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1. Linear Equations and Their
Applications

Linear Equation Definition

A linear equation is an equation of the form:
a1r1 + asxs + asxs +... +a,x, =b

where:
e a; (coefficients) are constants,
e I, arevariables, and

e bisaconstant.

Example of Linear Equations

e The equation —x1 + 2x9 + x3 = 10 is linear, representing a plane in three-
dimensional space.

e The equation 1 + x2a3 = 7 is not linear due to the product of variables.

System of Linear Equations
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A system of linear equations consists of multiple linear equations involving the same
set of variables. It can be expressed in the form:

a11T1 + a1ay + ... + a1, = by

a21L1 + A22T2 + ...+ ATy = b2

Am11 + Qoo + ... + QpnTn = by

where:
e m is the number of equations,

e 1 isthe number of variables.

Example of Solving a System of Linear Equations

Consider the system:

1+ 2x2 = 3
4$1+5$2=6

Using methods such as elimination or substitution, we can find the values of 1 and 5.

Possibilities for Solutions

Given a system of linear equations, there are three possible scenarios:

=

. Unique Solution: There is exactly one solution to the system.

[\

. Infinitely Many Solutions: There are multiple solutions satisfying the equations.
3. No Solution: The equations are inconsistent.

Cases with unique and infinitely many solutions are termed consistent.

A system with no solution is termed inconsistent.

Example of Linear Equations

¢ Unique Solution:
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ZL‘1—|—5132:5

221 + 39 = 12
¢ Infinitely Many Solutions:
T+ x2=25
2z + 2z = 10

Matrix Representation

A system of linear equations can also be represented in matrix form. The general formis:
Apxnx =b

where:
e A is the matrix of coefficients,
e X isthe vector of variables,

e bis the vector of constants.

Notation

e The size of matrix A ism X n.

e Each element of the matrix is denoted as a;, where 7 is the row index and j is the
column index.

e The first element aq; refers to the value in the first row and first column.

Square Matrix

A square matrix is defined as:

ATLXTL

where the number of rows m equals the number of columns n.

Elementary Row Operations
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1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.


Guest
Rectangle


2. Echelon Form and Reduced
Echelon Form

Echelon Form

A matrix A,,«n, is in echelon form if it satisfies the following conditions:

1. Nonzero Rows Above Zero Rows: All nonzero rows appear above any rows of all
zeros.

2. Leading Entry in Each Row: Each leading entry of a row (the first non-zero entry in a
row) is in a column to the right of the leading entry of the row above it.

e Example: In the matrix below, 4 is the leading entry in row 1, and 5 is the leading
entry in row 2, positioned to the right of 4.

3. Zeros Below Leading Entry: All entries below a leading entry in a column should be
zero.

Example of a Matrix in Echelon Form:

Here, the leading entries are 4 (row 1), 5 (row 2), and 3 (row 3), with zeros below the
leading entries in each column.


Guest
Rectangle


S O =
S O Ot
w oo O

Reduced Echelon Form

A matrix is in reduced echelon form if it satisfies all the conditions of echelon form, plus
the following:

1. Leading Entry Equals 1: Each leading entry in a row must be 1 (this is called a leading
1).

2. Zeros in Leading Entry Column: Each leading 1 is the only non-zero entry in its
column (i.e., all other entries in the same column should be zero).

Example of a Matrix in Reduced Echelon Form:

o o=
o = O
= o O

Converting to Reduced Echelon Form

Algorithm (Gaussian Elimination):
1. Find the leading entry (non-zero element) in the first row.
2. Make it a 1 by dividing the row by the leading entry value.

3. Eliminate non-zero entries below this leading 1 by subtracting multiples of the
first row from the rows below.

4. Repeat for each row: Move to the next row and apply steps 1-3 until all rows have
leading 1s and zeros below and above the leading 1s.

Example:

Consider the matrix:
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w N =
SN
w N =

We will convert this matrix into reduced echelon form.

Step 1: Make the first entry of row 1 a leading 1 (it already is, so no change is needed):

w N =
S =~ N
w N =

Step 2: Subtract 2 times row 1 from row 2 to eliminate the leading entry below row 1.

Row 2 < Row 2 — 2 x Row 1

W o
SO N
w o=

Step 3: Subtract 3 times row 1 from row 3 to eliminate the leading entry below row 1.

Row 3 < Row 3 — 3 x Row 1

SO
S o N
oSO =

Step 4: We now have the matrix in echelon form. Since the second and third rows are
zero rows, the matrix is already in reduced row echelon form (RREF):

o o =
S O N
oo =

This is the final solution. The matrix represents a system of linear equations where one
equation has an infinite number of solutions, and the other two are dependent on the
first.
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Linear Equations to Matrix Notation

Consider a system of linear equations:

2z1 + 39 =5
4:131 + 6:132 =10

This system can be written in matrix form as:

Ax =D

=39 =) ()

Augmented Matrix

The augmented matrix represents the system by combining the coefficient matrix and

Where:

the constants from the right-hand side of the equations:

2 3|5
4 6|10
Elementary Row Operations

To solve a system of linear equations using matrices, we use elementary row
operations:

1. Multiply a row by a non-zero constant.
2. Add or subtract a multiple of one row to/from another row.

3. Interchange two rows.

Result

By using these operations, the matrix is transformed into reduced echelon form, from
which the solutions to the system can be read directly.
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Theorem 1: Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced row echelon matrix
(RREF).

Definition: Pivot Position & Pivot Column

A pivot position in a matrix A is a location in A that corresponds to a leading 1in the
reduced echelon form of A. A pivot column is a column of A that contains a pivot
position.

Theorem 2: Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the augmented
matrix has no row of the form:

0 0 ... 0]b]

with b non-zero.

Implications

If a linear system is consistent, then the solution set contains either:
1. A unique solution, when there are no free variables, or

2. Infinitely many solutions, when there is at least one free variable.

Using Row Reduction to Solve a Linear System
1. Write the augmented matrix of the system.

e Start by constructing the augmented matrix from the given system of linear
equations.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form.

e Perform elementary row operations to bring the matrix to row echelon form
(REF).
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e Decide whether the system is consistent.

e If there is no solution, stop; otherwise, proceed to the next step.
3. Continue row reduction to obtain the reduced echelon form (RREF).

e Apply further row operations to get the matrix into reduced row echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

¢ Translate the RREF matrix back into a system of equations.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

e Rearrange the equations to express the basic variables as functions of the free
variables.
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3. Introduction to Vectors

Vector Form and Notation

A vector is an ordered list of numbers, representing quantities with both magnitude and
direction. For instance, a vector in R™ (n-dimensional real space) can be written as:

V1
(%]

Un

Not a vector form: Any set that does not preserve both magnitude and direction or
violates the ordered structure, such as a scalar or a matrix, is not considered a vector.

Denoting Vectors

Vectors are typically denoted in boldface (e.g., v) or with an arrow above the letter (e.g., U
). In handwritten work, underlining or overlining can also be used to denote vectors.

Unit Vectors in R?

In a 3-dimensional coordinate system, the unit vectors e, €3, €3 are often denoted as:
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e 1ifor the unit vector along the x-axis.
e jfor the unit vector along the y-axis.

e k for the unit vector along the z-axis.

Vector Addition and Multiplication by a Constant

U1 V1
U2 U2
e Vector addition: The sum of two vectors u = . and v = . is:
Unp, Un
u1 + v1
U9 + V9
ut+v=
Uy + Up,
Uy
U2
e Multiplication by a scalar: Given a vector u = . and a scalar ¢ € R, the
un
scalar multiplication is:
cul
CU2
cu =
cu,,

Zero Vector in R"

The zero vector 0 € R" is the vector where all components are zero:
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Vector Equality

Two vectors u and v are equal if and only if all their corresponding components are
equal:

u=v ifandonlyif wu; =wv;foralls

Example of equality:

Dimensionality

e Vectorsin R™ and R™ are not equal if n = m, since they have different numbers of
components.

Properties of Vectors
Lletu,v,w € R™
1. Addition with zero vector:u + 0 = u
2. Commutativity of addition:u + v =v 4+ u
3. Associativity of addition:u + (v +w) = (u+v) +w
4. Inverse of addition: u + (—u) = 0

5. Distributive property: c(u + v) = cu + cv

Transposing a Vector
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The transpose of a vector turns a column vector into a row vector and vice versa. If v. =
U1

V2
, then the transpose of v is:

Un

Linear Combination of Vectors in R"

A vector Vv is a linear combination of vectors uy, usg, ..., ux € R"ifit can be written
as:

V =ciuy + CceUuz + -+ + CpUxk

where ¢, Ca, . .., ¢ € R are scalar coefficients.
Span
The span of a set of vectors{uy, ug, . . ., ux } is the set of all possible linear

combinations of these vectors. In other words, the span is the smallest subspace that
contains all the vectors.

Example
Let S = {(1,2), (—1,5)} and consider (z1, z2) € R% Can we write:

(%1, 22) = c1(1,2) + ¢2(—1,5)

for some ¢y, ¢y € R.

By solving the system of linear equations, we can find ¢; and ¢; for any (z1, 2),
showing whether R? < §S.

True or False Question

Letu, v, w € R3.Isit true that Span{u, v, w} = R3?
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The span equals R3 if and only if the vectors u, v, w are linearly independent and can
form a basis foru, v, w.

Vector Equation and Span

A vector equation
ria; +z2a3+ - +zpa,=Db
has the same solution set as the linear system whose augmented matrix is:
[ajay ... a, | b]

In particular, b can be generated by a linear combination of ay, . . ., a, ifand only if
there exists a solution to the linear system corresponding to the matrix above.

Key Idea

One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set {vy, . .., vp} of vectors.
Definition: Span

If vi,...,vparein R", then the set of all linear combinations of vy, ..., v, is denoted
by Span{vi, ..., V,} andis called the subset of R" spanned (or generated) by
Vi,...,Vp Thatis,

Span{vi,...,vp}
is the collection of all vectors that can be written in the form:
C1V1 +Covy + -+ ¢V
with ¢y, ..., ¢y as scalars.

Relationship to the Vector Equation

Asking whether a vector b is in Span{vy, ..., vp} amounts to asking whether the
vector equation:
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T1vi +Tovy+ -+ x,v, = Db
has a solution, or, equivalently, asking whether the linear system with augmented matrix:
[Vive ...V, | b]
has a solution.

Special Case: Scalar Multiples and the Zero Vector

Note that Span{vi, ..., V,} contains every scalar multiple of v; (for example), since:
cvi =cvy +0vy +---+0v,

In particular, the zero vector must be in Span{vi, ..., Vp}.
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%R

4. Identity Matrices, Linear
Combinations, and Consistency
of Systems

|dentity Matrices

Definition
An identity matrix is a square matrix where all diagonal elements are 1and all other
elements are 0. It is denoted by I, , where n is the dimension of the matrix. For example:

100 -+ 0
(010---0\
=00 1 - 0

\0 0 0 - 1)
Identity Matrices vs. Unit Vectors

e The columns of an identity matrix are called standard basis vectors or unit vectors

in R™.

e In physics, unit vectors indicate direction and have a magnitude of 1. In R3, the unit
vectors are denoted by i, j, and k.

Examples of Identity Matrices

1. 2 X 2 identity matrix:

10
== 0 3)
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2. 3 X Jidentity matrix:

1 0 0
L=|0 10
00 1

Theorems on Linear Combinations and Consistency

Let A, be a matrix. The following statements are equivalent:
1. Every vector b € R is a linear combination of the columns of A .
2. Foreach b € R™, the equation Ax = b has a solution (i.e,, it is consistent).
3. The columns of A span R™.
4. A has a pivot position in every row.

