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1. Linear Equations and Their
Applications

Linear Equation Definition

A linear equation is an equation of the form:

where:

 (coefficients) are constants,

 are variables, and

 is a constant.

Example of Linear Equations

The equation  is linear, representing a plane in three-

dimensional space.

The equation  is not linear due to the product of variables.

System of Linear Equations

a ​x ​ +1 1 a ​x ​ +2 2 a ​x ​ +3 3 … + a ​x ​ =n n b

a ​i

x ​i

b

−x ​ +1 2x +2 x ​ =3 10

x ​ +1 x ​x ​ =2 3 7
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A system of linear equations consists of multiple linear equations involving the same

set of variables. It can be expressed in the form:

where:

 is the number of equations,

 is the number of variables.

Example of Solving a System of Linear Equations

Consider the system:

Using methods such as elimination or substitution, we can find the values of  and .

Possibilities for Solutions

Given a system of linear equations, there are three possible scenarios:

1. Unique Solution: There is exactly one solution to the system.

2. Infinitely Many Solutions: There are multiple solutions satisfying the equations.

3. No Solution: The equations are inconsistent.

Cases with unique and infinitely many solutions are termed consistent.

A system with no solution is termed inconsistent.

Example of Linear Equations

Unique Solution:

​ ​

a ​x ​ + a ​x ​ + … + a ​x ​11 1 12 2 1n n

a ​x ​ + a ​x ​ + … + a ​x ​21 1 22 2 2n n

a ​x ​ + a ​x ​ + … + a ​x ​m1 1 m2 2 mn n

= b ​1

= b ​2

⋮

= b ​m

m

n

x ​ +1 2x ​ =2 3
4x ​ +1 5x ​ =2 6

x ​1 x ​2
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Infinitely Many Solutions:

Matrix Representation

A system of linear equations can also be represented in matrix form. The general form is:

where:

 is the matrix of coefficients,

 is the vector of variables,

 is the vector of constants.

Notation

The size of matrix  is .

Each element of the matrix is denoted as , where  is the row index and  is the

column index.

The first element  refers to the value in the first row and first column.

Square Matrix

A square matrix is defined as:

where the number of rows  equals the number of columns .

Elementary Row Operations

​ ​

x ​ + x ​1 2

2x ​ + 3x ​1 2

= 5

= 12

​ ​

x ​ + x ​1 2

2x ​ + 2x ​1 2

= 5

= 10

A ​x =m×n b

A

x

b

A m × n

a ​ij i j

a ​11

A ​n×n

m n
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1. (Replacement) Replace one row by the sum of itself and a multiple of another

row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.
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2. Echelon Form and Reduced
Echelon Form

Echelon Form

A matrix  is in echelon form if it satisfies the following conditions:

1. Nonzero Rows Above Zero Rows: All nonzero rows appear above any rows of all

zeros.

2. Leading Entry in Each Row: Each leading entry of a row (the first non-zero entry in a

row) is in a column to the right of the leading entry of the row above it.

Example: In the matrix below, 4 is the leading entry in row 1, and 5 is the leading

entry in row 2, positioned to the right of 4.

3. Zeros Below Leading Entry: All entries below a leading entry in a column should be

zero.

Example of a Matrix in Echelon Form:

Here, the leading entries are 4 (row 1), 5 (row 2), and 3 (row 3), with zeros below the

leading entries in each column.

A ​m×n
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Reduced Echelon Form

A matrix is in reduced echelon form if it satisfies all the conditions of echelon form, plus

the following:

1. Leading Entry Equals 1: Each leading entry in a row must be 1 (this is called a leading

1).

2. Zeros in Leading Entry Column: Each leading 1 is the only non-zero entry in its

column (i.e., all other entries in the same column should be zero).

Example of a Matrix in Reduced Echelon Form:

Converting to Reduced Echelon Form

Algorithm (Gaussian Elimination):

1. Find the leading entry (non-zero element) in the first row.

2. Make it a 1 by dividing the row by the leading entry value.

3. Eliminate non-zero entries below this leading 1 by subtracting multiples of the

first row from the rows below.

4. Repeat for each row: Move to the next row and apply steps 1-3 until all rows have

leading 1s and zeros below and above the leading 1s.

Example:

Consider the matrix:

​ ​ ​ ​ ​

4
0
0

5
5
0

6
8
3

​ ​ ​ ​ ​

1
0
0

0
1
0

0
0
1

10/2/25, 3:54 PM 2. Echelon Form and Reduced Echelon Form

file:///C:/Users/Aykhan/Downloads/math107/MATH107%2011934575a8388006879ed1b360e1eb57/2%20Echelon%20Form%20and%20Reduced%20… 2/6

Guest
Rectangle



We will convert this matrix into reduced echelon form.

Step 1: Make the first entry of row 1 a leading 1 (it already is, so no change is needed):

Step 2: Subtract 2 times row 1 from row 2 to eliminate the leading entry below row 1.

Step 3: Subtract 3 times row 1 from row 3 to eliminate the leading entry below row 1.

Step 4: We now have the matrix in echelon form. Since the second and third rows are

zero rows, the matrix is already in reduced row echelon form (RREF):

This is the final solution. The matrix represents a system of linear equations where one

equation has an infinite number of solutions, and the other two are dependent on the

first.

​ ​ ​ ​ ​

1
2
3

2
4
6

1
2
3

​ ​ ​ ​ ​

1
2
3

2
4
6

1
2
3

Row 2 ← Row 2 − 2 × Row 1

​ ​ ​ ​ ​

1
0
3

2
0
6

1
0
3

Row 3 ← Row 3 − 3 × Row 1

​ ​ ​ ​ ​

1
0
0

2
0
0

1
0
0

​ ​ ​ ​ ​

1
0
0

2
0
0

1
0
0
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Linear Equations to Matrix Notation

Consider a system of linear equations:

This system can be written in matrix form as:

Where:

Augmented Matrix

The augmented matrix represents the system by combining the coefficient matrix and

the constants from the right-hand side of the equations:

Elementary Row Operations

To solve a system of linear equations using matrices, we use elementary row

operations:

1. Multiply a row by a non-zero constant.

2. Add or subtract a multiple of one row to/from another row.

3. Interchange two rows.

Result

By using these operations, the matrix is transformed into reduced echelon form, from

which the solutions to the system can be read directly.

​ ​

2x ​ + 3x ​1 2

4x ​ + 6x ​1 2

= 5

= 10

Ax = b

A = ​ ​ , x =(2
4

3
6

) ​ , b =(x ​1

x ​2
) ​( 5

10
)

​ ​ ​( 2
4

3
6

5
10

)
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Theorem 1: Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced row echelon matrix

(RREF).

Definition: Pivot Position & Pivot Column

A pivot position in a matrix  is a location in  that corresponds to a leading 1 in the

reduced echelon form of . A pivot column is a column of  that contains a pivot

position.

Theorem 2: Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented

matrix is not a pivot column—that is, if and only if an echelon form of the augmented

matrix has no row of the form:

with  non-zero.

Implications

If a linear system is consistent, then the solution set contains either:

1. A unique solution, when there are no free variables, or

2. Infinitely many solutions, when there is at least one free variable.

Using Row Reduction to Solve a Linear System

1. Write the augmented matrix of the system.

Start by constructing the augmented matrix from the given system of linear

equations.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in 

echelon form.

Perform elementary row operations to bring the matrix to row echelon form

(REF).

A A

A A

​ ​ ​ ​[0 0 … 0 ∣ b]

b
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Decide whether the system is consistent.

If there is no solution, stop; otherwise, proceed to the next step.

3. Continue row reduction to obtain the reduced echelon form (RREF).

Apply further row operations to get the matrix into reduced row echelon form.

4. Write the system of equations corresponding to the matrix obtained in step 3.

Translate the RREF matrix back into a system of equations.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is

expressed in terms of any free variables appearing in the equation.

Rearrange the equations to express the basic variables as functions of the free

variables.
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3. Introduction to Vectors

Vector Form and Notation

A vector is an ordered list of numbers, representing quantities with both magnitude and

direction. For instance, a vector in  (n-dimensional real space) can be written as:

Not a vector form: Any set that does not preserve both magnitude and direction or

violates the ordered structure, such as a scalar or a matrix, is not considered a vector.

Denoting Vectors

Vectors are typically denoted in boldface (e.g., v) or with an arrow above the letter (e.g., 

). In handwritten work, underlining or overlining can also be used to denote vectors.

Unit Vectors in 

In a 3-dimensional coordinate system, the unit vectors  are often denoted as:

Rn

v = ​ ​ ​

v ​1

v ​2

⋮
v ​n

v

R3

e ​, e ​, e ​1 2 3
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 for the unit vector along the x-axis.

 for the unit vector along the y-axis.

 for the unit vector along the z-axis.

Vector Addition and Multiplication by a Constant

Vector addition: The sum of two vectors  and  is:

Multiplication by a scalar: Given a vector  and a scalar , the

scalar multiplication is:

Zero Vector in 

The zero vector  is the vector where all components are zero:

i

j

k

u = ​ ​ ​

u ​1

u ​2

⋮
u ​n

v = ​ ​ ​

v ​1

v ​2

⋮
v ​n

u + v = ​ ​ ​

u ​ + v ​1 1

u ​ + v ​2 2

⋮
u ​ + v ​n n

u = ​ ​ ​

u ​1

u ​2

⋮
u ​n

c ∈ R

cu = ​ ​

cu ​1

cu ​2

⋮
cu ​n

Rn

0 ∈ Rn

10/2/25, 3:54 PM 3. Introduction to Vectors

file:///C:/Users/Aykhan/Downloads/math107/MATH107%2011934575a8388006879ed1b360e1eb57/3%20Introduction%20to%20Vectors%2012034575… 2/6

Guest
Rectangle



Vector Equality

Two vectors  and  are equal if and only if all their corresponding components are

equal:

Example of equality:

Dimensionality

Vectors in  and  are not equal if , since they have different numbers of

components.

Properties of Vectors

Let :

1. Addition with zero vector:

2. Commutativity of addition:

3. Associativity of addition:

4. Inverse of addition:

5. Distributive property:

Transposing a Vector

0 = ​ ​ ​

0
0

⋮
0

u v

u = v if and only if u ​ =i v ​ for all ii

​ ​ ​ =
2

−1
5

​ ​ ​

2
−1
5

Rn Rm n = m

u,v,w ∈ Rn

u + 0 = u

u + v = v + u

u + (v + w) = (u + v) + w

u + (−u) = 0

c(u + v) = cu + cv
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The transpose of a vector turns a column vector into a row vector and vice versa. If 

, then the transpose of  is:

Linear Combination of Vectors in 

A vector  is a linear combination of vectors  if it can be written

as:

where  are scalar coefficients.

Span

The span of a set of vectors  is the set of all possible linear

combinations of these vectors. In other words, the span is the smallest subspace that

contains all the vectors.

Example

Let  and consider . Can we write:

for some .

By solving the system of linear equations, we can find  and  for any ,

showing whether .

True or False Question

Let . Is it true that ?

v =

​ ​ ​

v ​1

v ​2

⋮
v ​n

v

v =T
​ ​ ​ ​(v ​1 v ​2 ⋯ v ​n)

Rn

v u ​,u ​, … ,u ​ ∈1 2 k Rn

v = c ​u ​ +1 1 c ​u ​ +2 2 ⋯ + c ​u ​k k

c ​, c ​, … , c ​ ∈1 2 k R

{u ​,u ​, … ,u ​}1 2 k

S = {(1, 2), (−1, 5)} (x ​,x ​) ∈1 2 R2

(x ​,x ​) =1 2 c ​(1, 2) +1 c ​(−1, 5)2

c ​, c ​ ∈1 2 R
c ​1 c ​2 (x ​,x ​)1 2

R ≤2 S

u,v,w ∈ R3 Span{u,v,w} = R3
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The span equals  if and only if the vectors  are linearly independent and can

form a basis for .

Vector Equation and Span

A vector equation

has the same solution set as the linear system whose augmented matrix is:

In particular,  can be generated by a linear combination of  if and only if

there exists a solution to the linear system corresponding to the matrix above.

Key Idea

One of the key ideas in linear algebra is to study the set of all vectors that can be

generated or written as a linear combination of a fixed set  of vectors.

Definition: Span

If  are in , then the set of all linear combinations of  is denoted

by and is called the subset of spanned (or generated) by 

. That is,

is the collection of all vectors that can be written in the form:

with  as scalars.

Relationship to the Vector Equation

Asking whether a vector  is in amounts to asking whether the

vector equation:

R3 u,v,w
u,v,w

x ​a ​ +1 1 x ​a ​ +2 2 ⋯ + x ​a ​ =n n b 

a ​ a ​ … a ​ ∣ b  [ 1 2 n ]

b a ​, … ,a ​1 n

{v ​, … ,v ​}1 p

v ​, … ,v ​1 p Rn v ​, … ,v ​1 p

Span{v ​, … ,v ​}1 p Rn

v ​, … ,v ​1 p

Span{v ​, … ,v ​} 1 p

c ​v ​ +1 1 c ​v ​ +2 2 ⋯ + c ​v ​ p p

c ​, … , c ​1 p

b Span{v ​, … ,v ​}1 p
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has a solution, or, equivalently, asking whether the linear system with augmented matrix:

has a solution.

Special Case: Scalar Multiples and the Zero Vector

Note that contains every scalar multiple of  (for example), since:

In particular, the zero vector must be in 

x ​v ​ +1 1 x ​v ​ +2 2 ⋯ + x ​v ​ =p p b 

v ​ v ​ … v ​ ∣ b  [ 1 2 p ]

Span{v ​, … ,v ​}1 p v ​1

cv ​ =1 cv ​ +1 0v ​ +2 ⋯ + 0v ​ p

Span{v ​, … ,v ​}.1 p
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4. Identity Matrices, Linear
Combinations, and Consistency
of Systems

Identity Matrices

Definition

An identity matrix is a square matrix where all diagonal elements are 1 and all other

elements are 0. It is denoted by  , where  is the dimension of the matrix. For example:

Identity Matrices vs. Unit Vectors

The columns of an identity matrix are called standard basis vectors or unit vectors

in .

In physics, unit vectors indicate direction and have a magnitude of 1. In , the unit

vectors are denoted by i, j, and k.

