p = 2 p = 3

> 1 ​a ​∑n=1
∞

n

{a ​}n {b ​}n

L = ​ ​

n→∞
lim

b ​n

a ​n

0 < L < ∞ a ​∑ n b ​∑ n

L = 0 b ​ ≫n a ​n

b ​∑ n a ​∑ n

a ​∑ n b ​∑ n

L = ∞ a ​ ≫n b ​n

a ​∑ n b ​∑ n

b ​∑ n a ​∑ n

a ​ =n ​, b ​ =
n + n3

n − 72

n ​

n

1

n

​ =
b ​n

a ​n
​ =

​

n
1

​

n +n3
n −72

​ ⋅
n + n3

n − 72

n = ​

n + n3

n − 7n3
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As , this fraction behaves like

so . Therefore,  converges or diverges if and only if

converges or diverges. But  diverges (harmonic series). Hence,  also

diverges by the Limit Comparison Test.

Formulas for Summing Powers of 

The summation formulas for powers of  (geometric series) are derived as follows,

assuming   (so the series converges).

1. Sum of  from  to :

For the geometric series:

The formula is:

2. Sum of  from  to :

For the geometric series starting at :

Factor out :

n → ∞

​ =
n3

n3

1

L = 1 ∈ (0, ∞) a ​∑ n b ​∑ n

​∑
n
1

​ ​∑n=1
∞

n +n3
n −72

rn

rn

∣r∣ < 1

rn n = 0 ∞

​r =
n=0

∑
∞

n 1 + r + r +2 r +3 …  

​r =
n=0

∑
∞

n
​, for ∣r∣ <

1 − r

1
1.

rn n = k ∞
n = k

​r =
n=k

∑
∞

n r +k r +k+1 r +k+2 …  

rk
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The sum inside the parentheses is the full geometric series from  to :

Thus:

3. Sum of  from  to :

For the geometric series starting at :

Factor out :

The sum inside the parentheses is the full geometric series from  to :

Thus:

​r =
n=k

∑
∞

n r 1 + r + r + … . k ( 2 )

n = 0 ∞

1 + r + r +2 ⋯ = ​. 
1 − r

1

​r =
n=k

∑
∞

n
​, for ∣r∣ <

1 − r

rk
1.

rn n = 1 ∞
n = 1

​r =
n=1

∑
∞

n r + r +2 r +3 …  

r

​r =
n=1

∑
∞

n r 1 + r + r + … . ( 2 )

n = 0 ∞

1 + r + r +2 ⋯ = ​. 
1 − r

1

​r =
n=1

∑
∞

n
​, for ∣r∣ <

1 − r

r
1.
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25. Series Convergence Tests and
Techniques

Ratio Test

Let  be a sequence of positive terms, and define

Then:

If , the series  converges.

If , the series  diverges.

If , the Ratio Test is inconclusive.

Example Using the Ratio Test

Consider the series

{a ​}n

L = ​ ​ (where L ∈
n→∞
lim

a ​n

a ​n+1 [0, ∞]). 

L ∈ [0, 1) a ​∑ n

L ∈ (1, ∞) a ​∑ n

L = 1

​ ​. 
n=1

∑
∞

n!
e πn 2n

2
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Here, . We calculate:

Taking the limit as :

Because , the Ratio Test tells us the series converges.

Root Test

Let  be a sequence of positive terms. Define

Then:

If , the series  converges.

If , the series  diverges.

If , the Root Test is inconclusive.

Example Using the Root Test

Consider the series

(As stated, .)

We look at  and attempt to find:

a ​ =n ​n!
e πn 2n

​ =
a ​n

a ​n+1
​ / ​ =

(n + 1)!
e πn+1 2(n+1)

n!
e πn 2n

​ =
(n + 1)! e πn 2n

e π n!n+1 2(n+1)

​.
n + 1
e π2

n → ∞

L = ​ ​ =
n→∞
lim

n + 1
e π2

0. 

L = 0 < 1

{a ​}n

L = ​ (a ​) (where L ∈
n→∞
lim n

1/n [0, ∞]).

L ∈ [0, 1) a ​∑ n

L ∈ (1, ∞) a ​∑ n

L = 1

​. 
n=1

∑
∞

π π 72n+1 n

n2n

a ​ >n 0

​

n a ​n

L = ​ ​. 
n→∞
lim n a ​n

2
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The exact details depend on how we simplify , but the main point is that once

we compute , we compare  with 1:

If , convergent;

If , divergent;

, no conclusion.