These statements mean that if one is true, all are true, ensuring that the columns of A can
represent all vectors in R™.

Example: Consistency of the System Ax = b

Given:
1 2 0
A=1-1 -3 1
3 7 -1

We want to determine if the system Az = bis consistent for all b € R>.

Row Operations

Perform row operations to check for leading entries:
1. Start with the augmented matrix:
1 2 0 | b

-1 -3 1 |b
3 7T —1]|0bs
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2. Row operations:

e Ry — Ry + Ry:

1 2 0 by
0 -1 1 by + by
0 1 —11|b3—3b

e R3; — R3+ Rs:

1 2 0 by
0 -1 1 by + by
0 0 O]bg—2b— by

Result

There are only two leading entries, so there is no pivot in the third row. Therefore,
according to the theorem, the system Az = b s not consistent for all b € R3.

Matrix Multiplication Properties

For a matrix A,,x, and vectorsu, v € R™:

1. Distributive Property:
A(u+v)=Au+ Av

2. Scalar Multiplication:

A(c-u) =c- (Au)

Example of Consistency: True or False?

Statement: If Aisa 2 X 3 matrix, then Ax = bis consistent forall b € R2.

Answer: False.
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Explanation

A 2 x 3 matrix has only 2 rows, so it cannot have a pivot in every row and column
simultaneously. As a result, it may not be able to represent all vectors in R?, meaning
there could be some vectors b for which Az = b has no solution.

Theorem 3

If Aisanm X n matrix, with columns ay, . .., a,, and if b is in R™, the matrix equation
Ax=Db (1)

has the same solution set as the vector equation
ria; +Toas +---+za,=Db (2)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is

[aj ay --- a, | b] (3)

Theorem 4

Let A be anm X n matrix. The following statements are logically equivalent. That is,
for a particular A, either they are all true statements or they are all false:

e (a) Foreach b in R™, the equation Ax = b has a solution.
e (b) Each binR™ is a linear combination of the columns of A.
e (c) The columns of A span R™.

e (d) A has a pivot position in every row.

Theorem 5

If Aisanm X n matrix, uand v are vectors in R”, and c is a scalar, then:
e @A(u+v)=Au+ Av
e (b) A(cu) = c(Au)
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Matrix-Vector Multiplication Rule

When multiplying a matrix A by a vector X, we calculate each entry of the resulting
vector as the dot product of the rows of A with the vector x.

Matrix-Vector Multiplication Formula

1
Z9

ailr a2
aszr Q22

Ax — (@1 G2 [T _ |G- T + a1z - 2
as1 Q22| | X2 Qg1 - T1 + G2 * T2

Each element in the resulting vector is the sum of products of elements in the row with

For a matrix A = { } and avector x = [ ] , the product Ax is:

corresponding elements in the vector.
Example

2 5 1
LetA—[3 1]andx—{4].

1. Multiply the first row by x:
2:1+5-4=2+20=22
1. Multiply the second row by x:

3-1+1-4=3+4=7

Thus, Ax =

22
7 |-
Condition for Solution: Matrix Equation Ax = b

The equation Ax = b has a solution if and only if b is a linear combination of the

columns of A.

Explanation

e Matrix Equation: The equation Ax = b represents a system of linear equations,
where A is a matrix, X is a vector of unknowns, and b is a result vector.
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e Linear Combination Requirement: For b to be expressible as AX, it must be
possible to write b as a linear combination of the columns of A. This means there
exist scalars 1, 3, . .., T, such that:

b =xa; +zay+---+z,a,
where ay, as, ..., a, are the columns of A.

Key Takeaway

If b is not in the span of the columns of A, then the system Ax = b has no solution.
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5. Homogeneous and
Nonhomogeneous Linear
Systems, and Linear
Independence

Homogeneous Linear System

Definition

A homogeneous linear system has the form:
Az =0

where A is a matrix and x is the vector of variables. The vector z = 0 is always a solution
to this system, called the trivial solution.

Solutions of Homogeneous Systems

e Trivial Solution: The zero vector x = 0 is always a solution.
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e Non-Trivial Solutions: Solutions other than the zero vector are called non-trivial
solutions. A homogeneous system has non-trivial solutions if and only if the system
has infinitely many solutions, which occurs when the matrix A has fewer pivots
than the number of variables.

Solution Set

The solution set of a homogeneous system Ax = 0 is expressed as:
Span{vy, ..., v}
where vy, . .., Uy are vectors in R™.

Example: Homogeneous System

Consider the homogeneous system:

31+ 59 +4x3 =0
—3x1 — 2x9 + 423 =0
6331+£l?2—8£l33 =0

Step 1: Create the Augmented Matrix

3 5 4 |0
-3 -2 4 1|0
6 1 810

Step 2: Row Operations to Echelon Form
e Ry > Ry + Ry :

3 5 410
0 3 810
6 1 —-81|0

e Ry — R3 —2R;:
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3 5 4 |0
0 3 8 0
0 -9 —-241]0
e R3 — R3+ 3Ry
3 5 410
0 3 810
0 0 010
Step 3: Reduced Echelon Form
e R — %Rl,and Ry — %R2 :
1 3 % 0
01 3510
0 0 00
Step 4: Solve for Variables
Let £3 = t, where t is a free parameter:
T2 + 8:1: =0 = x2 = 8t
2T g¥3 = 2= 73
+§ +L—l =0 = =z, = ét
L1 32132 3333 = L1 — 3

Solution Set

The solution set is:
8
Span —3

There are infinitely many solutions, indicating the presence of non-trivial solutions.

Nonhomogeneous Linear System


Guest
Rectangle


Definition

A nonhomogeneous system has the form:
Az =b, b=0
If there is a particular solution p, the general solution of Az = bis given by:

{p + u : u is a solution of Az = 0}

Example: Nonhomogeneous System

Consider the system:

3281 + 52132 - 4£L'3 =17
—3z1 — 2z9 + 43 = —1
6$1+$2—8$3:4

Step 1: Create the Augmented Matrix

3 5 4| 7
-3 -2 4 | -1
6 1 -8]| 4

Step 2: Row Operations
e Ry > Ry+ Ry :

3 5 —4.|7
0 3 0 |6
6 1 -84
° R3 — R3 —2R; :
3 5 -4\ 7
0 3 0 6
0O -9 0 |-10

° R3—>R3—|—3R2:
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Step 3: Solve for Variables

x1 = 3,x9 = 2,23 = Jis a particular solution, so:

3
p=|2
3
General Solution
The general solution is:
4
3 3
2|+t [-5
3 1
Linear Independence
Definition
Let vq, ...,V be vectors in R™. They are linearly independent if:
Cl’Ul‘i‘"""Ck/Uk:O — 61:"':Ck:()

If there exists at least one nonzero ¢;, the vectors are linearly dependent.

Example: Linear Independence

Consider vectors:

To check for linear independence, set:
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ciu+cov+csw =0

This gives:
2c1 +0+0=0
c1+5c2+0=0
0+0+8c3=0

The only solutionis c; = ¢y = ¢3 = 0, so u, v, w are linearly independent.

Fact 1

Two vectors u and v in R™ are linearly dependent if and only if one is a multiple of the
other.

Fact 2

The homogeneous equation Az = 0 has a non-trivial solution if and only if the
equation has at least one free variable.

Theorem 5

Suppose the equation Ax = b is consistent for some given b, and let p be a solution.
Then the solution set of Ax = b is the set of all vectors of the form

W =p-+vVvy

where vy, is any solution of the homogeneous equation Ax = 0.
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6. Linear Algebra Concepts

Linear Equations in Linear Algebra
Homogeneous Systems

Definition

A homogeneous linear system has the form:
Axr =0

where A is a matrix and  is a vector of variables. The vector £ = 0 is called the trivial
solution.

Solutions of Homogeneous Systems
e Trivial Solution: The zero vector z = 0.
¢ Non-Trivial Solutions: Occur when there are infinitely many solutions, typically due

to the matrix A having fewer pivots than the number of variables.

Solution Set

The solution set can be expressed as:
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Span{vy,...,v;}

where vy, . . ., Uy are vectors in R,

Example: Homogeneous System

Consider the system:

1 4 2 0
z1 |2] + 22 |5]| + 23 [1| = |0
3 6 0 0

To determine if the vectors are linearly independent, perform row operations on the
augmented matrix:

1 4 2 0 1 4 2 0
2 51 0f—-1|0 -3 =3 0
3 6 00 0 O 0 O

Solution Interpretation

The system is dependent since there are free variables, indicating the existence of non-
trivial solutions.

Nonhomogeneous Systems

Definition

A nonhomogeneous linear system has the form:
Ar=b, b # 0
where b is a nonzero vector.

General Solution

If pis a particular solution, the general solution is:

{p + u : u is a solution of Az = 0}
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Example: Nonhomogeneous System

Consider the system:

1 0 1 2
L1 1 + a9 1 + x5 1{ =13
1 1 0 2

In matrix form, we can write this system as:

1 0 1| |z |2
1 1 1 T2 3
1 1 0| |xs] |2

Row Reduction

We set up the augmented matrix and perform row operations to solve for 1, o, and 3.

—_ = =
= O
O R
N LW DN

Step 1: Make the First Column Leading 1s

Subtract the first row from the second and third rows:

Step 2: Simplify the Third Row

Subtract the second row from the third row:

oS O
o = O
S =
=N

Step 3: Make the Third Column Leading 1
Multiply the third row by -1:
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SO =
o= o
—_ O
— =N

Step 4: Back-Substitution

Now, substitute back to solve for each variable:
1. From the third row: 3 = 1
2. From the second row: x5 = 1

3. Fromthefirstrow: 1 + 3 =2 =21 =2—-1=1

Particular Solution

A particular solution to the systemis:

General Solution
The general solution to the nonhomogeneous system is given by:

X=p-+u

where u is any solution to the corresponding homogeneous system Az = 0.
For our system:

1. The homogeneous system is:

1 0 1 L1 0
1 1 1 To| = |0
1 1 0 T3 0

Solving this system would yield solutions for u.

Therefore, the general solution for the nonhomogeneous system would be the particular
solution plus any solutions of the homogeneous system.
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To complete the solution, let’s find the general solution by solving the homogeneous
system Az = 0 and adding it to the particular solution.

Step 5: Solve the Homogeneous System

We already have the row-reduced form of the matrix:

This matrix indicates that the only solution to the homogeneous system Ax = 0 is the

OO =
O = O
[ R Y
o O O

zero vector:

=
I
oo o

General Solution for the Nonhomogeneous System

Since the solution to the homogeneous system is only the zero vector, the general
solution to the nonhomogeneous system Ax = b is simply the particular solution:

Final Answer

Thus, the unique solution to the nonhomogeneous system is:

"
I
—_ =

In this example, we found that the nonhomogeneous system has a single unique solution
because the homogeneous system has only the trivial solution (no free variables).

Linear Independence
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Definition

A set of vectors {vy, . . ., v, } is linearly independent if:
civ1 + U+ -+ U, =0 = ¢ =cp=---=¢,=0
If any coefficient ¢; Va 0, the vectors are linearly dependent.