Examples of Identity Matrices

1.  identity matrix:

I ​n n

I ​ =n ​ ​ ​ ​ ​ ​ ​

1
0
0

⋮
0

0
1
0

⋮
0

0
0
1

⋮
0

⋯
⋯
⋯

⋱
⋯

0
0
0

⋮
1

Rn

R3

2 × 2

I =2 ​ ​(1
0

0
1)
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2.  identity matrix:

Theorems on Linear Combinations and Consistency

Let  be a matrix. The following statements are equivalent:

1. Every vector  is a linear combination of the columns of  .

2. For each , the equation  has a solution (i.e., it is consistent).

3. The columns of  span .

4.  has a pivot position in every row.

These statements mean that if one is true, all are true, ensuring that the columns of A can

represent all vectors in .

Example: Consistency of the System 

Given:

We want to determine if the system  is consistent for all .

Row Operations

Perform row operations to check for leading entries:

1. Start with the augmented matrix:

3 × 3

I ​ =3 ​ ​ ​ ​ ​

1
0
0

0
1
0

0
0
1

A ​m×n

b ∈ Rm A

b ∈ Rm Ax = b

A Rm

A

Rm

Ax = b

A = ​ ​ ​ ​ ​  
1

−1
3

2
−3
7

0
1

−1

Ax = b b ∈ R3

​ ​ ​ ​ ​ ​

1
−1
3

2
−3
7

0
1

−1

b ​1

b ​2

b ​3
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2. Row operations:

:

:

:

Result

There are only two leading entries, so there is no pivot in the third row. Therefore,

according to the theorem, the system  is not consistent for all .

Matrix Multiplication Properties

For a matrix  and vectors :

1. Distributive Property:

2. Scalar Multiplication:

Example of Consistency: True or False?

Statement: If A is a  matrix, then  is consistent for all .

Answer: False.

R →2 R ​ +2 R ​1

​ ​ ​ ​ ​

1
0
3

2
−1
7

0
1

−1

b ​1

b ​ + b2 1

b ​3

R ​ →3 R ​ −3 3R ​1

​ ​ ​ ​ ​ ​

1
0
0

2
−1
1

0
1

−1

b ​1

b ​ + b2 1

b ​ − 3b ​3 1

R ​ →3 R ​ +3 R ​2

​ ​ ​ ​ ​ ​

1
0
0

2
−1
0

0
1
0

b ​1

b ​ + b ​2 1

b ​ − 2b ​ − b ​3 1 2

Ax = b b ∈ R3

A ​m×n u,v ∈ Rn

A(u + v) = Au + Av

A(c ⋅ u) = c ⋅ (Au)

2 × 3 Ax = b b ∈ R2
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Explanation

A  matrix has only 2 rows, so it cannot have a pivot in every row and column

simultaneously. As a result, it may not be able to represent all vectors in , meaning

there could be some vectors  for which  has no solution.

Theorem 3

If  is an  matrix, with columns , and if  is in , the matrix equation

has the same solution set as the vector equation

which, in turn, has the same solution set as the system of linear equations whose

augmented matrix is

Theorem 4

Let  be an  matrix. The following statements are logically equivalent. That is,

for a particular , either they are all true statements or they are all false:

(a) For each  in , the equation  has a solution.

(b) Each  in  is a linear combination of the columns of .

(c) The columns of  span .

(d)  has a pivot position in every row.

Theorem 5

If  is an  matrix,  and  are vectors in , and  is a scalar, then:

(a)

(b)

2 × 3
R2

b Ax = b

A m × n a ​, … ,a ​1 n b Rm

Ax = b (1)

x ​a ​ +1 1 x ​a ​ +2 2 ⋯ + x ​a ​ =n n b (2)

a ​ a ​  ⋯ a ​ ∣ b[ 1 2 n ] (3)

A m × n

A

b Rm Ax = b

b Rm A

A Rm

A

A m × n u v Rn c

A(u + v) = Au + Av

A(cu) = c(Au)
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Matrix-Vector Multiplication Rule

When multiplying a matrix  by a vector , we calculate each entry of the resulting

vector as the dot product of the rows of  with the vector .

Matrix-Vector Multiplication Formula

For a matrix and a vector , the product  is:

Each element in the resulting vector is the sum of products of elements in the row with

corresponding elements in the vector.

Example

Let and .

1. Multiply the first row by :

1. Multiply the second row by :

Thus, .

Condition for Solution: Matrix Equation 

The equation  has a solution if and only if  is a linear combination of the

columns of .

Explanation

Matrix Equation: The equation  represents a system of linear equations,

where  is a matrix,  is a vector of unknowns, and  is a result vector.

A x
A x

A = ​ ​[a ​11

a ​21

a ​12

a ​22
] x = ​[x ​1

x ​2
] Ax

Ax = ​ ​ ​ =[a ​11

a ​21

a ​12

a ​22
] [x ​1

x ​2
] ​  [a ​ ⋅ x ​ + a ​ ⋅ x ​11 1 12 2

a ​ ⋅ x ​ + a ​ ⋅ x ​21 1 22 2
]

A = ​ ​[2
3

5
1

] x = ​[1
4

]

x

2 ⋅ 1 + 5 ⋅ 4 = 2 + 20 = 22 

x

3 ⋅ 1 + 1 ⋅ 4 = 3 + 4 = 7 

Ax = ​[22
7 ]

Ax = b
Ax = b b

A

Ax = b
A x b
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Linear Combination Requirement: For  to be expressible as , it must be

possible to write  as a linear combination of the columns of . This means there

exist scalars  such that:

where  are the columns of .

Key Takeaway

If  is not in the span of the columns of , then the system  has no solution.

b Ax
b A

x ​,x ​, … ,x ​1 2 n

b = x ​a ​ +1 1 x ​a ​ +2 2 ⋯ + x a ​ n n

a ​,a ​, … ,a ​1 2 n A

b A Ax = b
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5. Homogeneous and
Nonhomogeneous Linear
Systems, and Linear
Independence

Homogeneous Linear System

Definition

A homogeneous linear system has the form:

where  is a matrix and  is the vector of variables. The vector  is always a solution

to this system, called the trivial solution.

Solutions of Homogeneous Systems

Trivial Solution: The zero vector  is always a solution.

Ax = 0

A x x = 0

x = 0
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Non-Trivial Solutions: Solutions other than the zero vector are called non-trivial

solutions. A homogeneous system has non-trivial solutions if and only if the system

has infinitely many solutions, which occurs when the matrix  has fewer pivots

than the number of variables.

Solution Set

The solution set of a homogeneous system  is expressed as:

where  are vectors in .

Example: Homogeneous System

Consider the homogeneous system:

Step 1: Create the Augmented Matrix

Step 2: Row Operations to Echelon Form

A

Ax = 0

Span{v ​, … , v ​}1 k

v ​, … , v ​1 k Rn

​ ​

3x ​ + 5x ​ + 4x ​1 2 3

−3x ​ − 2x ​ + 4x ​1 2 3

6x ​ + x ​ − 8x ​1 2 3

= 0

= 0

= 0

​ ​ ​ ​ ​ ​

3
−3
6

5
−2
1

4
4

−8

0
0
0

R ​ →2 R ​ +2 R ​ :1

​ ​ ​ ​ ​ ​

3
0
6

5
3
1

4
8

−8

0
0
0

R ​ →3 R ​ −3 2R ​ :1
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Step 3: Reduced Echelon Form

 and 

Step 4: Solve for Variables

Let , where  is a free parameter:

Solution Set

The solution set is:

There are infinitely many solutions, indicating the presence of non-trivial solutions.

Nonhomogeneous Linear System

​ ​ ​ ​ ​ ​

3
0
0

5
3

−9

4
8

−24

0
0
0

R ​ →3 R ​ +3 3R ​ :2

​ ​ ​ ​ ​ ​

3
0
0

5
3
0

4
8
0

0
0
0

R ​ →1 ​R ​,3
1

1 R ​ →2 ​R ​ :3
1

2

​ ​ ​ ​ ​ ​

1
0
0

​3
5

1
0

​3
4

​3
8

0

0
0
0

x ​ =3 t t

​ ​

x ​ + ​x ​2 3
8

3

x ​ + ​x ​ + ​x ​1 3
5

2 3
4

3

= 0 ⟹ x ​ = − ​t2 3
8

= 0 ⟹ x ​ = ​t1 3
4

Span ​ ​ ​ ​ ​  ⎩⎨
⎧ ​3

4

− ​3
8

1 ⎭⎬
⎫
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Definition

A nonhomogeneous system has the form:

If there is a particular solution , the general solution of  is given by:

Example: Nonhomogeneous System

Consider the system:

Step 1: Create the Augmented Matrix

Step 2: Row Operations

Ax = b, b = 0 

p Ax = b

{p + u : u is a solution of Ax = 0}

​ ​

3x ​ + 5x ​ − 4x ​1 2 3

−3x ​ − 2x ​ + 4x ​1 2 3

6x ​ + x ​ − 8x ​1 2 3

= 7

= −1

= 4

​ ​ ​ ​ ​ ​

3
−3
6

5
−2
1

−4
4

−8

7
−1
4

R ​ →2 R ​ +2 R ​ :1

​ ​ ​ ​ ​ ​

3
0
6

5
3
1

−4
0

−8

7
6
4

R ​ →3 R ​ −3 2R ​ :1

​ ​ ​ ​ ​ ​

3
0
0

5
3

−9

−4
0
0

7
6

−10

R ​ →3 R ​ +3 3R ​ :2
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Step 3: Solve for Variables

 is a particular solution, so:

General Solution

The general solution is:

Linear Independence

Definition

Let  be vectors in . They are linearly independent if:

If there exists at least one nonzero , the vectors are linearly dependent.

Example: Linear Independence

Consider vectors:

To check for linear independence, set:

  ​ ​ ​ ​ ​ ​

3
0
0

5
3
0

−4
0
0

7
6
8

x ​ =1 3,x ​ =2 2,x ​ =3 3

p = ​ ​ ​

3
2
3

​ ​ ​ +
3
2
3

t ​ ​ ​

​3
4

− ​3
8

1

v ​, … , v ​1 k Rn

c ​v ​ +1 1 ⋯ + c ​v ​ =k k 0 ⟹ c ​ =1 ⋯ = c ​ =k 0

c ​i

u = ​ ​ ​ , v =
2
1
0

​ ​ ​ , w =
0
5
0

​ ​ ​

0
0
8
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This gives:

The only solution is , so  are linearly independent.

Fact 1

Two vectors  and  in  are linearly dependent if and only if one is a multiple of the

other.

Fact 2

The homogeneous equation  has a non-trivial solution if and only if the

equation has at least one free variable.

Theorem 5

Suppose the equation  is consistent for some given , and let  be a solution.

Then the solution set of  is the set of all vectors of the form

where  is any solution of the homogeneous equation .

c ​u +1 c ​v +2 c ​w =3 0

​ ​

2c ​ + 0 + 01

c ​ + 5c ​ + 01 2

0 + 0 + 8c ​3

= 0

= 0

= 0

c ​ =1 c ​ =2 c ​ =3 0 u, v,w

u v Rn

Ax = 0

Ax = b b p
Ax = b

w = p + v ​ h

v ​h Ax = 0

10/2/25, 3:54 PM 5. Homogeneous and Nonhomogeneous Linear Systems, and Linear Independence

file:///C:/Users/Aykhan/Downloads/math107/MATH107%2011934575a8388006879ed1b360e1eb57/5%20Homogeneous%20and%20Nonhomogeneou… 6/6

Guest
Rectangle



6. Linear Algebra Concepts

Linear Equations in Linear Algebra

Homogeneous Systems

Definition

A homogeneous linear system has the form:

where  is a matrix and  is a vector of variables. The vector  is called the trivial

solution.

Solutions of Homogeneous Systems

Trivial Solution: The zero vector .

Non-Trivial Solutions: Occur when there are infinitely many solutions, typically due

to the matrix  having fewer pivots than the number of variables.

Solution Set

The solution set can be expressed as:

Ax = 0 

A x x = 0

x = 0

A
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where  are vectors in .

Example: Homogeneous System

Consider the system:

To determine if the vectors are linearly independent, perform row operations on the

augmented matrix:

Solution Interpretation

The system is dependent since there are free variables, indicating the existence of non-

trivial solutions.

Nonhomogeneous Systems

Definition

A nonhomogeneous linear system has the form:

where  is a nonzero vector.

General Solution

If  is a particular solution, the general solution is:

Span{v ​, … , v ​}1 k

v ​, … , v ​1 k Rn

​ ​

x ​ ​ ​ ​ + x ​ ​ ​ ​ + x ​ ​ ​ ​1

1
2
3

2

4
5
6

3

2
1
0

= ​ ​ ​

0
0
0

​ ​ ​ ​ ​ ​ →
1
2
3

4
5
6

2
1
0

0
0
0

​ ​ ​ ​ ​ ​

1
0
0

4
−3
0

2
−3
0

0
0
0

Ax = b, b = 0 

b

p

{p + u : u is a solution of Ax = 0} 
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Example: Nonhomogeneous System

Consider the system:

In matrix form, we can write this system as:

Row Reduction

We set up the augmented matrix and perform row operations to solve for , , and .

Step 1: Make the First Column Leading 1s

Subtract the first row from the second and third rows:

Step 2: Simplify the Third Row

Subtract the second row from the third row:

Step 3: Make the Third Column Leading 1

Multiply the third row by -1:

​ ​

x ​ ​ ​ ​ + x ​ ​ ​ ​ + x ​ ​ ​ ​1

1
1
1

2

0
1
1

3

1
1
0

= ​ ​ ​

2
3
2

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

1
1
1

0
1
1

1
1
0

x ​1

x ​2

x ​3

2
3
2

x ​1 x ​2 x ​3

​ ​ ​ ​ ​ ​ ​

1
1
1

0
1
1

1
1
0

∣
∣
∣

2
3
2

​ ​ ​ ​ ​ ​ ​

1
0
0

0
1
1

1
0

−1

∣
∣
∣

2
1
0

​ ​ ​ ​ ​ ​ ​

1
0
0

0
1
0

1
0

−1

∣
∣
∣

2
1

−1
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Step 4: Back-Substitution

Now, substitute back to solve for each variable:

1. From the third row: 

2. From the second row: 

3. From the first row: 

Particular Solution

A particular solution to the system is:

General Solution

The general solution to the nonhomogeneous system is given by:

where  is any solution to the corresponding homogeneous system .

For our system:

1. The homogeneous system is:

Solving this system would yield solutions for 

Therefore, the general solution for the nonhomogeneous system would be the particular

solution plus any solutions of the homogeneous system.