Other Tests and Examples

1. No conclusion from Ratio Test

Sometimes, Ratio (or Root) Test yields . For instance, consider

Applying the Ratio Test here might give a limit of 1, so it is inconclusive. We can then

try other tests (e.g., Limit Comparison Test, Integral Test, etc.).

2. Alternating Series Test

Suppose  is a sequence with

(i)  is alternating (i.e.,  for all ),

(ii)  is non-increasing, and

(iii) .

Then the series  converges.

Example:

We check it is alternating (  changes sign).

 is decreasing.

​7 π …n 2n+1
n2n

L L

L < 1

L > 1

L = 1

L = 1

​. 
n=1

∑
∞

3n + 2
1

{a ​}n

a ​n a ​ ⋅n a ​ <n+1 0 n

∣a ​∣n

lim ​a ​ =n→∞ n 0

a ​∑ n

​. 
n=1

∑
∞

3n + 2
(−1)n

(−1)n

​ ​3n+2
1

10/2/25, 3:41 PM 25. Series Convergence Tests and Techniques

file:///C:/Users/Aykhan/Downloads/math106/MATH106%2011934575a83880f7bf6cc060b17d8eaf/25%20Series%20Convergence%20Tests%20and%2… 3/6

Guest
Rectangle



.

By the Alternating Series Test, this series converges.

Absolute and Conditional Convergence

A series  is

Absolutely convergent if  converges.

Conditionally convergent if  converges but  diverges.

Examples

1. 

, which converges (it resembles a  type). So the original

series is absolutely convergent.

2. 

By the Alternating Series Test, it converges.

But  diverges (similar to the harmonic series).

Thus this series is conditionally convergent.

Power Series

A power series centered at  is a series of the form

The set of  for which this series converges is the domain of .

Examples of Power Series

lim ​ ​ =n→∞ 3n+2
1 0

a ​∑ n

∣a ​∣∑ n

a ​∑ n ∣a ​∣∑ n

​ ​

n=1

∑
∞

1 + n2

(−1)n

​ ​ =1+n2
(−1)n

​1+n2
1 1/n2

​ ​

n=1

∑
∞

3n + 2
(−1)n

​ ​ ​∑ 3n+2
1

x ​0

F (x) = ​a ​ (x −
n=0

∑
∞

n x ​) . 0
n

x ∈ R F
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1. , centered at .

2. , also centered at .

3. , centered at .

Domain of Convergence

Using the Ratio Test on

If , the condition for convergence is .

(i) If , the only way  can hold is if . So the domain is

.

(ii) If , then  for all , so the series converges for every 

.

(iii) If , we get . We must also check endpoints for

convergence.

Radius of Convergence

The radius of convergence of a power series  is

(If the limit is zero, . If the limit is infinity, .)

Example:  has . Then . So , hence .

Differentiation and Integration of Power Series

F (x) = ​x

n=0

∑
∞

n x ​ =0 0

F (x) = ​nx

n=0

∑
∞

n 0

F (x) = ​ ​ (x −
n=0

∑
∞

n

ln (n)2

2)n x ​ =0 2

∣a ​(x −n+1 x ​) ∣ / ∣a ​(x −0
n+1

n x ​) ∣ =0
n

​ ​x −
∣a ​∣n

∣a ​∣n+1
x ​ ​.0

lim ​ ​ =n→∞ ∣a ​∣n
∣a ​∣n+1 L L ⋅ ∣x − x ​∣ <0 1

L = ∞ L ∣x − x ​∣ <0 1 x = x ​0

{x ​}0

L = 0 L ∣x − x ​∣ =0 0 x x ∈
R

L ∈ (0, ∞) ∣x − x ​∣ <0 1/L

a ​(x −∑ n x ​)0
n

R = ​. 
lim ​ ​a ​/a ​ ​n→∞ n+1 n

1

R = ∞ R = 0

x∑ n a ​ =n 1 ​ =∣a ​∣n
∣a ​∣n+1 1 L = 1 R = 1
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If

is a power series with radius of convergence , then inside its interval of

convergence

( ):

1.  is differentiable term by term:

2.  can be integrated term by term:

Example:

, for .

Differentiate: .

Integrate similarly.

F (x) = ​a ​ (x −
n=0

∑
∞

n x ​)  0
n

R

∣x − x ​∣ <0 R

F

F (x) =′
​na ​ (x −

n=1

∑
∞

n x ​) . 0
n−1

F

F (x) dx =∫ ​ (x −
n=0

∑
∞

n + 1
a ​n

x ​) +0
n+1

C.