Example: Checking Linear Independence

Consider vectors:

V1 —

W N
Q
[\
|
o o
S
w
|
O~

To check for linear independence, set:
c1v1 + cav2 + c3v3 =0

After solving, if the only solution is c1 = c2 = c3 = 0, then the vectors are linearly
independent.

Theorem: Characterization of Linearly Dependent Sets

Anindexed set S = {vy, ..., ’Up} is linearly dependent if at least one vector in S'is a
linear combination of the others.

Linear Transformations

Definition
A linear transformation I’ : R" — R™ is a mapping that satisfies the following two
conditions for all vectors u, v in R™ and all scalars c:

1. Additivity: T'(u + v) = T'(u) + T'(v)

2. Homogeneity: T'(cu) = cT'(u)
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These properties ensure that the transformation preserves vector addition and scalar
multiplication.

Example 1: Basic Linear Transformation
Consider a transformation T : R? — R? defined by:

r([n)) - )
zo| ) | —x1+ 4y

1. Additivity: For vectors u = {ul} andv = [’01} :
U2 U2

reo-a (1) - [

Check if T' is Linear

which simplifies to:

T+ 7(0) = | 2 | [ 2

—uy + 4uy —v1 + 4vy
Thus, T'(u + v) = T'(u) + T'(v).

; U
1. Homogeneity: For a scalar ¢ and vector u = [ul} :
2

B cuy | 2cug + 3cus
T(ew) =T ([cm]) - [—cul + 4cuz]
which is equivalent to:

| 2ug 4 3ue
cT'(u) =c [—U1 i 4u2]

Hence, T’ satisfies both properties and is a linear transformation.

Matrix Representation of Linear Transformations
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Theorem: Matrix of a Linear Transformation

Every linear transformation T' : R™ — R™ can be represented as a matrix A, such that:
T(z) = Ax

where:
e Aisanm X m matrix,

e risann X 1 column vector.

Constructing the Matrix of a Transformation

To find the matrix A of a linear transformation T', apply 1" to the standard basis vectors
of R™. The resulting vectors become the columns of the matrix A.

Example 2: Finding the Matrix of a Transformation
Let T : R? — R? be defined by:

L1 o 3LB1 - 2$2
() = [
Step 1: Apply T to the Standard Basis Vectors

1. Apply T toe; = [(1)] :

1. Apply T'to es = [(1)] :

o= (8-

Step 2: Form the Matrix A
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Thus, the matrix of the transformation is A.

Example 3: Geometric Interpretation of a Transformation
Consider the linear transformation T' : R? — R? defined by:

0 1
T(z) = [_ 1 O] x
This transformation rotates vectors by 90 degrees counterclockwise.

Applying T to a Vector

ife = [(1)} , then:

1 0
This confirms the 90-degree rotation effect.

Properties of Linear Transformations

1. Identity Transformation
The identity transformation I : R"” — R" is defined as:

I(z) ==

The matrix representation of the identity transformation is the identity matrix I,,, where:

10 ... 0
01 ... 0
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2. Zero Transformation

The zero transformation Z : R” — R™ maps every vector to the zero vector:
Z(x)=0
The matrix representation is a matrix of all zeros.

3. Composition of Linear Transformations

If 77 : R® — R™and T : R™ — RRP? are linear transformations, their composition
T5 o Ty : R™ — R? is also a linear transformation, and its matrix is the product of the
matrices:

[T2 O Tl](a:) = A2(A133‘)
where A and Aj are the matrices of T and Ty, respectively.

4. Invertibility of Linear Transformations

A linear transformation I" : R™ — IR" is invertible if there exists another
transformation .S : R™ — R" such that:

T(S(z)) = 5(T(z)) ==

Invertible Matrix Theorem (Key Points)
e T'isinvertible if and only if its matrix A is invertible.

e Aisinvertible if it has full rank (rank = n, where A is an i X n matrix).

Example 4: Invertibility
Consider the transformation T : R? — R? given by:

(%) = 421 + 34
To 211 + x9

The matrix of T’ is:
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Calculate the determinant:
det(A):4-1—3-2:—27tO

Since the determinant is non-zero, T’ is invertible.

David Lay, Steven Lay, Judi McDonald - Linear Algebra and Its Applications, Global
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7. Linear Transformations, Row
Equivalence, and Elementary
Matrices

Example of a Linear Transformation
Let T : R? — R? be a transformation defined by

T(z,y) = (x,0)
To determine if T' is linear, we check two properties:
1. Additivity: T'(u 4 v) = T'(u) + T'(v)
2. Scalar Multiplication: T'(cu) = ¢T'(u)
Letu = (z1,y1) and v = (22, ys) :

1. T(u+v)=T((z1 +x2,y1 +¥2)) = (x1 + 22,0) = (21,0) + (22,0) =
T(u)+T(v)

2. T(cu) = T'((ez1,cy1)) = (cx1,0) = c(x1,0) = cT'(u)

Since both properties hold, T' is a linear transformation.
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Row Equivalence and Elementary Matrices

Definition of Row Equivalence

Two matrices A and B of size m X n are row equivalent if one can be transformed into
the other through a sequence of row operations. This means that A and B are row
equivalent if and only if their reduced row echelon forms are the same.

Elementary Matrices

An elementary matrix E of size n X n is a matrix that can be obtained from the
identity matrix [,, by performing a single row operation.

Examples of Elementary Matrices

1. Row Swap: Swapping two rows of I3 :

E —

o = O
o O =
= o O

2. Row Scaling: Multiplying the second row of I3 by 3 :

E—

SO =
o W o
= o O

3. Row Addition: Adding the first row of I3 to the second row:

E—

o R K~
o = O
o o

Property of Elementary Matrices

When an elementary matrix E is multiplied by a matrix A (on the left), the result is
equivalent to applying the row operation of E directly to A.

The Matrix Representation of a Linear Transformation


Guest
Rectangle


Theorem

Let T : R®™ — R™ be a linear transformation. Then there exists a matrix A of size
m X m such that

T(x) = Ax forallx € R".

Conversely, if T' : R — R™ is defined by T'(x) = Ax for some matrix A of size
m X n, then T is a linear transformation.

Proof of the Theorem

Assume that T : R™ — R™ is defined by T'(x) = Ax, where A is anm X m matrix.
We show that 1" is linear by checking the properties of linearity:

1. Additivity: For any vectors u, v € R"”,
Tu+v)=A(u+v)=Au+ Av=T(u) + T(v)
1. Scalar Multiplication: For any scalar c and vector u € R",
T(cu) = A(cu) = c¢(Au) = cT'(u)
Since both properties hold, T is a linear transformation.

Example of a Matrix Representation
Let T : R? — R? be the transformation defined by T'(z, y) = (z + 2y, 3z — ).

To find the matrix A such that T'(x) = Ax, let:

()

Then:
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So,A:(

—1
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8. Matrix Operations and Linear
Transformations

Theorem: Linearity and One-to-One Property

Let T : R™ — R™ be a linear transformation, defined by some matrix A such that
T(z) = Ax.For example, consider T : R* — R3, where z — Ax.

One-to-One Property

The transformation 1" is one-to-one if and only if T'(z) = 0 has only the trivial solution
z =0.

Proof: One-to-One Property of Linear Transformations

1. One Direction: Assume T is one-to-one. We want to show that T'(z) = 0 has only
the trivial solution.

Since T is linear, we have T'(0) = 0. By our assumption that 7" is one-to-one, this
implies that T'(x) = 0 has only the trivial solution = 0.

2. Other Direction: Now, assume T'(x) = 0 has only the trivial solution x = 0. We
want to show that 1" is one-to-one.

Let T'(u) = T'(v) for some vectors u, v € R™. Then:
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T(u) —T(v) =0=T(u—v) =0 (sinceT is linear)

Since T'(x) = 0 has only the trivial solution, u — v = 0, which implies w = v. Thus,
T'is one-to-one.

Onto Property

To be onto, the transformation 7" must map R to cover all of R™. This means that for
every vector b € R™, there must exist an x € R"™ such that T'(z) = b.

If not all columns of A contain pivots (i.e. the columns do not span R™), then T" is not
onto. This implies that T'(z) = b does not have a solution for every b € R™.

Important Fact

For any linear transformation 7' : R™ — R™,
T(0) = 0.
To see why, note that for any scalar ¢ € R and any vector u € R™:
T(cu) = cT'(u).

Taking ¢ = 0, we get T'(0) = 0.

Theorem: Conditions for Onto and One-to-One Properties

Let T : R™ — R™ be a linear transformation, and let A be the standard matrix for T,
meaning T'(x) = Ax. Then:

1. T is onto if and only if the columns of A span R™.

2. T is one-to-one if and only if the columns of A are linearly independent.

Proof

1. Onto Property: Suppose T is onto. This means that for every b € R™, there exists
anx € R" such that Ax = b. This implies that the columns of A span R™.

Conversely, if the columns of A span R™, then for every b € R™, there is a solution
x to Ax = b.Thus, T is onto.
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2. One-to-One Property: Suppose T is one-to-one, which means T'(2) = 0 has only
the trivial solution. This implies that the columns of A are linearly independent.

Conversely, if the columns of A are linearly independent, then Az = 0 has only the

trivial solution £ = 0, implying that 7" is one-to-one.

Matrix Operations and Examples

Definition: Matrix Representation and Indexing

For a matrix A of size m X n, we can represent A by its elements a;j, Where:
e 1 <1< m(rowindex)

e 1 < 35 < n(columnindex)

Example: Matrix Definition

Let A and B be 2 X 2 matrices defined as follows:
e A= (a;j)wherea;; =i+ j
® B — (bZJ) where bij = j3

To find A 4 B, calculate each entry:
1A= (370 210)= (5 i)
Lo (3 3)-( )
Adding these matrices:
avB= (311 155) =1 1)
Definitions

1. Onto: Amapping T : R™ — R™ is said to be onto R™ if for every b € R™, there
exists at least one x € R" such that T'(x) = b.
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2. One-to-One: A mapping 1" : R® — R™ is said to be one-to-one if for every b €
R™, there is at most one x € R"™ such that T'(x) = b.

Theory

1. One-to-One Property: Let T' : R™ — R™ be a linear transformation. Then 1" is
one-to-one if and only if the equation T'(x) = 0 has only the trivial solution (x =

0).

2. Onto and One-to-One in Terms of the Standard Matrix:
Let T : R®™ — R™ be a linear transformation, and let A be the standard matrix for
T.Then:

e T maps R™ onto R™ if and only if the columns of A span R™.

e T'is one-to-one if and only if the columns of A are linearly independent.
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9. Matrix Properties and Inverses

Definitions

1. Symmetric Matrix: Let A be ann X n matrix. If AT = A, then A is called a
symmetric matrix.

2. Antisymmetric Matrix: If AT = — A, then A is called an antisymmetric matrix.

Note: The notation AT represents the transpose of matrix A.

Examples

A symmetric matrix example:

(2 3 r (2 3\
A=(3) 4=(y)

An antisymmetric matrix example:

(0 -5 r (0 5\
-3 ) (5 )

Notes and Remarks
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Power of a Matrix

Foranm X m matrix A, the k-th power of A4, denoted A*, is defined as the matrix A
multiplied by itself k times:

AP =A4.4..... A (k times)

0 1

weaa=( )00

Similarly, A% would be calculatedas A - A - A.

1 1
Example: Let A = ( ).Then

Matrix Multiplication Non-Commutativity

In general, AB va B A for matrices A and B. However, there are special cases where

AB = BA.