​ ​ ​ ​ ​ ​ ​

1
0
0

0
1
0

1
0
1

∣
∣
∣

2
1
1

x ​ =3 1

x ​ =2 1

x ​ +1 x ​ =3 2 ⇒ x ​ =1 2 − 1 = 1

p = ​ ​ ​  
1
1
1

x = p + u 

u Ax = 0

​ ​ ​ ​ ​ ​ ​ ​ =
1
1
1

0
1
1

1
1
0

x ​1

x ​2

x ​3

​ ​ ​

0
0
0

u.
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To complete the solution, let’s find the general solution by solving the homogeneous

system  and adding it to the particular solution.

Step 5: Solve the Homogeneous System

We already have the row-reduced form of the matrix:

This matrix indicates that the only solution to the homogeneous system  is the 

zero vector:

General Solution for the Nonhomogeneous System

Since the solution to the homogeneous system is only the zero vector, the general

solution to the nonhomogeneous system  is simply the particular solution:

Final Answer

Thus, the unique solution to the nonhomogeneous system is:

In this example, we found that the nonhomogeneous system has a single unique solution

because the homogeneous system has only the trivial solution (no free variables).

Linear Independence

Ax = 0

​ ​ ​ ​ ​ ​ ​

1
0
0

0
1
0

1
0
1

∣
∣
∣

0
0
0

Ax = 0

u = ​ ​ ​  
0
0
0

Ax = b

x = p + u = ​ ​ ​ +
1
1
1

​ ​ ​ =
0
0
0

​ ​ ​  
1
1
1

x = ​ ​ ​  
1
1
1
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Definition

A set of vectors  is linearly independent if:

If any coefficient , the vectors are linearly dependent.

Example: Checking Linear Independence

Consider vectors:

To check for linear independence, set:

After solving, if the only solution is , then the vectors are linearly

independent.

Theorem: Characterization of Linearly Dependent Sets

An indexed set  is linearly dependent if at least one vector in  is a

linear combination of the others.

Linear Transformations

Definition

A linear transformation  is a mapping that satisfies the following two

conditions for all vectors  in  and all scalars :

1. Additivity: 

2. Homogeneity: 

{v ​, … , v ​}1 p

c ​v ​ +1 1 c ​v ​ +2 2 ⋯ + c ​v ​ =p p 0 ⟹ c ​ =1 c ​ =2 ⋯ = c ​ =p 0 

c ​ =i  0

v ​ =1 ​ ​ ​ , v ​ =
1
2
3

2 ​ ​ ​ , v ​ =
4
5
6

3 ​ ​ ​  
2
1
0

c ​v ​ +1 1 c ​v ​ +2 2 c ​v ​ =3 3 0 

c ​ =1 c ​ =2 c ​ =3 0

S = {v ​, … , v ​}1 p S

T : R →n Rm

u, v Rn c

T (u + v) = T (u) + T (v)

T (cu) = cT (u)
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These properties ensure that the transformation preserves vector addition and scalar

multiplication.

Example 1: Basic Linear Transformation

Consider a transformation  defined by:

Check if  is Linear

1. Additivity: For vectors  and 

which simplifies to:

Thus, 

1. Homogeneity: For a scalar  and vector 

which is equivalent to:

Hence,  satisfies both properties and is a linear transformation.

Matrix Representation of Linear Transformations

T : R →2 R2

T ​ =([x ​1

x ​2
]) ​[ 2x ​ + 3x ​1 2

−x ​ + 4x ​1 2
]

T

u = ​[u ​1

u ​2
] v = ​ :[v ​1

v ​2
]

T (u + v) = T ​ =([u ​ + v ​1 1

u ​ + v ​2 2
]) ​  [ 2(u ​ + v ​) + 3(u ​ + v ​)1 1 2 2

−(u ​ + v ​) + 4(u ​ + v ​)1 1 2 2
]

T (u) + T (v) = ​ +[ 2u ​ + 3u ​1 2

−u ​ + 4u ​1 2
] ​  [ 2v ​ + 3v ​1 2

−v ​ + 4v ​1 2
]

T (u + v) = T (u) + T (v).

c u = ​ :[u ​1

u ​2
]

T (cu) = T ​ =([cu ​1

cu ​2
]) ​  [ 2cu ​ + 3cu ​1 2

−cu ​ + 4cu ​1 2
]

cT (u) = c ​  [ 2u ​ + 3u ​1 2

−u ​ + 4u ​1 2
]

T
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Theorem: Matrix of a Linear Transformation

Every linear transformation  can be represented as a matrix , such that:

where:

 is an  matrix,

 is an  column vector.

Constructing the Matrix of a Transformation

To find the matrix  of a linear transformation , apply  to the standard basis vectors

of . The resulting vectors become the columns of the matrix .

Example 2: Finding the Matrix of a Transformation

Let  be defined by:

Step 1: Apply T to the Standard Basis Vectors

1. Apply  to 

1. Apply  to 

Step 2: Form the Matrix A

T : R →n Rm A

T (x) = Ax 

A m × n

x n × 1

A T T

Rn A

T : R →2 R2

T ​ =([x ​1

x ​2
]) ​  [3x ​ − 2x ​1 2

5x ​ + x ​1 2
]

T e ​ =1 ​ :[1
0]

T (e ​) =1 T ​ =([1
0

]) ​  [3
5

]

T e ​ =2 ​ :[0
1]

T (e ​) =2 T ​ =([0
1

])  [−2
1

]
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Thus, the matrix of the transformation is .

Example 3: Geometric Interpretation of a Transformation

Consider the linear transformation  defined by:

This transformation rotates vectors by 90 degrees counterclockwise.

Applying T to a Vector

If  then:

This confirms the 90-degree rotation effect.

Properties of Linear Transformations

1. Identity Transformation

The identity transformation  is defined as:

The matrix representation of the identity transformation is the identity matrix , where:

A = ​ ​  [3
5

−2
1 ]

A

T : R →2 R2

T (x) = ​ ​ x [ 0
−1

1
0]

x = ​ ,[1
0

]

T ​ =([1
0]) ​  [ 0

−1]

I : R →n Rn

I(x) = x 

I ​n

I =n ​ ​ ​ ​ ​ ​  

1
0

⋮
0

0
1

⋮
0

…
…

⋱
…

0
0

⋮
1
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2. Zero Transformation

The zero transformation  maps every vector to the zero vector:

The matrix representation is a matrix of all zeros.

3. Composition of Linear Transformations

If  and  are linear transformations, their composition 

 is also a linear transformation, and its matrix is the product of the

matrices:

where  and  are the matrices of  and , respectively.

4. Invertibility of Linear Transformations

A linear transformation  is invertible if there exists another

transformation  such that:

Invertible Matrix Theorem (Key Points)

 is invertible if and only if its matrix  is invertible.

 is invertible if it has full rank (rank = , where  is an  matrix).

Example 4: Invertibility

Consider the transformation  given by:

The matrix of  is:

Z : R →n Rm

Z(x) = 0 

T ​ :1 R →n Rm T ​ :2 R →m Rp

T ​ ∘2 T ​ :1 R →n Rp

[T ​ ∘2 T ​](x) =1 A ​(A ​x)2 1

A ​1 A ​2 T ​1 T ​2

T : R →n Rn

S : R →n Rn

T (S(x)) = S(T (x)) = x 

T A

A n A n × n

T : R →2 R2

T ​ =([x ​1

x ​2
]) ​  [4x ​ + 3x ​1 2

2x ​ + x ​1 2
]

T
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Calculate the determinant:

Since the determinant is non-zero,  is invertible.

David Lay, Steven Lay, Judi McDonald - Linear Algebra and Its Applications, Global

Edition-Pearson (2021)_0 (1)-pages.pdf

A = ​ ​  [4
2

3
1]

det(A) = 4 ⋅ 1 − 3 ⋅ 2 = −2 = 0 

T
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7. Linear Transformations, Row
Equivalence, and Elementary
Matrices

Example of a Linear Transformation

Let  be a transformation defined by

To determine if  is linear, we check two properties:

1. Additivity: 

2. Scalar Multiplication: 

Let  and 

1. 

2. 

Since both properties hold,  is a linear transformation.

T : R →2 R2

T (x, y) = (x, 0) 

T

T (u + v) = T (u) + T (v)

T (cu) = cT (u)

u = (x ​, y ​)1 1 v = (x ​, y ​) :2 2

T (u + v) = T ((x ​ +1 x ​, y ​ +2 1 y ​)) =2 (x ​ +1 x ​, 0) =2 (x ​, 0) +1 (x ​, 0) =2

T (u) + T (v)

T (cu) = T ((cx ​, cy ​)) =1 1 (cx ​, 0) =1 c(x ​, 0) =1 cT (u)

T
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Row Equivalence and Elementary Matrices

Definition of Row Equivalence

Two matrices  and  of size  are row equivalent if one can be transformed into

the other through a sequence of row operations. This means that  and  are row

equivalent if and only if their reduced row echelon forms are the same.

Elementary Matrices

An elementary matrix  of size  is a matrix that can be obtained from the 

identity matrix by performing a single row operation.

Examples of Elementary Matrices

1. Row Swap: Swapping two rows of 

2. Row Scaling: Multiplying the second row of  by 

3. Row Addition: Adding the first row of  to the second row:

Property of Elementary Matrices

When an elementary matrix  is multiplied by a matrix  (on the left), the result is

equivalent to applying the row operation of  directly to .

The Matrix Representation of a Linear Transformation

A B m × n

A B

E n × n

I ​n

I ​ :3

E = ​ ​ ​ ​ ​  
0
1
0

1
0
0

0
0
1

I ​3 3 :

E = ​ ​ ​ ​ ​  
1
0
0

0
3
0

0
0
1

I ​3

E = ​ ​ ​ ​ ​  
1
1
0

0
1
0

0
0
1

E A

E A
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Theorem

Let  be a linear transformation. Then there exists a matrix  of size 

 such that

Conversely, if   is defined by  for some matrix  of size 

, then  is a linear transformation.

Proof of the Theorem

Assume that  is defined by , where  is an  matrix.

We show that  is linear by checking the properties of linearity:

1. Additivity: For any vectors 

1. Scalar Multiplication: For any scalar c and vector ,

Since both properties hold, T is a linear transformation.

Example of a Matrix Representation

Let  be the transformation defined by .

To find the matrix  such that , let:

Then:

T : R →n Rm A

m × n

T (x) = Ax for all x ∈ R . n

T : R →n Rm T (x) = Ax A

m × n T

T : R →n Rm T (x) = Ax A m × n

T

u,v ∈ R ,n

T (u + v) = A(u + v) = Au + Av = T (u) + T (v) 

u ∈ Rn

T (cu) = A(cu) = c(Au) = cT (u) 

T : R →2 R2 T (x, y) = (x + 2y, 3x − y)

A T (x) = Ax

x = ​  (x
y

)

T (x, y) = ​ =(x + 2y
3x − y

) ​ ​ ​  (1
3

2
−1) (x

y
)
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So, A = ​ ​(1
3

2
−1)
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8. Matrix Operations and Linear
Transformations

Theorem: Linearity and One-to-One Property

Let  be a linear transformation, defined by some matrix  such that 

. For example, consider  where 

One-to-One Property

The transformation  is one-to-one if and only if  has only the trivial solution 

.

Proof: One-to-One Property of Linear Transformations

1. One Direction: Assume  is one-to-one. We want to show that  has only

the trivial solution.

Since  is linear, we have . By our assumption that  is one-to-one, this

implies that  has only the trivial solution .

2. Other Direction: Now, assume  has only the trivial solution . We

want to show that  is one-to-one.

Let  for some vectors . Then:

T : R →n Rm A

T (x) = Ax T : R →4 R ,3 x → Ax.

T T (x) = 0
x = 0

T T (x) = 0

T T (0) = 0 T

T (x) = 0 x = 0

T (x) = 0 x = 0
T

T (u) = T (v) u, v ∈ Rn
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Since  has only the trivial solution, , which implies . Thus,

 is one-to-one.

Onto Property

To be onto, the transformation  must map  to cover all of . This means that for

every vector , there must exist an  such that 

If not all columns of A contain pivots (i.e., the columns do not span , then  is not

onto. This implies that  does not have a solution for every 

Important Fact

For any linear transformation ,

To see why, note that for any scalar  and any vector :

Taking  we get 

Theorem: Conditions for Onto and One-to-One Properties

Let  be a linear transformation, and let  be the standard matrix for ,

meaning  Then:

1.  is onto if and only if the columns of span .

2.  is one-to-one if and only if the columns of  are linearly independent.

Proof

1. Onto Property: Suppose  is onto. This means that for every , there exists

an  such that . This implies that the columns of  span 

Conversely, if the columns of  span , then for every , there is a solution 

 to . Thus,  is onto.

T (u) − T (v) = 0 ⇒ T (u − v) = 0 (since T  is linear) 

T (x) = 0 u − v = 0 u = v

T

T Rn Rm

b ∈ Rm x ∈ Rn T (x) = b.

R )m T

T (x) = b b ∈ R .m

T : R →n Rm

T (0) = 0. 

c ∈ R u ∈ Rn

T (cu) = cT (u). 

c = 0, T (0) = 0.

T : R →n Rm A T

T (x) = Ax.

T A Rm

T A

T b ∈ Rm

x ∈ Rn Ax = b A R .m

A Rm b ∈ Rm

x Ax = b T
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2. One-to-One Property: Suppose  is one-to-one, which means  has only

the trivial solution. This implies that the columns of  are linearly independent.

Conversely, if the columns of  are linearly independent, then  has only the

trivial solution , implying that  is one-to-one.

Matrix Operations and Examples

Definition: Matrix Representation and Indexing

For a matrix  of size , we can represent  by its elements , where:

 (row index)

 (column index)

Example: Matrix Definition

Let  and  be  matrices defined as follows:

 where 

 where 

To find , calculate each entry:

1. 

2. 

Adding these matrices:

Definitions

1. Onto: A mapping  is said to be onto  if for every , there

exists at least one  such that .

T T (x) = 0
A

A Ax = 0
x = 0 T

A m × n A a ​ij

1 ≤ i ≤ m

1 ≤ j ≤ n

A B 2 × 2

A = (a ​)ij a =ij i + j

B = (b ​)ij b ​ =ij j3

A + B

A = ​ ​ =(1 + 1
2 + 1

1 + 2
2 + 2) ​ ​(2

3
3
4)

B = ​ ​ =(13

13
23

23) ​ ​(1
1

8
8)

A + B = ​ ​ =(2 + 1
3 + 1

3 + 8
4 + 8) ​ ​(3

4
11
12)

T : R →n Rm Rm b ∈ Rm

x ∈ Rn T (x) = b
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2. One-to-One: A mapping  is said to be one-to-one if for every 

, there is at most one  such that .

Theory

1. One-to-One Property: Let  be a linear transformation. Then  is 

one-to-one if and only if the equation  has only the trivial solution (

).