​ =1−x
1

​x∑n=0
∞ n ∣x∣ < 1

​( ​) =
dx
d

1−x
1

​ =(1−x)2
1

​nx∑n=1
∞ n−1
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26. Solutions to Calculus
Problems: Preparation for Final
Exam

26. Solutions to Calculus Problems:
Preparation for Final Exam

What This Note Is About

We have three problems to analyze:

1. Integral .

Investigate convergence by splitting the integral and using comparison tests.

2. Series .

Show how  simplifies to .

Use absolute convergence tests (comparison with ).

​ ​ dx∫
0

1

​x(1 − x)

1

​ ​

n=10

∑
∞

ln(ln(n))
sin( n + ​ π)( 2

1 )

sin( n + ​ π)( 2
1 ) (−1)n

1/n
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Conclude conditional convergence via the Alternating Series Test.

3. Series .

Use the Integral Test by defining .

Show all conditions are satisfied and evaluate the improper integral to check

convergence.

Below, we provide all solutions with detailed checks of convergence criteria, step-by-

step proofs, and tests.

Problem 1: 

Objective

Determine whether the improper integral converges or diverges, and justify the result by

splitting the integral and using appropriate comparison tests.

Step-by-Step Solution

We notice that the integrand  becomes problematic near  and . We

will split the integral into two parts and analyze each endpoint separately:

Near 

1. Focus on .

As , . Hence the integrand  behaves similarly to

.

2. Comparison

​

n=2

∑
∞

n ln (n)3

2

f(x) = ​

x ln (x)3
2

​ ​
dx∫

0

1

​x(1 − x)

1

​

​x(1−x)
1 x = 0 x = 1

​ ​ dx =∫
0

1

​x(1 − x)

1
​ ​ dx +∫

0

1/2

​x(1 − x)

1
​ dx.∫

1/2

1

​x(1 − x)

1

x = 0

​ ​ dx∫
0

1/2

​x(1 − x)

1

x → 0+
​ ≈x(1 − x) ​x ​

​x(1−x)
1

​

​x
1

1 1
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Near ,  for some constant .

3. Convergence of 

Recall

Since  is integrable near , by the Comparison Test,  is also integrable

near .

Near 

1. Focus on .

As , . Hence the integrand  behaves

similarly to .

2. Comparison

Near ,  for some constant .

3. Convergence of 

We know

Hence, by the Comparison Test,  is also integrable near .

​ vs. ​. 
​x(1 − x)

1
​x

1

x = 0 ​ ≤
​x(1−x)

1 C ⋅ ​

​x
1 C > 0

​ ​ dx∫0
1/2

​x
1

​ ​ dx =∫
0

1/2

​x

1
2 ​ ​ =[ x]

0
1/2 2 ​ −​

2
1

0 < ∞.

​

​x
1 0 ​

​x(1−x)
1

0

x = 1

​ ​ dx∫
1/2

1

​x(1 − x)

1

x → 1−
​ ≈x(1 − x) ​1 − x ​

​x(1−x)
1

​

​1−x

1

​ vs. ​. 
​x(1 − x)

1
​1 − x

1

x = 1 ​ ≤
​x(1−x)

1 K ⋅ ​

​1−x

1 K > 0

​ ​ dx∫1/2
1

​1−x
1

​ ​ dx =∫
1/2

1

​1 − x

1
−2 ​ ​ =[ 1 − x]

1/2

1
0 − (−2 ​) =1 − ​2

1 2 ⋅ ​ <
​2

1
∞.

​

​x(1−x)
1 1
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Conclusion for Problem 1

Since the integral converges at both endpoints  and , we conclude:

Problem 2: 

Objective

Determine whether the series

converges absolutely, converges conditionally, or diverges.

Step-by-Step Solution

Absolute convergence of a series  means  converges. If 

diverges but  converges, we say the series is conditionally convergent.

Simplifying the Terms

First, observe:

Hence each term is:

Absolute Convergence Test

Consider

x = 0 x = 1

​ ​ dx is convergent.∫
0

1

​x(1 − x)

1

​ ​

n=10

∑
∞

ln(ln(n))
sin( n + ​ π)( 2

1 )

​ ​ 
n=10

∑
∞

ln(ln(n))
sin( n + ​ π)( 2

1 )

a ​∑ n ∣a ​∣∑ n ∣a ​∣∑ n

a ​∑ n

sin((n + ​)π) =2
1 sin(nπ + ​) =2

π cos(nπ) = (−1) .n

a ​ =n ​.
ln(ln(n))

(−1)n
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We compare  to :

1. Inequality

For , we typically have

2. Divergent Comparison

Since  diverges (harmonic series), and  for large , then by

Comparison Test:

Therefore, the series  does not converge.