Example (Non-Commutative Case):
1 2 0 1
(1) 2-()
2 1 3 1
AB_(4 3>7BA_<4 2)

Properties of Transpose

Forann X m matrix A and any scalar r, the following properties hold:

Then

1. (AT =4
2. (A+ B)T = AT + BT
3. (rA)T =rAT

4 (AB)T = BT . AT
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Example Proof of Property 4: (AB)T = BT . AT
To prove (AB)T = BT - AT, let C = AB and consider any element c;; of C':

n
Cij = Z ik br;
k=1

The transpose of C, denoted CT, has elements Cji :

n

Cji = Z briar; = (BT . AT)J-Z-
k=1

Therefore, (AB)T = BT . AT,

Inverse of a Matrix

A square matrix A of size n X n is invertible if there exists an n X n matrix B such that
AB=BA=1,
If A is invertible, its inverse is denoted A~ 1.

Theorem: Inverse of a Matrix

let A = (Z b) .If the determinant of A, det(A) = ad — be # 0, then A1 exists

d
and is given by
1 d -b
A =
ad — bc (-C a )

Example

Given A = (? Z) calculate A7 1 :

1. Computedet(4) =2-4—-3-1=8—-3 =5.

2. Apply the formula:
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1/4 -3
-1 _ =+
=5 ()

Theorem: Conditions for Invertibility

Let A beann x n matrix. A is invertible if and only if det (A) = 0.In such a case, the
inverse A1 satisfies

At A=1,

Application: Solving Linear Systems

Given a linear system Az = b, if A is a square and invertible matrix (i.e, det(A) = 0),
the unique solution is

z=A"'b
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10. Matrix Inverses and Their
Characterizations

The Inverse of a Matrix

Definition of an Invertible Matrix

A square matrix A of size n X m is said to be invertible (or nonsingular) if there exists a
matrix B of the same size such that:

AB=BA=1,

where I, is the n X n identity matrix. The matrix B is called the inverse of A, denoted as

AL

Key Properties of Inverses

If A is invertible, its inverse A" satisfies the following properties:

e Theinverseof A Llis A :
(A_l)_1 =A

e The inverse of the product of two invertible matrices A and B is:
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(AB) ' =B1'4"!
e For scalar multiplication:

1

(kA) kA—l, for k = 0

Finding the Inverse Using Row Reduction

To find A, augment the matrix A with the identity matrix I,, and row reduce [A | I,]
to I, | A7,

1 2

Example: For A = [3 4

} , augment A with I5 :

APRISEN]

Perform row operations until:

[IQ‘A_1]2|:1 0 —2 1]

0 1 15 -0.5

Thus:

5 [-2 1
A _{1.5 —0.5]

Finding the Inverse Using Determinants

) a b . )
For a square matrix A = [c d} , the inverse can also be computed using the
determinant of A. The formula is:

AT = detl(A) [d _b]

where:

det(A) = ad — be
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If det(A) = 0, the matrix A is not invertible.

Example: For A = [zl)) i

1. det(A4) = (1)(4) — (2)(3) = —2

] , compute:

2. Substitute into the formula:
1 4 -2 —2 1
-1 _ _
A7 = —2 [—3 1] [1.5 —0.5]

Invertibility and Elementary Matrices

Elementary matrices are obtained by performing a single row operation on the identity
matrix.

Each elementary matrix is invertible, and its inverse corresponds to the reverse row
operation.

A matrix A is invertible if and only if it can be written as a product of elementary

matrices:

A=FEE,---E,

Characterizations of Invertible Matrices

The Invertible Matrix Theorem

Forann X m matrix A, the following statements are equivalent (all true or all false):
e Aisaninvertible matrix

e Aisrow equivalent to the n X m identity matrix

A has n pivot positions

The equation Ax = 0 has only the trivial solution

The columns of A form a linearly independent set

The linear transformation x — AX is one-to-one

The equation Ax = b has at least one solution for each b € R"
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The columns of A span R”

The linear transformation x — Ax maps R" onto R"

There exists an . X 1 matrix C suchthat CA = I

There exists an . X n matrix D suchthat AD = I

e AT isaninvertible matrix

Applications of the Invertible Matrix Theorem

1. Solving Systems of Equations:
If Aisinvertible, the solutionto Ax = b is:

x=A"b

2. Linear Transformations:
A linear transformation T : R"™ — R" is invertible if its standard matrix A is

invertible.

3. Matrix Properties:
Using equivalences like determinant and rank, the invertibility of a matrix can be
determined without explicitly calculating the inverse.

Determinants and Invertibility
A square matrix A is invertible if det (A) = 0.

The determinant provides a numerical measure of whether the rows (or columns) of A

are linearly independent.
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11. Determinants and Their
Properties

Introduction to Determinants

The determinant is a scalar value associated with a square matrix. It provides information
about matrix properties such as invertibility and the geometric scaling factor of the
transformation represented by the matrix. Determinants are used in solving systems of
linear equations, computing eigenvalues, and finding areas or volumes.

a b
c d

Fora 2 X 2 matrix:

o
I

the determinant is defined as:
det(A) = ad — be

For larger matrices, the determinant is calculated recursively using cofactor expansion.

Definition of Determinants
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The determinant of an m X n matrix A can be computed using a cofactor expansion
across any row or down any column.

For the 2-th row, the determinant is:
det(4) = anCi1 + ai2Cip + - - - + a1 Cip,

where C;; = (—1)""7det(A,;) is the cofactor of the element a;;, and A;; is the minor

matrix obtained by removing the ¢-th row and 7-th column.

For the j-th column, the determinant is:
det(A) = aleU + a2jC’2j + -0+ ananj

In general, for any row or column, the determinant can be expressed as:
n
det(A) = Z airCir
k=1
where 7 is the chosen row (or column) and C}, are the corresponding cofactors.

Properties of Determinants

Determinants satisfy the following key properties:
¢ Interchanging two rows or columns changes the sign of the determinant.

e Multiplying a row or column by a scalar multiplies the determinant by the same
scalar.

e Adding a multiple of one row or column to another does not change the
determinant.

e The determinant of a triangular matrix (upper or lower) is the product of its diagonal
entries:

det(A) = ﬁ (0773
i=1

e |f a matrix has a row or column of all zeros, its determinant is zero.
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e The determinant of the product of two square matrices is the product of their
determinants:

det(AB) = det(A) - det(B)

e The determinant of the transpose of a matrix is equal to the determinant of the
original matrix:

det(AT) = det(A)

Row Operations and Determinants

Row operations affect the determinant in the following ways:
e Adding a multiple of one row to another row does not change the determinant.
e Interchanging two rows multiplies the determinant by —1.

e Multiplying a row by a scalar k multiplies the determinant by k.

Invertibility and Determinants

A square matrix A is invertible if and only if det(A) a 0. This property is a quick and
efficient way to check for invertibility.

Multiplicative Property of Determinants

For any two n X n matrices A and B:

det(AB) = det(A) - det(B)

Applications of Determinants

Cramer’'s Rule

Cramer's Rule uses determinants to solve systems of linear equations Ax = b :
det(Ai)

LTi = T v

~ det(4)
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where A; is the matrix obtained by replacing the i-th column of A with the vector b.

Eigenvalues
The determinant helps find eigenvalues of a matrix A through the characteristic

equation:

det(A—AI) =0

Geometric Interpretation

The determinant describes the scaling factor of a linear transformation:
e For 2 X 2 matrices, the determinant gives the signed area of a parallelogram.

e For 3 X 3 matrices, the determinant gives the signed volume of a parallelepiped.
A determinant of zero indicates that the transformation collapses the space into a

lower dimension.

Example: Determinant Calculation

1 2 3
let A= [0 4 5|.Computedet(A) using cofactor expansion along the first row:
1 0 6

4 5 0 5 0 4
det(A)zl-det[0 6}—2-det[1 6}+3-det[1 0}

Compute each minor:

ety o] = @@ - 0)5) ~ 2
at I 5] = ©)0) - ()6) =3
et |0 o = ©©) - 1)) =4

Substitute back:
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det(A) = 1(24) — 2(—5) + 3(—4) =24 + 10 — 12 = 22

The determinant of A is 22.
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12. Linear Transformations,
Determinants, and Midterm
Preparation

Linear Transformations
Definition
A transformation T : R™ — R™ is linear if:
1. T(u+v) =T(u) + T (v)forallu,v € R"
2. T(cu) = cT'(u) forallc € R, u € R”
Example
Let T : R? — R3 defined as T'(z,y) = (z,y,0) :

1. T(u + ’U) = T((ml + II?2), (y1 + yz)) = ((El + Z2,Y1 + Yo, O) = T(u) +
T(v)

2. T(cu) =T(czx,cy) = (cx,cy,0) = cT'(u)

Thus, T is linear.
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Matrix Representations and Row Equivalence

Matrix Representation

Given A = [aj as ... a,], the transformation T'(z) = Az can be represented using

columns of A.

Linear Independence of Columns

e If B has linearly independent columns, then AB also has linearly independent

columns.
e Proof (contradiction):

1. Assume AB is dependent: ABx = 0 for some non-zero .

2. This implies Az = 0, contradicting independence of B's columns.

Midterm Preparation Problems and Solutions

Problem 1
Findif T'(z,y) = (z + y,xz — y, 0) is linear:
o Additivity: T'(u +v) = T((z1 + 22), (y1 + y2)) = (®1 + 22 + Y1 + Yo, T1 +
T2 — (11 +92),0) = T(u) + T(v)

e Scalar Multiplication: T'(cu) = T'(cz, cy) = (cx + cy,cx — ¢y,0) = cT'(u)
Problem 2
Range of T : R® — R?, where T'(z,y,2) = (2 + 3y, —y + 2) :

e Range:span{(2,1),(3,—1),(0,1)} = R? (columns span R?).

Problem 3
-2 -7 -9
Find det(A) for A = | 2 5 6
1 3 4

1. Perform row reduction:
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° R3 —>R3—R1,R2 — Ry — 2R;.

2. Resulting upper triangular form gives det(A) = (—1)" [ as;, where r is the

number of row swaps.
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14. Subspaces and Basis in n-
Dimensional Real Spaces

Subspaces in R"

A subspace H C IR" is a subset that satisfies the following properties:
1. Zero Vector: The zero vector, 0, is in H.
2. Closure under Addition: Ifu,v € H,thenu+v € H.

3. Closure under Scalar Multiplication: Ifu € H andc € R, thencu € H.

Examples of Subspaces

1. The set of all vectors in R3 of the form (z, 0, 0) is a subspace because it satisfies all
three properties.

2. The set of solutions to a homogeneous system of linear equations forms a subspace.

Span of Vectors

Given vectors Uy, . .., U € R", their span is the set of all linear combinations of these
vectors:
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Span{uy,...,u} = {ciwy + -+ cgug | ¢y, ..., ¢ € R}

Key Properties:
e The span is always a subspace of R".

e If S = Span{uy,...,u;}, then every elementin S is a linear combination of the
given vectors.

Proof that Span is a Subspace
Let S = Span{uy,...,u;}:

1. Zero Vector: Settingc; = cy = --- =c¢ = 0,weget0 € S.

2. Closure under Addition: If v = > c;u; and w = Y | d;u;, then:
V+ W= Z(Cl -|—d,')ll,' e S.
3. Closure under Scalar Multiplication: If v = Z c;u; and k € R, then:

kv =) (ke)u; € S.

Column Space and Null Space

Column Space (Col(A))

Foramatrix A = [ay, ..., a,], the column space is:
Col(A) = Span{aj,...,a,}.
e Col(A) C R™.

e |t represents all linear combinations of the columns of A.