2. Onto and One-to-One in Terms of the Standard Matrix:

Let  be a linear transformation, and let  be the standard matrix for 

. Then:

 maps onto  if and only if the columns of  span .

 is one-to-one if and only if the columns of  are linearly independent.

T : R →n Rm b ∈
Rm x ∈ Rn T (x) = b

T : R →n Rm T

T (x) = 0 x =
0

T : R →n Rm A

T

T Rn Rm A Rm

T A
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9. Matrix Properties and Inverses

Definitions

1. Symmetric Matrix: Let  be an  matrix. If , then  is called a 

symmetric matrix.

2. Antisymmetric Matrix: If , then  is called an antisymmetric matrix.

Note: The notation  represents the transpose of matrix .

Examples

A symmetric matrix example:

An antisymmetric matrix example:

Notes and Remarks

A n × n A =T A A

A =T −A A

AT A

 A = ​ , A =(2
3

3
4) T

​ ​ =(2
3

3
4) A

B = ​ ​ , B =(0
5

−5
0

) T
​ ​ =( 0

−5
5
0

) −B 
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Power of a Matrix

For an  matrix , the -th power of , denoted , is defined as the matrix 

multiplied by itself  times:

Example: Let . Then

Similarly,  would be calculated as .

Matrix Multiplication Non-Commutativity

In general,  for matrices  and . However, there are special cases where 

.

Example (Non-Commutative Case):

Then

Properties of Transpose

For an  matrix  and any scalar , the following properties hold:

1. 

2. 

3. 

4. 

n × n A k A Ak A

k

A =k A ⋅ A ⋅ ⋯ ⋅ A (k times) 

A = ​ ​(1
0

1
1

)

A =2 A ⋅ A = ​ ​ ⋅(1
0

1
1) ​ ​ =(1

0
1
1) ​ ​  (1

0
2
1)

A3 A ⋅ A ⋅ A

AB = BA A B

AB = BA

A = ​ ​ , B =(1
3

2
4) ​ ​  (0

1
1
0)

AB = ​ ​ =(2
4

1
3

)  BA = ​ ​(3
4

1
2

)

n × n A r

(A ) =T T A

(A + B) =T A +T BT

(rA) =T rAT

(AB) =T B ⋅T AT
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Example Proof of Property 4: 

To prove , let  and consider any element  of 

The transpose of , denoted , has elements 

Therefore, 

Inverse of a Matrix

A square matrix  of size  is invertible if there exists an  matrix  such that

If  is invertible, its inverse is denoted .

Theorem: Inverse of a Matrix

Let . If the determinant of , , then  exists

and is given by

Example

Given , calculate 

1. Compute 

2. Apply the formula:

(AB) =T B ⋅T AT

(AB) =T B ⋅T AT C = AB c ​ij C :

c ​ =ij ​a ​b ​ 
k=1

∑
n

ik kj

C CT c ​ :ji

c ​ =ji ​b ​a ​ =
k=1

∑
n

ki kj (B ⋅T A ) ​ T
ji

(AB) =T B ⋅T A .T

A n × n n × n B

AB = BA = I ​ n

A A−1

A = ​ ​(a

c

b

d
) A det(A) = ad − bc = 0 A−1

A =−1
​ ​ ​  

ad − bc

1 ( d

−c

−b

a
)

A = ​ ​(2
1

3
4

) A :−1

det(A) = 2 ⋅ 4 − 3 ⋅ 1 = 8 − 3 = 5.
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Theorem: Conditions for Invertibility

Let  be an  matrix.  is invertible if and only if . In such a case, the

inverse  satisfies

Application: Solving Linear Systems

Given a linear system , if  is a square and invertible matrix (i.e., ),

the unique solution is

A =−1
​ ​ ​  

5
1 ( 4

−1
−3
2 )

A n × n A det(A) = 0
A−1

A ⋅−1 A = I ​ n

Ax = b A det(A) = 0

x = A b −1
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10. Matrix Inverses and Their
Characterizations

The Inverse of a Matrix

Definition of an Invertible Matrix

A square matrix  of size  is said to be invertible (or nonsingular) if there exists a

matrix  of the same size such that:

where  is the  identity matrix. The matrix  is called the inverse of , denoted as

.

Key Properties of Inverses

If  is invertible, its inverse  satisfies the following properties:

The inverse of  is 

The inverse of the product of two invertible matrices  and  is:

A n × n

B

AB = BA = I ​n

I ​n n × n B A

A−1

A A−1

A−1 A :

(A ) =−1 −1 A 

A B
1 1 1
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For scalar multiplication:

Finding the Inverse Using Row Reduction

To find , augment the matrix  with the identity matrix  and row reduce 

to           

Example: For , augment  with 

Perform row operations until:

Thus:

Finding the Inverse Using Determinants

For a square matrix , the inverse can also be computed using the

determinant of . The formula is:

where:

(AB) =−1 B A  −1 −1

(kA) =−1 A , for k =
k

1 −1
 0 

A−1 A I ​n [A ∣ I ​]n
[I ​ ∣n A ].−1

A = ​ ​[1
3

2
4

] A I ​ :2

[A ∣ I ​] =2 ​ ​ ​ ​  [1
3

2
4

1
0

0
1]

[I ​ ∣2 A ] =−1
​ ​ ​ ​  [1

0
0
1

−2
1.5

1
−0.5

]

A =−1
​ ​  [−2

1.5
1

−0.5]

A = ​[a
c

b

d
]

A

A =−1
​ ​ ​  

det(A)
1 [ d

−c
−b
a

]

det(A) = ad − bc 
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If , the matrix  is not invertible.

Example: For , compute:

1. 

2. Substitute into the formula:

Invertibility and Elementary Matrices

Elementary matrices are obtained by performing a single row operation on the identity

matrix.

Each elementary matrix is invertible, and its inverse corresponds to the reverse row

operation.

A matrix  is invertible if and only if it can be written as a product of elementary

matrices:

Characterizations of Invertible Matrices

The Invertible Matrix Theorem

For an  matrix , the following statements are equivalent (all true or all false):

 is an invertible matrix

 is row equivalent to the  identity matrix

 has n pivot positions

The equation  has only the trivial solution

The columns of  form a linearly independent set

The linear transformation  is one-to-one

The equation  has at least one solution for each 

det(A) = 0 A

A = ​ ​[1
3

2
4

]

det(A) = (1)(4) − (2)(3) = −2

A =−1
​ ​ ​ =

−2
1 [ 4

−3
−2
1

] ​ ​  [−2
1.5

1
−0.5

]

A

A = E ​E ​ ⋯E ​ 1 2 k

n × n A

A

A n × n

A

Ax = 0

A

x ↦ Ax

Ax = b b ∈ Rn
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The columns of  span 

The linear transformation  maps  onto 

There exists an  matrix  such that 

There exists an  matrix  such that 

 is an invertible matrix

Applications of the Invertible Matrix Theorem

1. Solving Systems of Equations:

If  is invertible, the solution to  is:

2. Linear Transformations:

A linear transformation  is invertible if its standard matrix  is

invertible.

3. Matrix Properties:

Using equivalences like determinant and rank, the invertibility of a matrix can be

determined without explicitly calculating the inverse.

Determinants and Invertibility

A square matrix  is invertible if 

The determinant provides a numerical measure of whether the rows (or columns) of 

are linearly independent.

A Rn

x ↦ Ax Rn Rn

n × n C CA = I

n × n D AD = I

AT

A Ax = b

x = A b−1

T : R →n Rn A

A det(A) = 0.

A
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11. Determinants and Their
Properties

Introduction to Determinants

The determinant is a scalar value associated with a square matrix. It provides information

about matrix properties such as invertibility and the geometric scaling factor of the

transformation represented by the matrix. Determinants are used in solving systems of

linear equations, computing eigenvalues, and finding areas or volumes.

For a  matrix:

the determinant is defined as:

For larger matrices, the determinant is calculated recursively using cofactor expansion.

Definition of Determinants

2 × 2

A = ​ ​  [a
c

b

d
]

det(A) = ad − bc
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The determinant of an  matrix  can be computed using a cofactor expansion

across any row or down any column.

For the -th row, the determinant is:

where  is the cofactor of the element , and  is the minor

matrix obtained by removing the -th row and -th column.

For the -th column, the determinant is:

In general, for any row or column, the determinant can be expressed as:

where  is the chosen row (or column) and  are the corresponding cofactors.

Properties of Determinants

Determinants satisfy the following key properties:

Interchanging two rows or columns changes the sign of the determinant.

Multiplying a row or column by a scalar multiplies the determinant by the same

scalar.

Adding a multiple of one row or column to another does not change the

determinant.

The determinant of a triangular matrix (upper or lower) is the product of its diagonal

entries:

If a matrix has a row or column of all zeros, its determinant is zero.

n × n A

i

det(A) = a ​C ​ +i1 i1 a ​C ​ +i2 i2 ⋯ + a ​C ​ in in

C ​ =ij (−1) det(A ​)i+j
ij a ​ij A ​ij

i j

j

det(A) = a ​C ​ +1j 1j a ​C ​ +2j 2j ⋯ + a ​C ​ nj nj

det(A) = ​a ​C ​ 
k=1

∑
n

ik ik

i C ​ik

det(A) = ​a ​ 
i=1

∏
n

ii
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The determinant of the product of two square matrices is the product of their

determinants:

The determinant of the transpose of a matrix is equal to the determinant of the

original matrix:

Row Operations and Determinants

Row operations affect the determinant in the following ways:

Adding a multiple of one row to another row does not change the determinant.

Interchanging two rows multiplies the determinant by .

Multiplying a row by a scalar  multiplies the determinant by .

Invertibility and Determinants

A square matrix  is invertible if and only if . This property is a quick and

efficient way to check for invertibility.

Multiplicative Property of Determinants

For any two  matrices  and :

Applications of Determinants

Cramer’s Rule

Cramer’s Rule uses determinants to solve systems of linear equations 

det(AB) = det(A) ⋅ det(B) 

det(A ) =T det(A) 

−1

k k

A det(A) = 0

n × n A B

det(AB) = det(A) ⋅ det(B) 

Ax = b :

x ​ =i ​ 
det(A)
det(A ​)i
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where  is the matrix obtained by replacing the -th column of  with the vector .

Eigenvalues

The determinant helps find eigenvalues of a matrix  through the characteristic

equation:

Geometric Interpretation

The determinant describes the scaling factor of a linear transformation:

For  matrices, the determinant gives the signed area of a parallelogram.

For  matrices, the determinant gives the signed volume of a parallelepiped.

A determinant of zero indicates that the transformation collapses the space into a

lower dimension.

Example: Determinant Calculation

Let . Compute  using cofactor expansion along the first row:

Compute each minor:

Substitute back:

A ​i i A b

A

det(A − λI) = 0 

2 × 2

3 × 3

A = ​ ​ ​ ​ ​

1
0
1

2
4
0

3
5
6

det(A)

det(A) = 1 ⋅ det ​ ​ −[4
0

5
6] 2 ⋅ det ​ ​ +[0

1
5
6] 3 ⋅ det ​ ​  [0

1
4
0]

det ​ ​ =[4
0

5
6

] (4)(6) − (0)(5) = 24 

det ​ ​ =[0
1

5
6] (0)(6) − (1)(5) = −5 

det ​ ​ =[0
1

4
0

] (0)(0) − (1)(4) = −4 
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The determinant of  is 

det(A) = 1(24) − 2(−5) + 3(−4) = 24 + 10 − 12 = 22 

A 22.
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12. Linear Transformations,
Determinants, and Midterm
Preparation

Linear Transformations

Definition

A transformation  is linear if:

1.  for all 

2.  for all , 

Example

Let  defined as 

1. 

2. 

Thus,  is linear.

T : R →n Rm

T (u+ v) = T (u) + T (v) u, v ∈ Rn

T (cu) = cT (u) c ∈ R u ∈ Rn

T : R →2 R3 T (x, y) = (x, y, 0) :

T (u+ v) = T ((x ​ +1 x ​), (y ​ +2 1 y ​)) =2 (x ​ +1 x ​, y ​ +2 1 y ​, 0) =2 T (u) +
T (v)

T (cu) = T (cx, cy) = (cx, cy, 0) = cT (u)

T
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Matrix Representations and Row Equivalence

Matrix Representation

Given , the transformation  can be represented using

columns of 

Linear Independence of Columns

If  has linearly independent columns, then  also has linearly independent

columns.

Proof (contradiction):

1. Assume  is dependent:  for some non-zero .

2. This implies , contradicting independence of 's columns.

Midterm Preparation Problems and Solutions

Problem 1

Find if  is linear:

Additivity: 

Scalar Multiplication: 

Problem 2

Range of , where 

Range:  (columns span ).

Problem 3

Find  for :

1. Perform row reduction:

A = [a ​ a ​ … a ​]1 2 n T (x) = Ax

A.

B AB

AB ABx = 0 x

Ax = 0 B

T (x, y) = (x+ y,x− y, 0)

T (u+ v) = T ((x ​ +1 x ​), (y ​ +2 1 y )) =2 (x ​ +1 x ​ +2 y ​ +1 y ​,x ​ +2 1

x ​ −2 (y ​ +1 y ​), 0) =2 T (u) + T (v)

T (cu) = T (cx, cy) = (cx+ cy, cx− cy, 0) = cT (u)

T : R →3 R2 T (x, y, z) = (2x+ 3y,x− y + z) :

span{(2, 1), (3, −1), (0, 1)} = R2 R2

det(A) A = ​ ​ ​ ​ ​

−2
2
1

−7
5
3

−9
6
4
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2. Resulting upper triangular form gives , where  is the

number of row swaps.

R →3 R ​ −3 R ​,R ​ →1 2 R ​ −2 2R ​.1

det(A) = (−1) a ​

r ∏ ii r
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14. Subspaces and Basis in n-
Dimensional Real Spaces

Subspaces in 

A subspace  is a subset that satisfies the following properties:

1. Zero Vector: The zero vector, , is in .

2. Closure under Addition: If , then .

3. Closure under Scalar Multiplication: If  and , then .

Examples of Subspaces

1. The set of all vectors in  of the form  is a subspace because it satisfies all

three properties.

2. The set of solutions to a homogeneous system of linear equations forms a subspace.

Span of Vectors

Given vectors , their span is the set of all linear combinations of these

vectors:

Rn

H ⊆ Rn

0 H

u,v ∈ H u + v ∈ H

u ∈ H c ∈ R cu ∈ H

R3 (x, 0, 0)

u ​, … ,u ​ ∈1 k Rn
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Key Properties:

The span is always a subspace of .