Conditional Convergence via Alternating Series Test

Now check the original (non-absolute) series:

1. Alternating terms:  provides the sign changes.

2. Magnitude is decreasing:

As , , so  decreases to .

3. Limit to zero:

​ a ​ =
n=10

∑
∞

∣ n∣ ​ ​.
n=10

∑
∞

ln(ln(n))
1

​ln(ln(n))
1

​

n
1

n ≥ 10

ln(ln(n)) < ln(n) < n ⟹ ​ >
ln(ln(n))

1
​.

n

1

​ ​

n=10

∑
∞

n

1
​ ≥ln(ln(n))

1 C ⋅ ​

n
1 n

​ ​ also diverges.
n=10

∑
∞

ln(ln(n))
1

∣a ​∣∑ n

​ ​. 
n=10

∑
∞

ln(ln(n))
(−1)n

(−1)n

b ​ =n ​. 
ln(ln(n))

1

n → ∞ ln(ln(n)) → ∞ b ​n 0
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By the Alternating Series Test (Leibniz Test), an alternating series with terms that

decrease in absolute value to  converges.

Conclusion for Problem 2

Absolute convergence: Fails (the series  diverges).

Conditional convergence: Succeeds, by the Alternating Series Test.

Hence, the series

is conditionally convergent.

Problem 3: 

Objective

Determine whether the series

converges or diverges by using the Integral Test.

Step-by-Step Solution

Theorem (Integral Test)

Suppose  is continuous, positive, and decreasing for . Then the

series  converges if and only if the integral  converges.

1. Define

​b ​ =
n→∞
lim n ​ ​ =

n→∞
lim

ln(ln(n))
1

0. 

0

∣a ​∣∑ n

​ ​ 
n=10

∑
∞

ln(ln(n))
(−1)n

​ ​∑n=2
∞

n ln (n)3
2

​ ​ 
n=2

∑
∞

n ln (n)3

2

f(x) x ≥ x ​0

​ f(n)∑n=x ​0

∞
​ f(x) dx∫

x ​0

∞
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Continuous:  is continuous for , so certainly on .

Positive:  for .

Decreasing: As  increases,  grows, so  grows, making 

decrease.

2. Evaluate

Let . Then . When , . When , 

. Thus the integral becomes

3. Compute the improper integral

Hence the integral converges.

4. Conclusion by Integral Test

Since  converges and  satisfies the conditions of the Integral

Test, the series

converges.

Final Summary

f(x) = ​, x ≥
x ln (x)3

2
2. 

f x > 1 [2, ∞)

f(x) > 0 x > 1

x ln(x) ln (x)3
​

x ln (x)3
2

​ ​
dx.∫

2

∞

x ln (x)3
2

u = ln(x) du = ​ dx
x
1 x = 2 u = ln(2) x → ∞ u →

∞

​ ​
dx =∫

2

∞

x ln (x)3
2

​ ​
du =∫

ln(2)

∞

u3

2
2

​ u du.∫
ln(2)

∞
−3

2 ​ u du =∫
ln(2)

∞
−3 2 − ​ ​ =[ 2u2

1 ]
ln(2)
∞ 2 0 − (− ​) =( 2(ln(2))2

1 ) ​ <
(ln(2))2

1
∞.

​ ​ dx∫
2

∞

x ln (x)3

2
f

​ ​ 
n=2

∑
∞

n ln (n)3

2

1
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Problem 1: The integral  converges by splitting into two intervals 

 and  and comparing with  and  near the endpoints.

Problem 2: The series  converges conditionally by the

Alternating Series Test, but fails absolute convergence since  diverges

by comparison with .

Problem 3: The series  converges by the Integral Test, as the

corresponding improper integral from 2 to  converges.

​ ​ dx∫0
1

​x(1−x)
1

[0, ​]2
1 [ ​, 1]2

1
​

​x
1

​

​1−x

1

​ ​∑n=10
∞

ln(ln(n))
(−1)n

​∑
ln(ln(n))

1

​

n
1

​ ​∑n=2
∞

n ln (n)3

2

∞
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