Null Space (Null(A))

The null space of a matrix A is:

Null(4) = {x € R" | Ax = 0}.
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e Null(4) C R™

e It represents the solution set to the homogeneous equation Ax = 0.

Proof that Null Space is a Subspace
Let H = Null(A):
1. Zero Vector: A0 = 0,500 € H.

2. Closure under Addition: If Au = 0 and Av = 0, then:
A(lu+v)=Au+ Av = 0.
3. Closure under Scalar Multiplication: If Au = 0 and ¢ € R, then:
A(cu) = ¢(Au) = 0.

Basis for a Subspace
Aset B ={uy,...,u;}is abasis for a subspace H C R" if:

1. B spans H = Span{uy,...,u;} = H.

2. Bislinearly independent.

Example: Basis of R3

The standard basis for R® is:

1 0 0
B = 0, |1}, (O
0 0 1

Properties of Basis
1. Every subspace has a basis.

2. The number of vectors in the basis of a subspace is its dimension.

Dimension of a Subspace
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The dimension of a subspace is the number of vectors in its basis.

Rank-Nullity Theorem

For a matrix A, xn:
Rank(A) + Nullity(A4) = n
where:
e Rank(A) = dim(Col(A4))
e Nullity(A) = dim(Null(A))

The upper limit for Rank(A) is the minimum number of m and n. Rank(A) can be at
most min(m,n).


Guest
Rectangle


15. Understanding the Rank-
Nullity Theorem

Rank-Nullity Theorem

For a matrix A, xn
Rank(A) + Nullity(4) = n
where:
e Rank(A4) = dim(Col(A4))
e Nullity(A) = dim(Null(4))
The upper limit for Rank(A) is the minimum number of m and n. Rank(A) can be at

most min(m, n).

Theorem

The pivot columns of a matrix form a basis for Col(A).
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16. Vector Spaces, Subspaces, and
Related Concepts

Vector Spaces

A vector space is a set V' of objects called vectors, along with two operations: vector

addition and scalar multiplication. These operations satisfy the following ten axioms
forallu,v,w € V andscalarsc,d € R.

Axioms of Vector Spaces

Addition Axioms

1. Closure under Addition:
lfu,v € V,thenu+v e V.

2. Commutativity of Addition:
ut+tv=v-+u

3. Associativity of Addition:
(u+v)+w=u+(v+w).

4. Existence of Zero Vector:
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There exists a zero vector 0 € V suchthatu + 0 = u.

5. Existence of Additive Inverses:

Forevery u € V, there exists a vector —u € V suchthatu + (—u) = 0.

Scalar Multiplication Axioms

1. Closure under Scalar Multiplication:
Ifc € Randu € V,thencu € V.

2. Distributivity of Scalar Multiplication over Vector Addition:
c(u+v) =cu+ecv.

3. Distributivity of Scalar Multiplication over Scalar Addition:
(c+ d)u = cu+ du

4. Associativity of Scalar Multiplication:
c(du) = (ed)u.

5. Identity Property of Scalar Multiplication:

lu=u

Examples of Vector Spaces

Polynomials of Degree at Most 1.
Let P, = {ag + a1t + ast® + - - - + a,t" : a; € R}. This set is a vector space.
Example:

e p(t)=1+t*€ P

e The zero vector is the zero polynomial p(t) = 0.

e Check closure under addition and scalar multiplication:

o Ifp(t) = ag + ait + ast?® + ast® and q(t) = by + byt + bot? + bst?, then:
p(t) + q(t) = (ao + by) + (a1 + b1)t + (a2 + b2)t* + (a3 + b3)t>.

Real-Valued Functions
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Let V' be the set of all real-valued functions defined on a domain D. Examples include
functions like sin(z), cos(x), and 2. This set satisfies all vector space axioms.

The Set of Sequences

Let S ={..., ¥ 2,Y-1,Y0,Y1,Y2, - - - }, wherey; € R.Thisis a vector space under
pointwise addition and scalar multiplication.

Subspaces

Definition

A subset H C V is a subspace of a vector space V if:
1.0€ H,
2.u+ve Hforallu,v € H,

3.cu€ Hforallc € Randu € H.

Theorem
Ifvi,...,vg € V, then H = Span{vy,..., vy} isasubspaceof V.

Proof:

1. The zero vector 0 € H since H contains all linear combinations of vy, ..., v, and
O-vi+:--4+0-vp=0.

2. Closure under addition: If u,w € H,thenu =c¢1vy + -+ + ¢V and w =
divy + -+ - + dpvy. Then:

u+w=(ci+dy)vi+---+(cxr +dp)vi € H.

3. Closure under scalar multiplication: If u € H,thenu = ¢; vy + - - - 4 ¢ V. For
any scalar a,

au = (acy)vy + -+ + (acy) vy € H.
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Example:
let H = { {g 2] ca,b € R}.ShowHisasubspace of Msyo.
1.0 Ha=0,b=0,so0 [8 8] € H.

2. Closure under addition and scalar multiplication follows from the form of the
matrices.

Dimension of a Matrix Space

The set of m X n matrices M, ., forms a vector space. Its dimension is mn.
Example:

For M3, the dimensionis 2 - 3 = 6, and a basis consists of matrices with a single entry
as 1and others as 0.

Invertible Matrix Theorem (Continued)

Let A € R™*™ The following are equivalent:
1. Aisinvertible,
2. The columns of A form a basis for R”,
3. Col(A) = R™,
4. rank(A) = n,
5. dim(Nul(A4)) =0,
6. Nul(A) = {0}.
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17. Subspaces, Rowspace, and Linear
Transformations

Theorem: Span as a Subspace

Statement: If vy, . .., vy are in a vector space V/, then Span{’ul, ceey vk} is a subspace of V.
Proof
To show H = Span{vl, ceey 'uk} is a subspace, verify the three subspace criteria:

1. Zero Vector in H:

The zero vector is in H because:
0=0-v14+0-v9+---4+0-v, € H.

2. Closed under Addition:
Letu,w € H.Then:

u = c1v1 + cov2 + - - + ckVk, w = d1v1 + dave + - - - + dgVk.
Adding © and w:
U+ w= (Cl—i_dl)vl+ (62+d2)U2+"‘+(Ck+dk)'Uk c H.

3. Closed under Scalar Multiplication:

Letu € H andec € R. Then:

U = C1V1 + CoUy + -+ + Cx V.
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Scaling u:

cu = (ccr)vy + (cea)vg + -+ - + (cex)v, € H.

Thus, H = Span{vy, ..., v} is a subspace of V.

Example 1: Subspaces of R?
Let W = {[z y] : zy > 0} C R2

Question: Is W a subspace of R??

Solution
To check if W is a subspace:

1.0 € W:True,asx = 0and y = O satisfyxy = 0 > 0.

2. Closed under addition:
Letu = [x1 Y1), w = [z2 Yo in W, so z1y; > 0and 2oy, > 0.
However, (21 + 22)(y1 + y2) > 0 does not always hold (e.g., [~3, —10] + [5,5] = [2, —5] ¢ W).

3. Closed under scalar multiplication

Ifu = [x,y] € W, then for any scalar ¢ € R, cu = [cz, cy] € W because (cz)(cy) = c*(zy) > 0.
Thus, W is closed under scalar multiplication.

Thus, W is not a subspace of R2.

Example 2: Subspace of R*
Llet H = {[4a + 3b,0,a + b+ c,c — 2a] : a,b,c € R} C R%.

Question: Is H a subspace of R*?

Solution
1. Zero Vector in H:

Seta=0,b=0,c=0:
[4(0) + 3(0),0,0+ 0+ 0,0 — 2(0)] = [0,0,0,0] € H.

2. Closed under Addition:

Letu = [4(11 + 3b1, 0, a; + bl + 1,01 — 2(11] andw = [4(12 + 3b2, 0, as + b2 + Cc2,C0 — 2a2].
Adding:

U+ w= [4((1,1 + a2) + 3(b1 + bz), 0, (a1 + az) + (b1 + bz) + (C1 + Cz), (Cl + 62) — 2((1,1 + az)].

Sincea; + as,b; + by, c1 +co e Ru+w € H.
3. Closed under Scalar Multiplication:

Letu = [4a + 3b,0,a + b+ ¢,c — 2aland k € R. Then:


Guest
Rectangle


ku = [k(4a + 3b),0,k(a + b+ ¢), k(c — 2a)].
Since ka, kb, kc € R, ku € H.
Thus, H is a subspace of R,
Rowspace of a Matrix

Definition

The rowspace of a matrix A is the subspace of R™ spanned by the rows of A. It is written as:
Row(A) = Span{rows of A}.

Note

The column space of AT is the rowspace of A:

Col(AT) = Row(A).

Basis for the Rowspace

To find a basis for Row (A), take the non-zero rows of the row-echelon form (or reduced row-echelon form) of

A

Theorem: Column Space

Let A be anm X m matrix. The column space of A is defined as:

Col(A) = {b € R™ : b = Az for some z € R"}.

Example
1
Letw = |2].Iswin the span of:
5
1 2 -3
2 5 -—-8|7
-1 1 3
Solve Ax = u, where;
1 2 -3 1
A=|2 5 8|, u=|2
-1 1 3 5

Write the augmented matrix:
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Reduce to row-echelon form and check consistency.

Linear Transformations

Definition
Let V and W be vector spaces. Amap T : V — W is linear if:

1. T(a+b)=T(a)+T(b)foralla,becV,
2. T(ca) = cT'(a)forallc € Randa € V.

Kernel and Range
e Kernel:

The kernel of a linear transformation T" : V' — W is the set of all vectors in V' that map to the zero vector

in W-:
ker(T) ={v eV :T(v) = 0}.
For amatrix A € R™*", the kernel (also called the null space) is:
ker(A) = {x € R" : Az = 0}.

The kernel is always a subspace of the domain of T" or A.
Proof:
o 0 € ker(T),sinceT'(0) = 0.
o Closed under addition: If u, v € ker(T"), thenT'(u +v) = T'(u) + T'(v) =0+ 0 = 0.
o Closed under scalar multiplication: If u € ker(T") and ¢ € R, then T'(cu) = ¢T'(u) = c¢-0 = 0.

e Range:
Range(T) = {T(u) :u € V} CW.

The range is a subspace of W.

Proof:
o 0 € Range(T), since T'(0) = 0.

o Closed under addition and scalar multiplication follow similarly.

Example: Linear Transformation
Let T : Py — R? where:
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T@:mm.
1. Show T is Linear:

e T(p+gq) = [ngr Q)((B] - |:p(0) +Q(0)} =T(p) +T(q)

p+q)( p(1) +q(1)
e Tlep) — PO _ [p(O)] _
i) = )] = )] =T

2. Find ker(7'):
Solve T'(p) = 0, where p(t) = a + bt + ct?.

T(p) = [a+2+c] - [g}

Froma =0anda+b+c=0,wegetb+c=0.
Soker(T) = {bt + ct® : b+ c = 0} = Span{t — t*}.

dim(ker(T)) = 1.