If , then every element in  is a linear combination of the

given vectors.

Proof that Span is a Subspace

Let :

1. Zero Vector: Setting , we get .

2. Closure under Addition: If  and , then:

3. Closure under Scalar Multiplication: If  and , then:

Column Space and Null Space

Column Space ( )

For a matrix , the column space is:

.

It represents all linear combinations of the columns of .

Null Space ( )

The null space of a matrix  is:

Span{u ​, … ,u ​} =1 k {c ​u ​ +1 1 ⋯ + c ​u ​ ∣k k c ​, … , c ​ ∈1 k R}.

Rn

S = Span{u ​, … ,u ​}1 k S

S = Span{u ​, … ,u ​}1 k

c ​ =1 c ​ =2 ⋯ = c ​ =k 0 0 ∈ S

v = c ​u ​∑ i i w = d ​u ​∑ i i

v + w = (c ​ +∑ i d )u ​ ∈i i S.

v = c ​u ​∑ i i k ∈ R

kv = (kc )u ​ ∈∑ i i S.

Col(A)
A = [a ​, … ,a ​]1 n

Col(A) = Span{a ​, … ,a ​}.1 n

Col(A) ⊆ Rm

A

Null(A)
A

Null(A) = {x ∈ R ∣n Ax = 0}.

10/2/25, 3:54 PM 14. Subspaces and Basis in n-Dimensional Real Spaces

file:///C:/Users/Aykhan/Downloads/math107/MATH107%2011934575a8388006879ed1b360e1eb57/14%20Subspaces%20and%20Basis%20in%20n-D… 2/4

Guest
Rectangle



.

It represents the solution set to the homogeneous equation .

Proof that Null Space is a Subspace

Let :

1. Zero Vector: , so .

2. Closure under Addition: If  and , then:

3. Closure under Scalar Multiplication: If  and , then:

Basis for a Subspace

A set  is a basis for a subspace  if:

1.  spans  ⇒ .

2.  is linearly independent.

Example: Basis of 

The standard basis for  is:

Properties of Basis

1. Every subspace has a basis.

2. The number of vectors in the basis of a subspace is its dimension.

Dimension of a Subspace

Null(A) ⊆ Rn

Ax = 0

H = Null(A)

A0 = 0 0 ∈ H

Au = 0 Av = 0

A(u + v) = Au + Av = 0.

Au = 0 c ∈ R

A(cu) = c(Au) = 0.

B = {u ​, … ,u ​}1 k H ⊆ Rn

B H Span{u ​, … ,u ​} =1 k H

B

R3

R3

B = ​ ​ ​ ​ , ​ ​ ​ , ​ ​ ​ ​ .⎩⎨
⎧ 1

0
0

0
1
0

0
0
1 ⎭⎬

⎫

10/2/25, 3:54 PM 14. Subspaces and Basis in n-Dimensional Real Spaces

file:///C:/Users/Aykhan/Downloads/math107/MATH107%2011934575a8388006879ed1b360e1eb57/14%20Subspaces%20and%20Basis%20in%20n-D… 3/4

Guest
Rectangle



The dimension of a subspace is the number of vectors in its basis.

Rank-Nullity Theorem

For a matrix :

where:

The upper limit for  is the minimum number of  and .  can be at

most .

A ​m×n

Rank(A) + Nullity(A) = n

Rank(A) = dim(Col(A))

Nullity(A) = dim(Null(A))

Rank(A) m n Rank(A)
min(m,n)
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15. Understanding the Rank-
Nullity Theorem

Rank-Nullity Theorem

For a matrix 

where:

The upper limit for  is the minimum number of  and .  can be at

most .

Theorem

The pivot columns of a matrix form a basis for 

A ​m×n

Rank(A) + Nullity(A) = n

Rank(A) = dim(Col(A))

Nullity(A) = dim(Null(A))

Rank(A) m n Rank(A)
min(m,n)

Col(A).
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16. Vector Spaces, Subspaces, and
Related Concepts

Vector Spaces

A vector space is a set  of objects called vectors, along with two operations: vector

addition and scalar multiplication. These operations satisfy the following ten axioms

for all  and scalars .

Axioms of Vector Spaces

Addition Axioms

1. Closure under Addition:

If , then .

2. Commutativity of Addition:

.

3. Associativity of Addition:

.

4. Existence of Zero Vector:

V

u,v,w ∈ V c, d ∈ R

u,v ∈ V u+ v ∈ V

u+ v = v + u

(u+ v) +w = u+ (v +w)
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There exists a zero vector  such that .

5. Existence of Additive Inverses:

For every , there exists a vector  such that .

Scalar Multiplication Axioms

1. Closure under Scalar Multiplication:

If  and , then .

2. Distributivity of Scalar Multiplication over Vector Addition:

.

3. Distributivity of Scalar Multiplication over Scalar Addition:

.

4. Associativity of Scalar Multiplication:

.

5. Identity Property of Scalar Multiplication:

.

Examples of Vector Spaces

Polynomials of Degree at Most 

Let . This set is a vector space.

Example:

.

The zero vector is the zero polynomial .

Check closure under addition and scalar multiplication:

If  and , then:

Real-Valued Functions

0 ∈ V u+ 0 = u

u ∈ V −u ∈ V u+ (−u) = 0

c ∈ R u ∈ V cu ∈ V

c(u+ v) = cu+ cv

(c + d)u = cu+ du

c(du) = (cd)u

1u = u

n

P ​ =n {a ​ +0 a ​t +1 a ​t +2
2 ⋯ + a ​t :n

n a ​ ∈i R}

p(t) = 1 + t ∈2 P ​3

p(t) = 0

p(t) = a ​ +0 a ​t +1 a ​t +2
2 a ​t3

3 q(t) = b ​ +0 b ​t +1 b ​t +2
2 b ​t3

3

p(t) + q(t) = (a ​ +0 b ​) +0 (a ​ +1 b ​)t +1 (a ​ +2 b ​)t +2
2 (a ​ +3 b ​)t .3

3
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Let  be the set of all real-valued functions defined on a domain . Examples include

functions like  and . This set satisfies all vector space axioms.

The Set of Sequences

Let , where . This is a vector space under

pointwise addition and scalar multiplication.

Subspaces

Definition

A subset  is a subspace of a vector space  if:

1. ,

2.  for all ,

3.  for all  and .

Theorem

If , then  is a subspace of .

Proof:

1. The zero vector  since  contains all linear combinations of , and 

.

2. Closure under addition: If , then  and 

. Then:

3. Closure under scalar multiplication: If , then . For

any scalar ,

V D

sin(x), cos(x), x2

S = {… , y ​, y ​, y ​, y ​, y ​, … }−2 −1 0 1 2 y ​ ∈i R

H ⊆ V V

0 ∈ H

u+ v ∈ H u,v ∈ H

cu ∈ H c ∈ R u ∈ H

v ​, … ,v ​ ∈1 k V H = Span{v ​, … ,v ​}1 k V

0 ∈ H H v ​, … ,v ​1 k

0 ⋅ v ​ +1 ⋯ + 0 ⋅ v ​ =k 0

u,w ∈ H u = c ​v ​ +1 1 ⋯ + c ​v ​k k w =
d ​v ​ +1 1 ⋯ + d ​v ​k k

u+w = (c ​ +1 d ​)v ​ +1 1 ⋯ + (c ​ +k d ​)v ​ ∈k k H. 

u ∈ H u = c ​v ​ +1 1 ⋯ + c ​v ​k k

a

au = (ac ​)v ​ +1 1 ⋯ + (ac ​)v ​ ∈k k H.
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Example:

Let . Show  is a subspace of .

1. : , so .

2. Closure under addition and scalar multiplication follows from the form of the

matrices.

Dimension of a Matrix Space

The set of  matrices  forms a vector space. Its dimension is .

Example:

For , the dimension is , and a basis consists of matrices with a single entry

as 1 and others as 0.

Invertible Matrix Theorem (Continued)

Let . The following are equivalent:

1.  is invertible,

2. The columns of  form a basis for ,

3. ,

4. ,

5. ,

6. .

H = ​ ​ : a, b ∈ R{[a0
b

a
] } H M ​2×2

0 ∈ H a = 0, b = 0 ​ ​ ∈[0
0

0
0

] H

m × n M ​m×n mn

M ​2×3 2 ⋅ 3 = 6

A ∈ Rn×n

A

A Rn

Col(A) = Rn

rank(A) = n

dim(Nul(A)) = 0

Nul(A) = {0}
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17. Subspaces, Rowspace, and Linear
Transformations

Theorem: Span as a Subspace

Statement: If  are in a vector space , then  is a subspace of .

Proof

To show  is a subspace, verify the three subspace criteria:

1. Zero Vector in :

The zero vector is in  because:

2. Closed under Addition:

Let . Then:

Adding  and :

3. Closed under Scalar Multiplication:

Let  and . Then:

v ​, … , v ​1 k V Span{v ​, … , v ​}1 k V

H = Span{v ​, … , v ​}1 k

H

H

0 = 0 ⋅ v ​ +1 0 ⋅ v ​ +2 ⋯ + 0 ⋅ v ​ ∈k H. 

u,w ∈ H

u = c ​v ​ +1 1 c ​v ​ +2 2 ⋯ + c ​v ​, w =k k d ​v ​ +1 1 d ​v ​ +2 2 ⋯ + d ​v ​. k k

u w

u + w = (c ​ +1 d ​)v ​ +1 1 (c ​ +2 d ​)v ​ +2 2 ⋯ + (c ​ +k d ​)v ​ ∈k k H. 

u ∈ H c ∈ R

u = c ​v ​ +1 1 c ​v ​ +2 2 ⋯ + c ​v ​. k k
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Scaling :

Thus,  is a subspace of .

Example 1: Subspaces of 

Let .

Question: Is  a subspace of ?

Solution

To check if  is a subspace:

1. : True, as  and  satisfy .

2. Closed under addition:

Let ,  in , so  and .

However,  does not always hold (e.g., ).

3. Closed under scalar multiplication

If , then for any scalar ,  because .

Thus,  is closed under scalar multiplication.

Thus,  is not a subspace of .

Example 2: Subspace of 

Let .

Question: Is  a subspace of ?

Solution

1. Zero Vector in :

Set :

2. Closed under Addition:

Let  and .

Adding:

Since , .

3. Closed under Scalar Multiplication:

Let  and . Then:

u

cu = (cc ​)v ​ +1 1 (cc ​)v ​ +2 2 ⋯ + (cc ​)v ​ ∈k k H. 

H = Span{v ​, … , v ​}1 k V

R2

W = {[x y] : xy ≥ 0} ⊆ R2

W R2

W

0 ∈ W x = 0 y = 0 xy = 0 ≥ 0

u = [x ​ y ​]1 1 w = [x ​ y ​]2 2 W x ​y ​ ≥1 1 0 x ​y ​ ≥2 2 0
(x ​ +1 x ​)(y ​ +2 1 y ​) ≥2 0 [−3, −10] + [5, 5] = [2, −5] ∈/ W

u = [x, y] ∈ W c ∈ R cu = [cx, cy] ∈ W (cx)(cy) = c (xy) ≥2 0
W

W R2

R4

H = {[4a + 3b, 0, a + b + c, c − 2a] : a, b, c ∈ R} ⊆ R4

H R4

H

a = 0, b = 0, c = 0

[4(0) + 3(0), 0, 0 + 0 + 0, 0 − 2(0)] = [0, 0, 0, 0] ∈ H. 

u = [4a ​ +1 3b ​, 0, a ​ +1 1 b ​ +1 c ​, c ​ −1 1 2a ​]1 w = [4a ​ +2 3b ​, 0, a ​ +2 2 b ​ +2 c ​, c ​ −2 2 2a ​]2

u + w = [4(a ​ +1 a ​) +2 3(b ​ +1 b ​), 0, (a ​ +2 1 a ​) +2 (b ​ +1 b ​) +2 (c ​ +1 c ​), (c ​ +2 1 c ​) −2 2(a ​ +1 a ​)]. 2

a ​ +1 a ​, b ​ +2 1 b ​, c ​ +2 1 c ​ ∈2 R u + w ∈ H

u = [4a + 3b, 0, a + b + c, c − 2a] k ∈ R
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Since , .

Thus,  is a subspace of .

Rowspace of a Matrix

Definition

The rowspace of a matrix  is the subspace of  spanned by the rows of . It is written as:

Note

The column space of  is the rowspace of :

Basis for the Rowspace

To find a basis for , take the non-zero rows of the row-echelon form (or reduced row-echelon form) of 

.

Theorem: Column Space

Let  be an  matrix. The column space of  is defined as:

Example

Let . Is  in the span of:

Solve , where:

Write the augmented matrix:

ku = [k(4a + 3b), 0, k(a + b + c), k(c − 2a)]. 

ka, kb, kc ∈ R ku ∈ H

H R4

A Rn A

Row(A) = Span{rows of A}. 

AT A

Col(A ) =T Row(A). 

Row(A)
A

A m × n A

Col(A) = {b ∈ R :m b = Ax for some x ∈ R }. n

u = ​ ​ ​

1
2
5

u

​ ​ ​ ​ ​? 
1
2

−1

2
5
1

−3
−8
3

Ax = u

A = ​ ​ ​ ​ ​ , u =
1
2

−1

2
5
1

−3
−8
3

​ ​ ​ . 
1
2
5
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Reduce to row-echelon form and check consistency.

Linear Transformations

Definition

Let  and  be vector spaces. A map  is linear if:

1.  for all ,

2.  for all  and .

Kernel and Range

Kernel:

The kernel of a linear transformation  is the set of all vectors in  that map to the zero vector

in :

For a matrix , the kernel (also called the null space) is:

The kernel is always a subspace of the domain of  or .

Proof:

, since .

Closed under addition: If , then .

Closed under scalar multiplication: If  and , then .

Range:

The range is a subspace of .

Proof:

, since .

Closed under addition and scalar multiplication follow similarly.

Example: Linear Transformation

Let , where:

​ ​ ​ ​ ​ ​ .
1
2

−1

2
5
1

−3
−8
3

1
2
5

V W T : V → W

T (a + b) = T (a) + T (b) a, b ∈ V

T (ca) = cT (a) c ∈ R a ∈ V

T : V → W V

W

ker(T ) = {v ∈ V : T (v) = 0}. 

A ∈ Rm×n

ker(A) = {x ∈ R :n Ax = 0}. 

T A

0 ∈ ker(T ) T (0) = 0

u, v ∈ ker(T ) T (u + v) = T (u) + T (v) = 0 + 0 = 0

u ∈ ker(T ) c ∈ R T (cu) = cT (u) = c ⋅ 0 = 0

Range(T ) = {T (u) : u ∈ V } ⊆ W . 

W

0 ∈ Range(T ) T (0) = 0

T : P ​ →2 R2
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1. Show  is Linear:

.

.

2. Find :

Solve , where .

.

From  and , we get .

So .

3. Find :

The range is:

T (p) = ​ . [p(0)
p(1)]

T

T (p + q) = ​ =[(p + q)(0)
(p + q)(1)

] ​ =[p(0) + q(0)
p(1) + q(1)

] T (p) + T (q)

T (cp) = ​ =[cp(0)
cp(1)

] c ​ =[p(0)
p(1)

] cT (p)

ker(T )
T (p) = 0 p(t) = a + bt + ct2

T (p) = ​ =[ a

a + b + c
] ​[0

0]

a = 0 a + b + c = 0 b + c = 0

ker(T ) = {bt + ct :2 b + c = 0} = Span{t − t }2

dim(ker(T )) = 1. 

Range(T )

Range(T ) = Span ​ , ​ . {[1
1

] [0
1

]}

dim(Range(T )) = 2. 

10/2/25, 3:54 PM 17. Subspaces, Rowspace, and Linear Transformations

file:///C:/Users/Aykhan/Downloads/math107/MATH107%2011934575a8388006879ed1b360e1eb57/17%20Subspaces,%20Rowspace,%20and%20Lin… 5/5

Guest
Rectangle



18. Basis and Subspaces

Theorem: Basis of a Subspace

Let  be a subspace of . If , then  vectors in  form a basis for  if

they are:

1. Linearly independent, or

2. They span .

Problem: Analyzing Subspace 

Let:

1. Show that  is a Subspace of 

To prove  is a subspace, verify the three conditions:

1. Zero Vector: The zero matrix is in :

H V dim(H) = k k H H

H

H

H = ​ ​ : a, b ∈ R ≤{[a
b

2a
0 ] } M ​.2×2

H M ​2×2

H

H

Let a = 0, b = 0 ⇒ ​ ​ ∈[0
0

0
0

] H.
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2. Closed under Addition: Let  and  be in . Then:

Since  and , .

3. Closed under Scalar Multiplication: Let  and . Then:

Since  and , .

Thus,  is a subspace of .

2. Write a Basis for 

The general form of matrices in  is:

The matrices:

are linearly independent and span . Hence, they form a basis for .

3. Dimension of 

The dimension of  is the number of vectors in the basis:

A = ​ ​[a ​1

b ​1

2a ​1

0 ] B = ​ ​[a ​2

b ​2

2a ​2

0 ] H

A+B = ​ ​ .[a ​ + a ​1 2

b ​ + b ​1 2

2(a ​ + a ​)1 2

0 ]

a ​ +1 a ​ ∈2 R b ​ +1 b ​ ∈2 R A+B ∈ H

A = ​ ​[a
b

2a
0 ] c ∈ R

cA = ​ ​ .[ca
cb

2(ca)
0

]

ca ∈ R cb ∈ R cA ∈ H

H M ​2×2

H

H

​ ​ =[a
b

2a
0 ] a ​ ​ +[1

0
2
0] b ​ ​ .[0

1
0
0]

​ ​ , ​ ​  [1
0

2
0

] [0
1

0
0

]

H H

H

H

dim(H) = 2. 
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19. Coordinate Mapping,
Isomorphism, and Linear
Independence

Coordinate Mapping Theorem

Theorem

Let  be an -dimensional vector space with basis . The 

coordinate mapping:

is defined as:

where .

V n B = {v ​,v ​, … ,v ​}1 2 n

CB : V → Rn

CB(v) = [v]B = ​ ​ ​

c ​1

c ​2

⋮
c ​n

v = c ​v ​ +1 1 c ​v ​ +2 2 ⋯ + c ​v ​n n
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Properties

1. Linear Transformation: The coordinate mapping  is a linear transformation.

2. 1-to-1:  is one-to-one because distinct vectors in  have distinct coordinate vectors.

3. Onto:  is onto because every vector in  corresponds to a unique vector in .

Isomorphism

The coordinate mapping  is an isomorphism, meaning:

1.  is linear.

2.  is bijective (1-to-1 and onto).

3.  preserves vector space structure.

Example: Isomorphism Between  and 

Theorem

The vector space  (polynomials of degree at most ) is isomorphic to .

Proof

1. Basis for :

A standard basis for  is .

2. Coordinate Mapping:

Any  can be written as:

Its coordinate vector in  is:

C ​B

C ​B V

C ​B Rn V

C ​ :B V → Rn

C ​B

C ​B

C ​B

P ​n Rn+1

P ​n n Rn+1

P ​n

P ​n B = {1, t, t , … , t }2 n

p(t) ∈ P ​n

p(t) = c ​ +0 c ​t +1 c ​t +2
2 ⋯ + c ​t .n

n

Rn+1

[p(t)] ​ =B ​ ​ ​
.

c ​0

c ​1

c ​2

⋮
c ​n
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3. Linear Transformation:

The mapping  is linear because:

It respects addition: .

It respects scalar multiplication: .

4. 1-to-1 and Onto:

 is 1-to-1 because distinct polynomials have distinct coefficients.

 is onto because any vector in  corresponds to a polynomial in .

Thus, .

Using Coordinate Vectors to Prove Linear Independence

Problem

Let  and . Are 

 linearly independent?

Solution

1. Coordinate Vectors:

Express each polynomial in terms of :

2. Matrix Representation:

Form a matrix with these vectors as columns:

3. Determine Independence:

Compute the determinant:

C ​ :B P ​ →n Rn+1

[p(t) + q(t)]B = [p(t)]B + [q(t)] ​B

[cp(t)]B = c[p(t)]B

C ​B

C ​B Rn+1 P ​n

P ​ ≅n Rn+1

B = {1, t, t }2 p ​(t) =1 1 + t, p ​(t) =2 t + t , p ​(t) =2
3 1 + t2

p ​(t), p ​(t), p ​(t)1 2 3

B

[p ​]B =1 ​ ​ ​ , [p ​]B =
1
1
0

2 ​ ​ ​ , [p ​] ​ =
0
1
1

3 B ​ ​ ​ .
1
0
1

A = ​ ​ ​ ​ ​ .
1
1
0

0
1
1

1
0
1

det(A) = 1(1 ⋅ 1 − 0 ⋅ 1) − 0(1 ⋅ 1 − 0 ⋅ 1) + 1(1 ⋅ 1 − 1 ⋅ 1) = 1 + 0 + 0 = 1.
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Since , the columns are linearly independent, and hence  are

linearly independent.

Dimensional Relationships in Subspaces

Theorem

If  is a subspace of  and , then:

Example

Let  be:

1. Show  is a Subspace:

Zero matrix is in .

Closed under addition and scalar multiplication (verify properties).

2. Basis for :

Write a general matrix:

Basis:

3. Dimension:

det(A) = 0 p ​, p ​, p ​1 2 3

H V dim(V ) = n

dim(H) ≤ dim(V ).

H ⊆ M ​2×2

H = ​ ​ : a, b ∈ R .{[a
b

2a
0 ] }

H

H

H

​ ​ =[a
b

2a
0 ] a ​ ​ +[1

0
2
0] b ​ ​ .[0

1
0
0]

​ ​ , ​ ​ .{[1
0

2
0

] [0
1

0
0

]}

dim(H) = 2.
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20. Change of Coordinates,
Determinants, and Subspaces

Theorem: Change of Coordinates Matrix

Let  be a vector space, and let  and  be two

bases for .

The change of coordinate matrix  is defined as the matrix that relates the

coordinates of a vector  with respect to  and .

Formula:

Here:

 is the coordinate vector of  with respect to ,

 is the coordinate vector of  with respect to ,

 is the change of coordinate matrix.

Coordinates with Respect to Another Basis

V B = {b ​, … ,b ​}1 m C = {c ​, … , cn}1

V

P ​B→C

x B C

[x]C = P ​[x] ​B→C B

[x] ​B x B

[x] ​C x C

P ​B→C
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Existence of Coordinates

Coordinates with respect to any basis  always exist because basis vectors span the

entire vector space .

Given a basis , any vector  can be expressed uniquely as:

Proof:  is Invertible

To prove that  is invertible:

1. Basis Vectors: The basis  consists of linearly independent

vectors.

2. Coordinate Representation: The change of coordinate matrix  is defined as:

3. Linear Independence: Since  are linearly independent in , their

coordinate vectors  are also linearly independent in .

4. Invertibility: A matrix with linearly independent columns is invertible. Hence, 

is invertible.

Determinant Rules for an Invertible Matrix

Let  be an  matrix:

1. Scaling a Matrix:

If  is a square matrix, then for any scalar 

where  is the dimension of .

Example:

If  is a  matrix and , then:

C

V

B = {b ​, … ,b ​}1 n v ∈ V

v = c ​b ​ +1 1 c ​b ​ +2 2 ⋯ + c ​b ​n n

P ​B→C

P ​B→C

B = {b ​, … ,b ​}1 n

P ​B→C

P ​ =B→C ​ ​ ​ ​[[b1]C [b2]C … [bn]C]

b ​, … ,b ​1 n V

[b1]C, … , [bn]C Rn

P ​B→C

A n× n

A c

det(cA) = c ⋅n det(A)

n A

A 5 × 5 det(A) = 3

det(2A) = 2 ⋅5 det(A) = 32 ⋅ 3 = 96
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2. Determinant of a Product:

If  and  are  matrices:

3. Determinant of an Inverse:

If  is invertible:

4. Row Operations:

Swapping two rows multiplies the determinant by .

Multiplying a row by  scales the determinant by .

Adding a multiple of one row to another does not change the determinant.

Subspaces of a Vector Space

Theorem: Subspace Conditions

Let  be a vector space, and let  and  be subspaces of :

1. Union of Subspaces:

Counterexample:

Let  and , where  and  are linearly independent.

, ,

, so  is not closed under addition.

2. Intersection of Subspaces:

The intersection  contains the zero vector.

A B n× n

det(AB) = det(A) ⋅ det(B) 

A

det(A ) =−1
​

det(A)
1

−1

k k

V H ​1 H ​2 V

H ​ ∪1 H ​ may not be a subspace of V2

H ​ =1 Span{u} H ​ =2 Span{v} u v

u ∈ H ​1 v ∈ H ​2

u + v ∈/ H ​ ∪1 H ​2 H ​ ∪1 H ​2

H ​ ∩1 H ​ is always a subspace of V2

H ​ ∩1 H ​2
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It is closed under addition and scalar multiplication.

Summary

1. Change of Coordinates:

The change of coordinate matrix  relates the coordinates of a vector  in

two bases:

 is invertible.

2. Determinant Rules:

,

,

Row operations affect the determinant as described.

3. Subspaces:

 is not always a subspace,

 is always a subspace.

P ​B→C x

[x]C = P ​[x] ​B→C B

P ​B→C

det(cA) = c det(A)n

det(AB) = det(A) ⋅ det(B)

H ​ ∪1 H ​2

H ​ ∩1 H ​2
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21. Solutions to Linear Algebra
Problems: Preparation for MT 2

📌 Important Note:

"I couldn’t attend this lecture where students had an open Q&A session with the

professor. To ensure I stay on track, I’ve included the solutions to some of the problems

in Fall 2023 Midterm 2 here as a reference."

Problem 1

Let P_2 denote the vector space of all polynomials of degree at most two. The sets

are two bases for .

(a) Find the -coordinate vector of each of the polynomials in the

basis .

Solution:

To find the -coordinate vectors of the polynomials in , express each polynomial as a

linear combination of the basis . The coefficients of the linear combinations will

B = {1 + 2t, −2t + 2t , 3 +2 t + t } and C =2 {1, t, t }2

P ​2

C

B

C B

{1, t, t }2
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form the -coordinate vectors.

1. For :

Express  as:

The coefficients are .

2. For :

Express  as:

The coefficients are .

3. For :

Express  as:

The coefficients are .

The -coordinate vectors of the polynomials in  are:

(b) Find the change-of-coordinates matrix from the basis  to the

basis .

Solution:

The change-of-coordinates matrix  is formed by placing the -coordinate vectors

of the polynomials in  as the columns of a matrix.

The -coordinate vectors from part (a) are:

C

1 + 2t

1 + 2t

1 + 2t = 1 ⋅ 1 + 2 ⋅ t + 0 ⋅ t .2

[1, 2, 0] ​C

−2t + 2t2

−2t + 2t2

−2t + 2t =2 0 ⋅ 1 − 2 ⋅ t + 2 ⋅ t .2

[0, −2, 2] ​C

3 + t + t2

3 + t + t2

3 + t + t =2 3 ⋅ 1 + 1 ⋅ t + 1 ⋅ t .2

[3, 1, 1] ​C

C B

[1, 2, 0], [0, −2, 2], [3, 1, 1].

B

C

P ​B→C C

B

C

​ ​ ​ , ​ ​ ​ , ​ ​ ​ .
1
2
0

0
−2
2

3
1
1
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Thus, the change-of-coordinates matrix is:

Problem 3

Let

(a) Find the determinant of  by expanding along the third column of 

.

Solution:

To compute , expand along the third column:

1. Compute each minor determinant:

First minor:

Second minor:

Third minor:

P ​ =B→C ​ ​ ​ ​ ​ .
1
2
0

0
−2
2

3
1
1

A = ​ ​ ​ ​ ​ .
1

−1
0

1
1

−1

−2
3
3

A

A

det(A)

det(A) = (−2) ⋅ det ​ ​ −[−1
0

1
−1] 3 ⋅ det ​ ​ +[1

0
1

−1] 3 ⋅ det ​ ​ .[ 1
−1

1
1]

det ​ ​ =[−1
0

1
−1] (−1)(−1) − (1)(0) = 1.

det ​ =[1
0

1
−1] (1)(−1) − (1)(0) = −1.

det ​ ​ =[ 1
−1

1
1

] (1)(1) − (1)(−1) = 2.
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2. Substitute into the determinant formula:

3. Simplify:

Final Answer:

Problem 4

Let  be the vector space of all  matrices, and define the linear transformation 

 by:

Let

(a) Calculate .

Solution:

1. Compute :

2. Apply :

det(A) = (−2)(1) − 3(−1) + 3(2). 

det(A) = −2 + 3 + 6 = 7. 

det(A) = 7. 