3. Find Range(T):
The range is:

Range(T) = Span{ m , m } .

dim(Range(T)) = 2.
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18. Basis and Subspaces

Theorem: Basis of a Subspace

Let H be a subspace of V.. If dim(H) = k, then k vectors in H form a basis for H if
they are:

1. Linearly independent, or

2. They span H.

Problem: Analyzing Subspace H

Let:

2
H= {[Z 0“] :a,beR} < Myys.

1. Show that H is a Subspace of My,
To prove H is a subspace, verify the three conditions:

1. Zero Vector: The zero matrix is in H:

0 0

Leta=0,0=0 = [O 0

|
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[ 2 2
2. Closed under Addition: Let A = Zl gl} and B = [Zz 82] be in H. Then:
1 2

A+B=

(a1 +ay  2(a; + ay)
_bl + by 0 '

Sincea; +as € Randb; +by e R,A+ B € H.

3. Closed under Scalar Multiplication: Let A = [Z 20a] and ¢ € R.Then:
_|eca 2(ca)
cA = [cb 0 ] .

Sinceca € Randeb € R, cA € H.

Thus, H is a subspace of Myys.

2. Write a Basis for H

The general form of matrices in H is:

a 2af |1 2 4 0 0

b 0| %o 0 1 0|
The matrices:

1 2 0 0
0 0’ 1 0
are linearly independent and span H. Hence, they form a basis for H.

3. Dimension of H

The dimension of H is the number of vectors in the basis:

dim(H) = 2.
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19. Coordinate Mapping,
Isomorphism, and Linear

Independence
Coordinate Mapping Theorem
Theorem
Let V be an n-dimensional vector space with basis B = {vy, va,
coordinate mapping:
CB:V - R"
is defined as:
e
C2
CB(v)=[v]B=| .
[ Cn

wherev =c;vy +cove + -+ - 4+ ¢, vy,

..y Vn}. The
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Properties

1. Linear Transformation: The coordinate mapping Cj is a linear transformation.

2. 1-to-1: Cp is one-to-one because distinct vectors in V' have distinct coordinate vectors.

3. Onto: Cp is onto because every vector in R™ corresponds to a unique vectorin V.

Isomorphism

The coordinate mapping Cg : V' — R" is an isomorphism, meaning:

1. Cp is linear.
2. Cp is bijective (1-to-1and onto).

3. Cp preserves vector space structure.
Example: Isomorphism Between P,, and R 1

Theorem

The vector space P, (polynomials of degree at most n) is isomorphic to R~

Proof

1. Basis for P,:
A standard basis for P, is B = {1,t,t%,...,t"}.

2. Coordinate Mapping:
Any p(t) € P, can be written as:

p(t) = o+ cit + ot + -+ cut™
lts coordinate vector in R™ 11 is:

Co
C1

Cn
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3. Linear Transformation:
The mapping Cp : P, — R™"! s linear because:

e It respects addition: [p(t) + q(t)|B = [p(t)|B + [¢(¢)]5.
e It respects scalar multiplication: [cp(t)|B = c[p(t)]B.
4. 1-to-1and Onto:
e (Cpis1-to-1because distinct polynomials have distinct coefficients.

e (Cpis onto because any vector in R+ corresponds to a polynomial in P,,.

Thus, P, =~ R**1.

Using Coordinate Vectors to Prove Linear Independence

Problem

Let B = {1,t,t?}and pi(t) = 1 + ¢, pa(t) =t + 2, p3(t) = 1 + 2. Are
p1(t), p2(t), p3(t) linearly independent?

Solution

1. Coordinate Vectors:
Express each polynomial in terms of B:

1 0 1
pB=|1], [pB=|1|, Ipslz= |0
0 1 1

2. Matrix Representation:
Form a matrix with these vectors as columns:

A=

O ==
P =
_ O

3. Determine Independence:
Compute the determinant:

det(A) =1(1-1—-0-1)—0(1-1—0-1)4+1(1-1—1-1)=14+0+0=1.
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Since det(A) va 0, the columns are linearly independent, and hence p1, p2, p3 are
linearly independent.

Dimensional Relationships in Subspaces

Theorem
If H is a subspace of V and dim (V') = n, then:

dim(H) < dim(V).

Example
Let H C My5 be:

n-{fs %] asen).

1. Show H is a Subspace:
e Zero matrixisin H.

e Closed under addition and scalar multiplication (verify properties).

2. Basis for H:

Write a general matrix:

HGRTHR

o o[ ol

dim(H) = 2.

Basis:

3. Dimension:
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20. Change of Coordinates,
Determinants, and Subspaces

Theorem: Change of Coordinates Matrix

Let V be a vector space, and let B = {by,...,b,;;} andC = {¢y,...,cn} be two
bases for V.

The change of coordinate matrix Pg_, is defined as the matrix that relates the
coordinates of a vector x with respect to B and C.

Formula:
[X]C - PB—>C [X]B

Here:
e [x]p is the coordinate vector of x with respect to B,
e [x]c is the coordinate vector of x with respect to C,

e Ppg_.cisthe change of coordinate matrix.

Coordinates with Respect to Another Basis
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Existence of Coordinates

Coordinates with respect to any basis C always exist because basis vectors span the
entire vector space V.

Given a basis B = {by, ..., b,}, any vector v € V can be expressed uniquely as:

v =cib; + by +--- + ¢, b,

Proof: Ps_.¢ is Invertible

To prove that Pg_.¢ is invertible:

1. Basis Vectors: The basis B = {bl, ceey bn} consists of linearly independent
vectors.

2. Coordinate Representation: The change of coordinate matrix Pg_,¢ is defined as:

Psc = [[bllc [b2C ... [bnlC]
3. Linear Independence: Since by, . . . , b, are linearly independent in V, their
coordinate vectors [b1]C, ..., [bn]C are also linearly independent in R"™.

4. Invertibility: A matrix with linearly independent columns is invertible. Hence, Pg_,¢

is invertible.

Determinant Rules for an Invertible Matrix

Let A be anm X 1 matrix:

1. Scaling a Matrix:
If A isa square matrix, then for any scalar ¢

det(cA) = " - det(A)

where n is the dimension of A.

Example:

If Aisa b x 5 matrixand det(A) = 3, then:

det(2A4) = 2° - det(A4) = 32 -3 = 96
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2. Determinant of a Product:
If A and B are n X n matrices:

det(AB) = det(A) - det(B)

3. Determinant of an Inverse:
If A isinvertible:

1
det(A)

det(A™!) =

4. Row Operations:
e Swapping two rows multiplies the determinant by —1.
e Multiplying a row by k scales the determinant by k.

e Adding a multiple of one row to another does not change the determinant.

Subspaces of a Vector Space

Theorem: Subspace Conditions

Let V' be a vector space, and let H; and Hs be subspaces of V'

1. Union of Subspaces:

H, U Hy, may not be a subspace of V'

Counterexample:
Let H; = Span{u} and Hy = Span{v}, where u and v are linearly independent.

e uc Hy, v e H,,
e utv¢ H, U H5, so Hy U Hs is not closed under addition.

2. Intersection of Subspaces:
H, N H, is always a subspace of V'

e The intersection Hy M Hy contains the zero vector.
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e |tis closed under addition and scalar multiplication.

Summary

1. Change of Coordinates:

e The change of coordinate matrix Pg_.¢ relates the coordinates of a vector X in
two bases:

[X]C = PB—>C [X]B

o Pgy_.isinvertible.
2. Determinant Rules:

o det(cA) = c"det(A),

e det(AB) = det(A) - det(B),

e Row operations affect the determinant as described.
3. Subspaces:

e H; U H,isnot always a subspace,

e H, N H,isalways a subspace.
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21. Solutions to Linear Algebra
Problems: Preparation for MT 2

# Important Note:

"I couldn’t attend this lecture where students had an open Q&A session with the
professor. To ensure | stay on track, I've included the solutions to some of the problems
in Fall 2023 Midterm 2 here as a reference."

Problem 1

Let P_2 denote the vector space of all polynomials of degree at most two. The sets
B={1+2t,—2t+2t2,3+t+t*} and C={1,t,t}
are two bases for P.

(a) Find the C-coordinate vector of each of the polynomials in the
basis B.
Solution:

To find the C-coordinate vectors of the polynomials in B, express each polynomial as a
linear combination of the basis {1, ¢, 2}. The coefficients of the linear combinations will
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form the C-coordinate vectors.
1. For 1 + 2t:
Express 1 + 2t as:

14+2t=1-14+2-t+0-¢.

The coefficients are [1, 2, 0]c.
2. For —2t + 2t
Express —2t + 2t as:

2+ 22 =0-1—-2-t+2-¢%

The coefficients are [0, —2, 2]¢.
3. For3 +t +t*
Express 3 4 t + t? as:

34+t+t2=3-1+1-t+1-¢.

The coefficients are [3, 1, 1]c.

The C-coordinate vectors of the polynomials in 3 are:
[1,2,0], [0,—2,2], [3,1,1].

(b) Find the change-of-coordinates matrix from the basis B to the
basis C.

Solution:

The change-of-coordinates matrix Pg_,¢ is formed by placing the C-coordinate vectors
of the polynomials in B as the columns of a matrix.

The C-coordinate vectors from part (a) are:
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Thus, the change-of-coordinates matrix is:

1 0 3
Psc=12 -2 1
0 2 1

Problem 3

Let

1 1 -2
A=1]-1 1 3
0 -1 3

(a) Find the determinant of A by expanding along the third column of
A.

Solution:

To compute det(A), expand along the third column:

det(A) = (—2) - det [_01 _11] — 3 - det B _11] + 3 - det {_11 ﬂ :

1. Compute each minor determinant:

e First minor:
e Second minor:

e Third minor:
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2. Substitute into the determinant formula:

det(A) = (—2)(1) — 3(=1) + 3(2).

3. Simplify:

det(4) = —2+3+6="T.

Final Answer:

det(A) = 7.

Problem 4

Let M> o be the vector space of all 2 X 2 matrices, and define the linear transformation

P =l 0"

T : R?2 — My, by:

Let

(a) Calculate T'(2u + v).

Solution:

1. Compute 2u + v:

sv=a[l] [ - [ + ]

2. Apply T":
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Final Answer:

T(2u+v) = [_28 _38]
(c) If possible, find a vector w € R2 such that T(W) = [187 187] .
Solution:
Set:

(DA P B i

From the top-right entry:

a — 3b=107.
Solve for w = [Z]:
a =107 + 3b.
Letb = O:
- — [107] .
0
Final Answer:
- — [107] .
0

Problem 5

Mark each statement as True or False by writing 1" or F" inside the box to the left of each
statement.

No explanation is needed in this question. Assume that all matrices below are square.
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(a) If v is an eigenvector with eigenvalue 2, then 2V is an eigenvector
with eigenvalue 4.
Answer: False

Scaling an eigenvector does not change its eigenvalue. The eigenvalue remains
associated with the eigenvector regardless of scalar multiplication.

(b) If two matrices of the same size have the same set of eigenvalues,
then they are similar.

Answer: False

Having the same eigenvalues does not guarantee similarity. Matrices must also have the
same eigenvectors (or equivalent diagonalization properties) to be similar.

(c) Row operations preserve the linear dependence relations among
the rows of a matrix.

Answer: False

Row operations may alter linear dependence relations. For example, scaling or replacing
rows can introduce or remove dependencies.

(d) Ifaset {vy,...,V,} spans a finite-dimensional vector space V'
and 7' is a set of more than p vectors in V/, then T’ is linearly
dependent.

Answer: True

In a vector space of dimension p, any set with more than p vectors must be linearly
dependent due to the dimensionality constraint.

(e) If 0 is an eigenvalue of a matrix A, then A is invertible.