M ​2×2 2 × 2
T : R →2 M ​2×2

T ​ =([a
b
]) ​ ​ .[ 0

a − 3b
a − 3b

0 ]

u = ​ , v =[1
2

] ​ .[1
3

]

T (2u+ v)

2u+ v

2u+ v = 2 ​ +[1
2] ​ =[1

3] ​ +[2
4] ​ =[1

3] ​ .[3
7]

T

T ​ =([3
7

]) ​ =[ 0
3 − 3(7)

3 − 3(7)
0

] ​ ​ .[ 0
−18

−18
0

]
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Final Answer:

(c) If possible, find a vector  such that .

Solution:

Set:

From the top-right entry:

Solve for :

Let :

Final Answer:

Problem 5 

Mark each statement as True or False by writing  or  inside the box to the left of each

statement.

No explanation is needed in this question. Assume that all matrices below are square.

T (2u+ v) = ​ ​ .[ 0
−18

−18
0 ]

w ∈ R2 T (w) = ​ ​[ 0
107

107
0 ]

T ​ =([a
b
]) ​ ​ =[ 0

a − 3b
a − 3b

0 ] ​ ​ .[ 0
107

107
0 ]

a − 3b = 107. 

w = ​[a
b
]

a = 107 + 3b. 

b = 0

w = ​ . [107
0

]

w = ​ . [107
0 ]

T F
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(a) If  is an eigenvector with eigenvalue , then  is an eigenvector

with eigenvalue .

Answer: False

Scaling an eigenvector does not change its eigenvalue. The eigenvalue remains

associated with the eigenvector regardless of scalar multiplication.

(b) If two matrices of the same size have the same set of eigenvalues,
then they are similar.

Answer: False

Having the same eigenvalues does not guarantee similarity. Matrices must also have the

same eigenvectors (or equivalent diagonalization properties) to be similar.

(c) Row operations preserve the linear dependence relations among
the rows of a matrix.

Answer: False

Row operations may alter linear dependence relations. For example, scaling or replacing

rows can introduce or remove dependencies.

(d) If a set  spans a finite-dimensional vector space 

and  is a set of more than  vectors in , then  is linearly

dependent.

Answer: True

In a vector space of dimension , any set with more than  vectors must be linearly

dependent due to the dimensionality constraint.

(e) If  is an eigenvalue of a matrix , then  is invertible.

Answer: False

If  is an eigenvalue, the determinant of  is , making  singular (not invertible).

(f) If  for a matrix , then .

Answer: True

v 2 2v
4

{v ​, … ,v ​}1 p V

T p V T

p p

0 A A

0 A 0 A

A =3 0 A det(A) = 0
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If ,  is a nilpotent matrix, meaning  is singular. Singular matrices have a

determinant of .

(g) If  is an eigenvalue of an invertible matrix , then  is an

eigenvalue of .

Answer: True

For an invertible matrix , if  is an eigenvector corresponding to , then .

(h) For any matrix , we have .

Answer: False

The determinant of the transpose equals the determinant of the matrix, i.e., 

. The given statement is incorrect.

(i) If a matrix  is invertible, then  is diagonalizable.

Answer: False

Not all invertible matrices are diagonalizable. Diagonalizability requires that the matrix

has enough linearly independent eigenvectors.

(j) If a matrix  is similar to a matrix , then  is similar to .

Answer: True

If  is similar to , then  is similar to  for any positive integer . This follows from

the similarity transformation property.

Fall 2023 Midterm 2.pdf

A =3 0 A A

0

λ A ​

λ
1

A−1

A v λ A v =−1
​v

λ
1

A det(A ) =T
​det(A)

1

det(A ) =T

det(A)

A A

A B A2 B2

A B Ak Bk k
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22. Eigenvalues, Eigenspaces, and
Eigenvectors

Definitions

Eigenvalues and Eigenvectors

Let  be an  matrix. A scalar  is called an eigenvalue of  if there exists a non-zero

vector  such that:

Here:

 is called an eigenvector corresponding to the eigenvalue .

The set of all solutions  to the equation  forms the eigenspace corresponding

to .

Characteristic Equation

The eigenvalue equation  can be rewritten as:

where  is the identity matrix. For non-trivial solutions ( ), the determinant of  must be

zero:

A n × n λ ∈ R A

x ∈ Rn

Ax = λx. 

x λ

x = 0 Ax = λx
λ

Ax = λx

(A − λI)x = 0,  

I x = 0 A − λI
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This is the characteristic equation of .

The characteristic polynomial of  is defined as:

Geometric and Algebraic Multiplicities

1. Algebraic Multiplicity:

The algebraic multiplicity of an eigenvalue  is the number of times  appears as a root of

the characteristic polynomial .

2. Geometric Multiplicity:

The geometric multiplicity of an eigenvalue  is the dimension of the eigenspace

corresponding to . This is the number of linearly independent eigenvectors associated 

with .

Fact:

For any eigenvalue  of an  matrix :

Example: Finding Eigenvalues and Eigenspaces

Let:

Step 1: Find the Characteristic Polynomial

Solve :

Compute :

det(A − λI) = 0. 

A

A

p(λ) = det(A − λI). 

λ λ

p(λ)

λ

λ

λ

λ n × n A

Geometric Multiplicity of λ ≤ Algebraic Multiplicity of λ. 

A = ​ ​ ​ ​ ​ . 
1

−3
3

2
−5
3

2
−3
1

det(A − λI) = 0

A − λI = ​ ​ ​ ​ ​ .
1 − λ

−3
3

2
−5 − λ

3

2
−3

1 − λ

det(A − λI)

det(A − λI) = ​ ​ ​ ​ ​ .
1 − λ

−3
3

2
−5 − λ

3

2
−3

1 − λ
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Expand the determinant:

Simplify to find the characteristic polynomial .

Step 2: Solve 

Find the eigenvalues  (roots of ).

Step 3: Find the Eigenspaces

For each eigenvalue , solve  to find the eigenvectors and eigenspaces.

Theorem: Linear Independence of Eigenvectors

If  are eigenvectors corresponding to distinct eigenvalues  of , then 

 are linearly independent.

Similarity and Diagonalization

Similarity

Two  matrices  and  are similar if there exists an invertible matrix  such that:

Diagonalization

A matrix  is diagonalizable if there exists an invertible matrix  such that:

where  is a diagonal matrix. In this case,  is similar to .

Theorem:

An  matrix  is diagonalizable if and only if  has  linearly independent eigenvectors.

Summary of Key Points

1. Eigenvalues are roots of the characteristic polynomial .

2. Eigenvectors are non-zero solutions to .

3. The geometric multiplicity of  is the dimension of the eigenspace corresponding to .

4. Geometric multiplicity  Algebraic multiplicity.

5. A matrix is diagonalizable if it has  linearly independent eigenvectors.

det(A − λI) = (1 − λ) (λ + 5)(1 − λ) − 9 −( ) 2(−3(1 − λ) + 9) + 2(−9 − 3(λ + 5)). 

p(λ)

p(λ) = 0
λ ​,λ ​,λ ​1 2 3 p(λ)

λ (A − λI)x = 0

v ​, … , v ​1 r λ ​, … ,λ ​1 r A

v ​, … , v ​1 r

n × n A B P

P AP =−1 B. 

A P

P AP =−1 D,  

D A D

n × n A A n

p(λ) = det(A − λI)

(A − λI)x = 0

λ λ

≤

n
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23. Foundations of Invertibility,
Similarity, and Diagonalization

These notes cover several key theorems related to:

1. Invertibility of an  matrix and the eigenvalue 0.

2. Similarity of matrices and its properties.

3. Diagonalizability and the role of geometric multiplicities.

Invertibility and the Eigenvalue 0

Theorem

Let  be an  matrix. Then  is invertible if and only if  is not an eigenvalue of 

.

Reasoning/Proof Sketch

By definition,  is an eigenvalue of  if there exists a nonzero vector  such that

n × n

A n × n A 0 A

0 A v

Av = 0 ⋅ v = 0.
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This means  is in the null space of , so  is not injective (not one-to-one).

A matrix  is invertible precisely when its determinant is nonzero.

It is a standard fact that the determinant of a matrix equals the product of its

eigenvalues (counted with algebraic multiplicities).

Therefore,

If  is one of the , then the product is , so  and  is not invertible.

Conversely, if  is not invertible, then , which means at least one

eigenvalue must be .

Hence, the statement is proven.

Similar Matrices

Definition

Two  matrices  and  are said to be similar if there exists an invertible matrix 

such that

In other words,  and  represent the same linear transformation but in different bases.

Diagonal Matrices

Definition

An  matrix  is called diagonal if all its off-diagonal entries are , i.e.,

v A A

A

det(A) = λ ​ ⋅1 λ ​ ⋅2 … ⋅ λ ​.n

0 λ ​i 0 det(A) = 0 A

A det(A) = 0
0

n × n A B P

B = P AP−1

A B

n × n D 0

D = ​ ​ ​ ​ ​ ​ .

d ​1

0  

⋮
0  

0  
d ​ 2

⋮
0  

⋯
⋯

⋱
⋯

0
0

⋮
d ​n
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When does a matrix have a diagonal form?

A matrix  is said to be diagonalizable if there exists an invertible matrix  such that 

 is a diagonal matrix. This is intimately connected with the notion of having a full

set of linearly independent eigenvectors.

Similar Matrices Have the Same Characteristic Polynomial

Theorem

If two  matrices  and  are similar, then they have the same characteristic

polynomial and consequently the same eigenvalues (with the same algebraic

multiplicities).

Proof Sketch

1. Similarity Assumption: Suppose  for some invertible .

2. Characteristic Polynomial: The characteristic polynomial of a matrix  is given by

3. Compute :

4. Factor Out  and :

since . Therefore,

5. Use Multiplicative Property of Determinants:

A P

P AP−1

A = PDP , D =−1 P AP−1

n × n A B

B = P AP−1 P

M

p ​(λ) =M det(λI −M).

p ​(λ)B

p ​(λ) =B det(λI −B) = det(λI − P AP ).−1

P−1 P

λI − P AP =−1 P (λPI −−1 A)P = P (λI −−1 A)P

PI = P

p ​(λ) =B det(P (λI −−1 A)P ).

det(P (λI −−1 A)P ) = det(P ) det(λI −−1 A) det(P ).
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6. Invertible : , hence

7. Conclusion: Since , the eigenvalues (the roots of these

polynomials) coincide, including their algebraic multiplicities.

Converse Is Not True

Having the same set of eigenvalues does not necessarily imply that two matrices are

similar. They must also have the same geometric structure of eigenspaces, Jordan

canonical forms, etc.

Example / Idea for Proof

1. Consider the matrices:

2. Both have the same eigenvalue  (with algebraic multiplicity 2).

3. Eigenvectors:

 is already diagonal, so it has 2 linearly independent eigenvectors.

 is a Jordan block (upper triangular with identical diagonal entries 2). It has 

only one linearly independent eigenvector.

4. Thus,  and  are not similar, even though they have the same eigenvalue with the

same algebraic multiplicities. The difference lies in their geometric multiplicities

(the dimensions of the eigenspaces).

Diagonalizability Criterion

Theorem

An  matrix  is diagonalizable over  (or ) if and only if for each eigenvalue 

, the geometric multiplicity (dimension of the eigenspace corresponding to ) equals

its algebraic multiplicity.

P det(P ) det(P ) =−1 1

p ​(λ) =B det(λI −A) = p ​(λ).A

p ​(λ) =B p ​(λ)A

A = ​ ​ , B =(2
0

0
2

) ​ ​ .(2
0

1
2

)

λ = 2

A

B

A B

n × n A R C λ ​i

λ ​i
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Proof Sketch

The algebraic multiplicity  of an eigenvalue  is how many times  appears as

a root of the characteristic polynomial.

The geometric multiplicity  is .

To be able to diagonalize , one must be able to find  linearly independent

eigenvectors. Equivalently, one must have a basis consisting entirely of eigenvectors.

For each eigenvalue , you can select  linearly independent eigenvectors. The sum

over all eigenvalues of  must be .

But . Thus, for having a full set (exactly ) of linearly

independent eigenvectors, you need  for every eigenvalue .

Example

Let  be a  matrix with characteristic polynomial

The eigenvalues are  (with algebraic multiplicity 2),  (with algebraic

multiplicity 1), and  (with algebraic multiplicity 3).

To determine diagonalizability, one must check each eigenvalue’s geometric

multiplicity:

For , we need to see if the dimension of  is 2.

For , the dimension of  must be 1.

For , the dimension of  must be 3.

If, and only if, all these dimensions match their respective algebraic multiplicities, 

is diagonalizable. Otherwise, it is not.

Summary Points

1. A matrix is invertible  is not among its eigenvalues.

2. Two matrices are similar if one can be obtained from the other by a similarity

transformation .

m ​i λ ​i λ ​i

g ​i dim(ker(A − λ ​I))i

A n

λ ​i g ​i

g ​i n

​ g ​ ≤∑i i ​m ​ =∑i i n n

g ​ =i m ​i λ ​i

A 6 × 6

p(λ) = (λ − 3) (λ +2 1)(λ − 2) .3

λ = 3 λ = −1
λ = 2

λ = 3 ker(A − 3I)

λ = −1 ker(A + I)

λ = 2 ker(A − 2I)

A

⟺ 0

B = P AP−1
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3. Similar matrices have the same characteristic polynomials, hence the same

eigenvalues.

4. The converse is not true: having the same eigenvalues (even with same multiplicities)

does not imply similarity—one must also compare eigenspace dimensions

(geometric multiplicities).

5. A matrix  is diagonalizable if and only if for every eigenvalue , its geometric

multiplicity equals its algebraic multiplicity.

A λ
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24. Eigenvalues, Eigenvectors,
and Diagonalization

Diagonalization of Matrices

Problem Statement

We are tasked to:

1. Diagonalize the matrix , if possible.

2. Confirm whether  is diagonalizable by verifying if the geometric multiplicity

equals the algebraic multiplicity for each eigenvalue.

3. Find the eigenvalues, eigenvectors, eigenspaces, and matrices  (diagonalizing

matrix) and  (diagonal matrix).

4. Compute .

5. Find .

6. Discuss diagonalizability based on algebraic multiplicity and eigenspaces for similar

matrices.

A = ​ ​ ​ ​ ​

1
−3
3

3
−5
3

3
−3
1

A

P

D

A51

P−1
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Additionally:

Demonstrate why  is diagonalizable if  is diagonalizable and invertible.

Diagonalization of 

Step 1: Find Eigenvalues

To find eigenvalues:

1. Solve , where  is the identity matrix.

2. Compute :

3. Expand and simplify to obtain the characteristic polynomial:

Thus, the eigenvalues are:

 (algebraic multiplicity 2),

 (algebraic multiplicity 1).

Step 2: Find Eigenspaces and Eigenvectors

For each eigenvalue , solve .

For :

Row reduce:

A−1 A

A

det(A − λI) = 0 I

det(A − λI)

det ​ ​ ​ ​ ​ ​ ​ =
1 − λ

−3
3

3
−5 − λ

3

3
−3

1 − λ

0.

det(A − λI) = (λ + 2) (λ −2 4).

λ ​ =1 −2

λ ​ =2 4

λ (A − λI)x = 0

λ = −2

(A − (−2)I) = ​ ​ ​ ​ ​ .
3

−3
3

3
−3
3

3
−3
3
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The eigenspace is spanned by  and .

For :

Row reduce:

The eigenspace is spanned by .

Step 3: Verify Diagonalizability

The algebraic multiplicities of the eigenvalues add up to , and the dimensions of

the eigenspaces match their algebraic multiplicities:

For : Algebraic multiplicity = 2, Geometric multiplicity = 2.

For : Algebraic multiplicity = 1, Geometric multiplicity = 1.

Since geometric multiplicity equals algebraic multiplicity for all eigenvalues,  is

diagonalizable.

Step 4: Construct  and 

1. Matrix : Columns are the eigenvectors:

​ ​ ​ ​ ​ →
3

−3
3

3
−3
3

3
−3
3

​ ​ ​ ​ .
1
0
0

1
0
0

1
0
0

v ​ =1 ​ ​ ​

1
−1
0

v ​ =2 ​ ​ ​

1
0

−1

λ = 4

(A − 4I) = ​ ​ ​ ​ ​ .
−3
−3
3

3
−9
3

3
−3
−3

​ ​ ​ ​ ​ →
−3
−3
3

3
−9
3

3
−3
−3

​ ​ ​ ​ ​ .
1
0
0

−1
1
0

−1
0
1

v ​ =3 ​ ​ ​

1
1
1

n = 3

λ = −2

λ = 4

A

P D

P
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2. Matrix : Diagonal matrix of eigenvalues:

Step 5: Compute 

Using diagonalization:

1. Compute :

2. Compute  by substituting .

Step 6: Find 

Using the formula for the inverse of a matrix:

1. Compute :

2. Compute  using standard cofactor and adjoint methods.

Additional Topics

Diagonalizability of 

P = ​ ​ ​ ​ ​ .
1

−1
0

1
0

−1

1
1
1

D

D = ​ ​ ​ ​ ​ .
−2
0
0

0
−2
0

0
0
4

A51

A =51 PD P .51 −1

D51

D =51
​ ​ ​ ​ ​ .
(−2)51

0
0

0
(−2)51

0

0
0

451

A51 P ,D ,P51 −1

P−1

P =−1 adj(P )/ det(P ).

det(P )

det(P ) = 1(−1 − 1) − 1(−1 − 0) + 1(1 − 0) = −2 + 1 + 1 = 0.

P−1

A−1
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If  is diagonalizable, . Then:

Since  is diagonal,  is also diagonalizable.

Formulas for Inverses and Matrix Multiplication

1. Inverse: For a  matrix:

2. Matrix Multiplication:

For , matrices are not commutative.

If  and  are inverses: , .

3. Inverse of a Transpose:

If  is invertible, then so is , and the inverse of  is the transpose of :

4. Inverse of a Product:

If  and  are invertible  matrices, then the inverse of  is the product of

the inverses of  and  in reverse order:

5. Inverse of an Inverse:

If  is invertible, then the inverse of  is  itself:

6. Inverse of a Scalar Multiple:

For any invertible matrix  and scalar , the inverse of  is given by:

A A = PDP−1

A =−1 (PDP ) =−1 −1 PD P .−1 −1

D−1 A−1

2 × 2

A =−1
​ ​ ​ .

det(A)
1

[ d

−c
−b
a

]

AB = BA

A B AB = I BA = I

A AT AT A−1

(A ) =T −1 (A ) . −1 T

A B n × n AB

A B

(AB) =−1 B A . −1 −1

A A−1 A

(A ) =−1 −1 A. 

A k = 0 kA
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(kA) =−1
​A . 

k

1 −1
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25. Complex Eigenvalues and
Diagonalization

What This Note Is About

We study complex eigenvalues, how they arise from the characteristic polynomial, and

how to find eigenvectors and diagonalize a matrix (or a linear transformation) when

working over the complex field.

Complex Eigenvalues

A complex eigenvalue  of a square matrix  (or ) is a (possibly

non‐real) complex number for which there exists a nonzero vector  such that

The vector  is called an eigenvector corresponding to .

Characteristic Polynomial

The characteristic polynomial of an  matrix  is defined by

λ A ∈ M ​(R)n×n C
x

Ax = λx.

x λ

n × n A

det(A − λI).
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Its roots (counted with multiplicities) are the eigenvalues of . Over , every

polynomial splits completely, so an  real matrix always has  complex

eigenvalues in total (some could be repeated).

Example: Complex Eigenvalues of a  Matrix

Suppose

1. Characteristic Polynomial

2. Eigenvalues

Solve :

These are complex conjugates.

3. Eigenvectors

For each , solve . Because the eigenvalues are complex, the

corresponding eigenvectors will also have complex entries. The space of all such

eigenvectors is the eigenspace for that .

Eigenvalues in a Linear Transformation Context

Let  be a vector space over  or , and let  be a linear map. A

nonzero vector  is called an eigenvector of  if 

for some scalar . The number  is an eigenvalue of .

A C
n × n n

2 × 2

A = ​ ​ .(2
3

−6
4 )

det ​ ​ =(2 − λ

3
−6

4 − λ
) (2 − λ)(4 − λ) − (−6) ⋅ 3 = λ −2 6λ + 26

λ −2 6λ + 26 = 0

λ = ​ =
2

6 ± ​36 − 4 ⋅ 26
​ =

2
6 ± ​−68

3 ± ​i.17

λ (A − λI)x = 0

λ

V R C T : V → V

x ∈ V T

T (x) = λx 

λ λ T
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Example: A Linear Operator on 

Let  be defined by

1. Case (a): 

Compute , .

Then

This is not a scalar multiple of , so  is not an eigenvector.

2. Case (b): 

Compute , .

Then

Thus  is an eigenvector with eigenvalue .

Hence , and its eigenspace is all multiples of .

Diagonal Matrix Representation

A matrix  (or ) is diagonalizable if and only if there exists an

invertible matrix  and a diagonal matrix  such that

Equivalently, for a linear operator , if there exists a basis of eigenvectors for ,

then the matrix representation of  in that basis is a diagonal matrix.

Key Idea: Each eigenvalue  goes onto the diagonal of , and its corresponding

eigenvector becomes a column of .

P ​3

T : P ​ →3 P ​3

T (p(t)) = p(0) + p(2) t − p(0) t −2 p(2) t .3

p(t) = 1 − t2

p(0) = 1 p(2) = 1 − 4 = −3

T (1 − t ) =2 p(0) + p(2) t − p(0) t −2 p(2) t =3 1 − 3t − t +2 3t .3

1 − t2 1 − t2

p(t) = t − t3

p(0) = 0 p(2) = 2 − 8 = −6

T (t − t ) =3 p(0) + p(2) t − p(0) t −2 p(2) t =3 −6t + 6t =3 −6(t − t ).3

t − t3 −6

λ = −6 t − t3

A ∈ M ​(C)n×n R
P D

A = P DP . −1

T V

T

λ ​i D

P
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Example: Find a Basis That Diagonalizes 

Let  be defined by , where

We want a basis  of  such that  is diagonal.

1. Eigenvalues: Solve .

2. Eigenvectors: Solve  for each eigenvalue.

3. Matrix : Formed by placing the independent eigenvectors as columns, in the same

order used for the diagonal entries of .

4. Then  is diagonal with eigenvalues on the diagonal.

Summary and Key Points

Complex Eigenvalues arise naturally if the characteristic polynomial has non‐real

roots.

A diagonalizable matrix is one that can be written as  for some

invertible  and diagonal .

Eigenspaces are the sets of vectors scaled by each eigenvalue.

In many real applications, we extend scalars to  to find all eigenvalues (Fundamental

Theorem of Algebra).

If you have fewer than  linearly independent eigenvectors, the matrix is not

diagonalizable. But over , one can still form its Jordan Normal Form if

diagonalization fails.

In practice, to diagonalize , you must find a complete set of linearly independent

eigenvectors. If you cannot, the matrix is not diagonalizable. Over , you may still

have complex eigenvalues and (if necessary) Jordan blocks.

A

T : R →2 R2 T (x) = Ax

A = ​ ​ .( 0
−3

1
4

)

B R2 [T ] ​

B

det(A − λI) = 0

(A − λ ​I)x =i 0

P

D

P AP−1

A = PDP−1

P D

C

n

C

A

C
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26. Preparation for Final Exam

What This Note Is About

We have a linear transformation  given by the matrix

We work with respect to the basis

Objectives:

1. Show that  is an eigenvector of .

2. Prove  is not diagonalizable despite having an eigenvector .

3. Find the matrix of  in the basis , denoted .

4. Include a theorem on how to compute  using .

Below, we demonstrate all solutions, checking every condition for validity and correctness.

Definition: When Is a Matrix Diagonalizable?

A square matrix  is diagonalizable if it has a basis consisting entirely of its eigenvectors. Equivalently, each eigenvalue’s

algebraic multiplicity must equal its geometric multiplicity.

Step 1: Confirm  is an Eigenvector

Let us first see why  is an eigenvector of .

1. Eigenvalues

We calculate the characteristic polynomial of :

T : R →2 R2

A = ​ ​ so that T (x) =( 1
−1

1
3

) Ax.

B = { b ​, b ​} where b ​ =1 2 1 ​ , b ​ =(
1
1

) 2 ​ .(
3
4

)

b ​1 A

A b ​1

T B [T ] ​

B

[ T (x) ] ​B [T ] ​

B

A

b ​1

b ​ =1 ​(
1
1

) A

A
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This shows the only eigenvalue is , with algebraic multiplicity .

2. Eigenvectors

We solve . That is:

Row reduction gives one free variable:

Thus every eigenvector is of the form  for .

3. Conclusion

Clearly,  lies in that eigenspace; hence it is an eigenvector for the eigenvalue .

Step 2: Show  Is Not Diagonalizable

Since the characteristic polynomial is , the algebraic multiplicity of  is . However, the eigenspace is spanned by 

 alone, giving a one-dimensional eigenspace.

Remark:

Algebraic multiplicity = 2, but geometric multiplicity = 1. Hence no second linearly independent eigenvector exists, and we

cannot form a basis of  consisting entirely of eigenvectors. Therefore,

Step 3: Find 

Definition

If  is represented by  in the standard basis, then its matrix in a different basis  is defined by

where  denotes the coordinate vector of  relative to basis .

(a) Compute  and its -Coordinates

1. Apply :

2. Express  as a combination of  and :

det(A − λI) = ​ ​ ​ ​ =
1 − λ

−1

1

3 − λ
(1 − λ)(3 − λ) − (−1) ⋅ 1 = (3 − 4λ + λ ) +2 1 = λ −2 4λ + 4 = (λ − 2) .2

λ = 2 2

(A − 2I)x = 0

A − 2I = ​ ​ =(
1 − 2

−1

1

3 − 2
) ​ ​ .(−1

−1
1
1)

​ ​ →(−1
−1

1
1

) ​ ​ ⟹(1
0

−1
0

) x ​ −1 x ​ =2 0 ⟹ x ​ =1 x ​.2

t ​(
1
1

) t = 0

b ​ =1 ​(1
1) λ = 2

A

(λ − 2)2 λ = 2 2

​(1
1

)

R2

matrix A is NOT diagonalizable.

[T ] ​

B

T : R →2 R2 A B

[T ] ​ =B ​ ​ ,([T (b ​)] ​1 B [T (b ​)] ​2 B)

[v] ​B v B

T (b ​)1 B

A

b ​ =1 ​ , T (b ​) =(1
1

) 1 Ab ​ =1 ​ ​ ​ =(
1

−1
1
3

) (1
1

) ​ .(2
2)

​(2
2

) b1 b ​2
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Matching coordinates:  and . Subtract the first from the second:

Then . So:

Hence,

(b) Compute  and its -Coordinates

1. Apply :

2. Express  as a combination of  and :

From  and , subtracting yields:

Then . Therefore:

Hence,

(c) Form the Matrix 

We place  and  as columns:

Step 4: Theorem on B-Coordinates of 

Theorem (Coordinate Transformation and Matrix Representation)

​ =(2
2) α ​ +(1

1) β ​ =(3
4) ​ .(

α + 3β
α + 4β

)

α + 3β = 2 α + 4β = 2

(α + 4β) − (α + 3β) = 2 − 2 ⟹ β = 0.

α = 2

  ​ =(2
2) 2 b ​ +1 0 b .2

[T (b ​)] ​ =1 B
​ .(2

0)

T (b ​)2 B

A

b ​ =2 ​ , T (b ​) =(3
4

) 2 Ab ​ =2 ​ ​ ​ =(
1

−1
1
3

) (3
4

) ​ .(7
9)

​(7
9

) b1 b ​2

​ =(7
9) α ​ +(1

1) β ​ =(3
4) ​ .(

α + 3β
α + 4β

)

α + 3β = 7 α + 4β = 9

(α + 4β) − (α + 3β) = 9 − 7 ⟹ β = 2.

α + 6 = 7 ⇒ α = 1

​ =(7
9) 1 b ​ +1 2 b ​.2

[T (b ​)] ​ =2 B
​ .(1

2)

[T ] ​

B

[T (b ​)] ​1 B
[T (b ​)] ​2 B

[T ] ​ ​ ​B (
2

0

1

2
)

T (x)
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Let  be a linear map, and let  be any basis of . If  is a vector in  with coordinates  relative to 

, then

In other words, to find the coordinates of  in the basis , multiply the matrix  by the coordinate vector 

. This principle underlies how we “translate” a linear transformation between different bases.

Explanation:

1. We start with an arbitrary vector  in .

2. We represent  in basis  by the coordinate vector .

3. Applying  to  in the standard basis is .

4. However, to express  again in -coordinates, we use exactly .

This gives a direct way to compute “what  does” to any vector  in the language of the basis .

Summary of Results

1. Eigenvector Check and Non-Diagonalizability

The only eigenvalue of  is , and the eigenspace is spanned by .

Since the algebraic multiplicity (2) exceeds the geometric multiplicity (1),  is not diagonalizable.

2. Matrix 

We calculated

,

.

Hence,

3. B-Coordinate Transformation

For any , the coordinates of  in basis  follow from .
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