Answer: False

If 0 is an eigenvalue, the determinant of A is 0, making A singular (not invertible).

(f) If A3 = 0 for a matrix A, then det(A) = 0.

Answer: True
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If A3 = 0, A is a nilpotent matrix, meaning A is singular. Singular matrices have a
determinant of 0.

(g) If \is an eigenvalue of an invertible matrix A, then % isan
eigenvalue of A",

Answer: True
1

For an invertible matrix A, if v is an eigenvector corresponding to A, then A~ lv = V-
(h) For any matrix A, we have det(AT) = 1
! det(A)"

Answer: False

The determinant of the transpose equals the determinant of the matrix, i.e,, det(AT) =
det(A). The given statement is incorrect.

(i) If a matrix A is invertible, then A is diagonalizable.

Answer: False

Not all invertible matrices are diagonalizable. Diagonalizability requires that the matrix
has enough linearly independent eigenvectors.

() If a matrix A is similar to a matrix B, then A? is similar to B2.

Answer: True

If A is similar to B, then A* is similar to B¥ for any positive integer k. This follows from
the similarity transformation property.

Fall 2023 Midterm 2.pdf
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22. Eigenvalues, Eigenspaces, and
Eigenvectors

Definitions

Eigenvalues and Eigenvectors

Let A beann X n matrix. Ascalar A\ € R is called an eigenvalue of A if there exists a non-zero
vector x € R” such that:

Ax = \x.

Here:
e X is called an eigenvector corresponding to the eigenvalue .

e The set of all solutions x a 0 to the equation Ax = Ax forms the eigenspace corresponding

to \.

Characteristic Equation

The eigenvalue equation Ax = AX can be rewritten as:
(A—A)x =0,

where [ is the identity matrix. For non-trivial solutions (x # 0), the determinant of A — A\I must be
zero:
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det(A — A\I) = 0.

This is the characteristic equation of A.

The characteristic polynomial of A is defined as:
p(A) = det(4A — AI).

Geometric and Algebraic Multiplicities
1. Algebraic Multiplicity:

e The algebraic multiplicity of an eigenvalue A is the number of times A appears as a root of
the characteristic polynomial p().

2. Geometric Multiplicity:

e The geometric multiplicity of an eigenvalue \ is the dimension of the eigenspace
corresponding to A. This is the number of linearly independent eigenvectors associated
with A.

Fact:
For any eigenvalue A of anm X n matrix A:

Geometric Multiplicity of A < Algebraic Multiplicity of A.

Example: Finding Eigenvalues and Eigenspaces

Let:

1 2 2
-3 -5 -3
3 3 1

A

Step 1: Find the Characteristic Polynomial
Solve det(A — AI) = 0:

1—-A 2 2
A-AX=| -3 —-5-X -3
3 3 1—-A
Compute det(A — AI):
1—A 2 2
det(A—M)=| -3 —5-X -3

3 3 1—A
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Expand the determinant:
det(A— M) = (1= X) (A+5)(1—A) —9) — 2(=3(1 — A) +9) +2(—9 — 3(A + 5)).

Simplify to find the characteristic polynomial p(\).

Step 2: Solve p(A) =0
Find the eigenvalues A1, A2, A3 (roots of p(A)).
Step 3: Find the Eigenspaces

For each eigenvalue ), solve (A — AI)x = 0 to find the eigenvectors and eigenspaces.

Theorem: Linear Independence of Eigenvectors

If vq, ..., v, are eigenvectors corresponding to distinct eigenvalues A1, . . ., A, of A, then
V1, ..., 0, are linearly independent.

Similarity and Diagonalization

Similarity

Two 1 X m matrices A and B are similar if there exists an invertible matrix P such that:
PlAP=B.

Diagonalization

A matrix A is diagonalizable if there exists an invertible matrix P such that:
P AP =D,

where D is a diagonal matrix. In this case, A is similar to D.

Theorem:
Ann X m matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Summary of Key Points

1. Eigenvalues are roots of the characteristic polynomial p(A) = det(A — AI).

2. Eigenvectors are non-zero solutions to (A — AI)x = 0.

3. The geometric multiplicity of A is the dimension of the eigenspace corresponding to .
4. Geometric multiplicity < Algebraic multiplicity.

5. A matrix is diagonalizable if it has 1 linearly independent eigenvectors.
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23. Foundations of Invertibility,
Similarity, and Diagonalization

These notes cover several key theorems related to:
1. Invertibility of an n X 1 matrix and the eigenvalue 0.
2. Similarity of matrices and its properties.

3. Diagonalizability and the role of geometric multiplicities.

Invertibility and the Eigenvalue 0

Theorem

Let A be anmn X n matrix. Then A is invertible if and only if O is not an eigenvalue of A

Reasoning/Proof Sketch

e By definition, 0 is an eigenvalue of A if there exists a nonzero vector v such that
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This means Vv is in the null space of A, so A is not injective (not one-to-one).
e A matrix A is invertible precisely when its determinant is nonzero.

e |tisastandard fact that the determinant of a matrix equals the product of its
eigenvalues (counted with algebraic multiplicities).
Therefore,

det(A) = A -Ag vt A

If 0 is one of the A;, then the product is 0, so det(A) = 0 and A is not invertible.

e Conversely, if A is not invertible, then det(A) = 0, which means at least one
eigenvalue must be 0.

Hence, the statement is proven.

Similar Matrices

Definition

Two 1 X m matrices A and B are said to be similar if there exists an invertible matrix P
such that

B=P'AP

In other words, A and B represent the same linear transformation but in different bases.

Diagonal Matrices

Definition

Ann X n matrix D is called diagonal if all its off-diagonal entries are 0, i.e.,
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When does a matrix have a diagonal form?

A matrix A is said to be diagonalizable if there exists an invertible matrix P such that
P 1APisa diagonal matrix. This is intimately connected with the notion of having a full
set of linearly independent eigenvectors.

A=PDP'!, D=P'AP

Similar Matrices Have the Same Characteristic Polynomial

Theorem

If two m X n matrices A and B are similar, then they have the same characteristic

polynomial and consequently the same eigenvalues (with the same algebraic
multiplicities).

Proof Sketch
1. Similarity Assumption: Suppose B = P! AP for some invertible P.

2. Characteristic Polynomial: The characteristic polynomial of a matrix M is given by
par(\) = det(A\I — M).
3. Compute pp(\):
pe(X) = det(A] — B) = det(A\] — P"'AP).
4. Factor Out P! and P:
M~ P 'AP =P '(API - A)P =P *(\I - A)P
since PI = P.Therefore,
pe(A) = det (P (AT — A)P).
5. Use Multiplicative Property of Determinants:

det(P~'(A] — A)P) = det(P ") det(A] — A) det(P).
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6. Invertible P:det(P~!) det(P) = 1, hence
pB(A) = det(AI — A) = pa(N).

7. Conclusion: Since pp(\) = p4(A), the eigenvalues (the roots of these
polynomials) coincide, including their algebraic multiplicities.

Converse Is Not True

Having the same set of eigenvalues does not necessarily imply that two matrices are
similar. They must also have the same geometric structure of eigenspaces, Jordan
canonical forms, etc.

Example / Idea for Proof

(9 -G

2. Both have the same eigenvalue A = 2 (with algebraic multiplicity 2).

1. Consider the matrices:

3. Eigenvectors:
e Aisalready diagonal, so it has 2 linearly independent eigenvectors.

e BisalJordan block (upper triangular with identical diagonal entries 2). It has
only one linearly independent eigenvector.

4. Thus, A and B are not similar, even though they have the same eigenvalue with the
same algebraic multiplicities. The difference lies in their geometric multiplicities
(the dimensions of the eigenspaces).

Diagonalizability Criterion
Theorem

Ann X m matrix A is diagonalizable over R (or C) if and only if for each eigenvalue \;
, the geometric multiplicity (dimension of the eigenspace corresponding to A;) equals
its algebraic multiplicity.
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Proof Sketch

e The algebraic multiplicity m; of an eigenvalue A; is how many times \; appears as
a root of the characteristic polynomial.

e The geometric multiplicity g; is dim(ker(A — \;1)).

e To be able to diagonalize A, one must be able to find n linearly independent
eigenvectors. Equivalently, one must have a basis consisting entirely of eigenvectors.

e For each eigenvalue \;, you can select g; linearly independent eigenvectors. The sum
over all eigenvalues of g; must be n.

e But) .g; <Y .m; = n.Thus, for having a full set (exactly n) of linearly
independent eigenvectors, you need g; = m; for every eigenvalue ;.

Example

Let A be a6 x 6 matrix with characteristic polynomial
p(A) = (A =3’ (A +1)(x - 2)*.
e The eigenvalues are A = 3 (with algebraic multiplicity 2), A = —1 (with algebraic
multiplicity 1), and A = 2 (with algebraic multiplicity 3).

e To determine diagonalizability, one must check each eigenvalue’s geometric
multiplicity:

o For A = 3, we need to see if the dimension of ker(A — 31 ) is 2.
o For A = —1, the dimension of ker(A + I) must be 1.
o For A = 2, the dimension of ker(A — 2I) must be 3.
e If, and only if, all these dimensions match their respective algebraic multiplicities, A
is diagonalizable. Otherwise, it is not.
Summary Points
1. A matrix is invertible <= 0 is not among its eigenvalues.

2. Two matrices are similar if one can be obtained from the other by a similarity
transformation B = P~ 1 AP.
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3. Similar matrices have the same characteristic polynomials, hence the same

eigenvalues.

4. The converse is not true: having the same eigenvalues (even with same multiplicities)
does not imply similarity—one must also compare eigenspace dimensions
(geometric multiplicities).

5. A matrix A is diagonalizable if and only if for every eigenvalue A, its geometric

multiplicity equals its algebraic multiplicity.
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24. Eigenvalues, Eigenvectors,
and Diagonalization

Diagonalization of Matrices

Problem Statement

We are tasked to:

1 3 3
1. Diagonalize the matrix A = | -3 —5 —3]|,if possible.
3 3 1

2. Confirm whether A is diagonalizable by verifying if the geometric multiplicity
equals the algebraic multiplicity for each eigenvalue.

3. Find the eigenvalues, eigenvectors, eigenspaces, and matrices P (diagonalizing
matrix) and D (diagonal matrix).

4. Compute A%
5. Find P71,

6. Discuss diagonalizability based on algebraic multiplicity and eigenspaces for similar
matrices.
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Additionally:

e Demonstrate why A tis diagonalizable if A is diagonalizable and invertible.

Diagonalization of A

Step 1: Find Eigenvalues

To find eigenvalues:

1. Solve det(A — AI') = 0, where I is the identity matrix.
2. Compute det(A — AI):

1—A 3 3
det -3 —-5—-X -3 = 0.
3 3 1—A

3. Expand and simplify to obtain the characteristic polynomial:
det(A — M) = (A + 2)%(A — 4).

Thus, the eigenvalues are:
e )\; = —2 (algebraic multiplicity 2),
e )y = 4 (algebraic multiplicity 1).

Step 2: Find Eigenspaces and Eigenvectors
For each eigenvalue A, solve (A — AI)x = 0.

For A\ = —2:
3 3 3
(A—(-2)D)=|-3 -3 -3
3 3 3

Row reduce:
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3 3 3 1 1 1
-3 -3 -3[—10 0 O
3 3 3 0 0 O
1 1
The eigenspace is spanned by vi = [—1| andve = | O |.
0 -1
For A = 4:
-3 3 3
(A—4)= -3 -9 -3
3 3 -3
Row reduce:
-3 3 3 1 -1 -1
-3 -9 -3[—10 1 0
3 3 -3 0 O 1
1
The eigenspace is spanned by vg = |1].
1

Step 3: Verify Diagonalizability
The algebraic multiplicities of the eigenvalues add up to n = 3, and the dimensions of

the eigenspaces match their algebraic multiplicities:
e For A = —2: Algebraic multiplicity = 2, Geometric multiplicity = 2.
e For A = 4: Algebraic multiplicity = 1, Geometric multiplicity = 1.

Since geometric multiplicity equals algebraic multiplicity for all eigenvalues, A is
diagonalizable.

Step 4: Construct P and D

1. Matrix P: Columns are the eigenvectors:
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1 1 1
P=|-1 0 1
0 -1 1

2. Matrix D: Diagonal matrix of eigenvalues:

-2 0 0
D=10 -2 0
0 0 4
Step 5: Compute A°!
Using diagonalization:
Al = PD*' P

1. Compute D5

2. Compute A% by substituting P, D!, P~1,

Step 6: Find P~ 1

Using the formula for the inverse of a matrix:
P! = adj(P)/ det(P).
1. Compute det(P):
det(P) =1(-1-1)—1(-1—-0)+1(1—0)= —2+1+1=0.
2. Compute p! using standard cofactor and adjoint methods.
Additional Topics

Diagonalizability of A1
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If A is diagonalizable, A = PDP~!. Then:
A'l=(pDP Yy '=PD'P
Since D~ is diagonal, A~ ! is also diagonalizable.

Formulas for Inverses and Matrix Multiplication

1. Inverse: Fora 2 X 2 matrix:

A [—dc _ab] |

2. Matrix Multiplication:

e ForAB = B A, matrices are not commutative.
o IfAand Bareinverses: AB =1, BA = 1.

3. Inverse of a Transpose:

If A is invertible, then sois AT, and the inverse of AT is the transpose of A~
(AT)—l — (A_l)T.

4. Inverse of a Product:

If A and B are invertible n X m matrices, then the inverse of AB is the product of
the inverses of A and B in reverse order:

(AB)'=B1'A4"%.

5. Inverse of an Inverse:

If A isinvertible, then the inverse of A~ 1 is A itself:
(A_l)_1 = A.

6. Inverse of a Scalar Multiple:

For any invertible matrix A and scalar k = 0, the inverse of kA is given by:
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(kA) = AL,
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25. Complex Eigenvalues and
Diagonalization

What This Note Is About

We study complex eigenvalues, how they arise from the characteristic polynomial, and
how to find eigenvectors and diagonalize a matrix (or a linear transformation) when
working over the complex field.

Complex Eigenvalues

A complex eigenvalue ) of a square matrix A € M,,..,(R) (or C) is a (possibly
non-real) complex number for which there exists a nonzero vector x such that

Az = \z.

The vector z is called an eigenvector corresponding to \.

Characteristic Polynomial

The characteristic polynomial of an n X n matrix A is defined by

det(A — AI).


Guest
Rectangle


Its roots (counted with multiplicities) are the eigenvalues of A. Over C, every
polynomial splits completely, so an . X n real matrix always has n complex
eigenvalues in total (some could be repeated).

Example: Complex Eigenvalues of a 2 X 2 Matrix

Suppose

1. Characteristic Polynomial

det (2? 4‘_6A) (2= A)(4—X)— (=6)-3 =\ —6)+26

2. Eigenvalues

Solve A2 — 6 + 26 = 0:

+ /36 —4-2 + /-
A= 362 6_°¢ : % _ 34 viTa.

These are complex conjugates.
3. Eigenvectors

For each ), solve (A — AI)xz = 0. Because the eigenvalues are complex, the

corresponding eigenvectors will also have complex entries. The space of all such
eigenvectors is the eigenspace for that \.

Eigenvalues in a Linear Transformation Context

Let V be a vector space over Ror C,andletI" : V' — V be a linear map. A
nonzero vector x € V is called an eigenvector of 7' if

T(z) = Az

for some scalar \. The number \ is an eigenvalue of 7T'.


Guest
Rectangle


Example: A Linear Operator on P;

Let T' : P3 — Pj3 be defined by
T(p(t)) = p(0) +p(2)t — p(0) ¢* — p(2) ¢,
1. Case (a): p(t) = 1 — ¢
e Computep(0) =1,p(2)=1—-4=-3.
e Then

T(1—t*) = p(0) +p(2)t — p(0) t* — p(2)t> =1 — 3t — t* + 3¢t°.

This is not a scalar multiple of 1 — 2, so 1 — t? is not an eigenvector.
2. Case (b):p(t) =t — t3
e Computep(0) =0,p(2) =2 -8 = —6.
e Then

T(t —t°) = p(0) + p(2) t — p(0) t* — p(2) > = —6t + 6t° = —6(t — t°).

Thus t — t3 is an eigenvector with eigenvalue —6.

Hence A = —6, and its eigenspace is all multiples of t — ¢3.

Diagonal Matrix Representation

Amatrix A € M,,,, (C) (or R) is diagonalizable if and only if there exists an
invertible matrix P and a diagonal matrix D such that

A=PDP'

Equivalently, for a linear operator 7', if there exists a basis of eigenvectors for V/,

then the matrix representation of ' in that basis is a diagonal matrix.

e Key Idea: Each eigenvalue \; goes onto the diagonal of D, and its corresponding
eigenvector becomes a column of P.
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Example: Find a Basis That Diagonalizes A
Let T : R? — R? be defined by T'(z) = Az, where

A:(_OS jl)

We want a basis B of R? such that [T} is diagonal.

B
1. Eigenvalues: Solve det(A — AI) = 0.

2. Eigenvectors: Solve (A — \;I)x = 0 for each eigenvalue.

3. Matrix P: Formed by placing the independent eigenvectors as columns, in the same
order used for the diagonal entries of D.

4. Then P 1APis diagonal with eigenvalues on the diagonal.

Summary and Key Points

e Complex Eigenvalues arise naturally if the characteristic polynomial has non-real
roots.

e A diagonalizable matrix is one that can be written as A = PD P~ for some
invertible P and diagonal D.

o Eigenspaces are the sets of vectors scaled by each eigenvalue.

e In many real applications, we extend scalars to C to find all eigenvalues (Fundamental

Theorem of Algebra).

¢ If you have fewer than n linearly independent eigenvectors, the matrix is not
diagonalizable. But over C, one can still form its Jordan Normal Form if

diagonalization fails.

In practice, to diagonalize A, you must find a complete set of linearly independent
eigenvectors. If you cannot, the matrix is not diagonalizable. Over C, you may still
have complex eigenvalues and (if necessary) Jordan blocks.
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26. Preparation for Final Exam

What This Note Is About

We have a linear transformation T' : R? — R? given by the matrix

A= (_11 :1},) sothat T(x) = Ax.

We work with respect to the basis

1
B = {bl,bz} where b1 = <1> 5 b2

Il
N
=~ W
~

Objectives:
1. Show that by is an eigenvector of A.
2. Prove A is not diagonalizable despite having an eigenvector b;.
3. Find the matrix of T" in the basis B, denoted [T] B
4. Include a theorem on how to compute [ T'(x) | B using [T] B

Below, we demonstrate all solutions, checking every condition for validity and correctness.

Definition: When Is a Matrix Diagonalizable?

A square matrix A is diagonalizable if it has a basis consisting entirely of its eigenvectors. Equivalently, each eigenvalue's
algebraic multiplicity must equal its geometric multiplicity.

Step 1: Confirm b; is an Eigenvector

1
Let us first see why by = (1) is an eigenvector of A.

1. Eigenvalues

We calculate the characteristic polynomial of A:
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det(A)\I)—‘l =1-NB-XN)—(-1)1=B-4A+M)+1=X -4\ +4=(\—2)~

This shows the only eigenvalue is A = 2, with algebraic multiplicity 2.

2. Eigenvectors

We solve (A — 2I)x = 0. That is:

Row reduction gives one free variable:

-1 1 AN o
1 1 — 0 0 Tl — Ty = Tl = Ta.

1
Thus every eigenvector is of the form ¢ (1) fort # 0.

3. Conclusion

1
Clearly, by = (1> lies in that eigenspace; hence it is an eigenvector for the eigenvalue A = 2.

Step 2: Show A Is Not Diagonalizable
Since the characteristic polynomial is (A — 2)2, the algebraic multiplicity of A = 2 is 2. However, the eigenspace is spanned by

1
(1) alone, giving a one-dimensional eigenspace.

Remark:

Algebraic multiplicity = 2, but geometric multiplicity = 1. Hence no second linearly independent eigenvector exists, and we
cannot form a basis of R? consisting entirely of eigenvectors. Therefore,

matrix A is NOT diagonalizable.

Step 3: Find [T} B

Definition

If T : R? — R2 s represented by A in the standard basis, then its matrix in a different basis B is defined by
[T]s = ([T()]z [T(b2)]5),

where [v] g denotes the coordinate vector of v relative to basis B.

(a) Compute T'(b; ) and its B-Coordinates

o) s (4 ) (- )

2
2. Express (2) as a combination of b; and by:

1. Apply A:
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2 1 3 a+38
() =) 2 () (G25)
Matching coordinates: & + 38 = 2 and a + 43 = 2. Subtract the first from the second:

(@+4B) — (a+38) =2 -2 = B=0.

2
(2) 20 on

Then o = 2. So:

Hence,

700, = (5)-

(b) Compute T'(b;) and its B-Coordinates

() s (4 ) (- 0)

7
2. Express (9) as a combination of b; and by:

(5) =2 () 2 () - ()

Froma + 38 = 7and a + 43 = 9, subtracting yields:

1. Apply A:

(a+48) — (a+38)=9—-7 = pf=2.

Thena 4+ 6 = 7 = a = 1. Therefore:

7
(9) =1by + 2bo.
Hence,

7o), - ()

(c) Form the Matrix [T} B

We place [T'(b1)] »and [T(b,)] 5 as columns:

2 1
()

Step 4: Theorem on B-Coordinates of 7'(x)

Theorem (Coordinate Transformation and Matrix Representation)
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Let T : R? — RR? be a linear map, and let B be any basis of R?. If x is a vector in R? with coordinates [x] 5 relative to
B, then

[T(x)]s = [T]5 [x]s-

In other words, to find the coordinates of 7'(x) in the basis B, multiply the matrix [T'| 5 by the coordinate vector [x|5
. This principle underlies how we “translate” a linear transformation between different bases.

Explanation:

1. We start with an arbitrary vector x in R2.

2. We represent X in basis B by the coordinate vector [X] 5.

3. Applying T to x in the standard basis is T'(x).

4. However, to express T'(x) again in B-coordinates, we use exactly [T'| 5 - [X]5.

This gives a direct way to compute “what T does” to any vector X in the language of the basis B.
Summary of Results
1. Eigenvector Check and Non-Diagonalizability
1
e The only eigenvalue of A is A = 2, and the eigenspace is spanned by (1) .

e Since the algebraic multiplicity (2) exceeds the geometric multiplicity (1), A is not diagonalizable.
2. Matrix [T'|p

e We calculated

[T(bl)]B =

[T(bZ)]B =

N = O N

e Hence,
2 1
= (5 5)-

e For any X, the coordinates of T'(x) in basis B follow from [T'(x)]s = [T|5 [X]5-

3. B-Coordinate Transformation
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