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1. Vectors and Coordinate Geometry in 3-Space

In our physical world, space is three-dimensional. This means that to locate any point in space, we require three numbers—one for

each dimension. These concepts are fundamental in fields such as physics, engineering, and computer science. In this note, we will

explore the basics of coordinate geometry in three dimensions, including how points are represented, how distances are calculated,

and how these ideas extend to higher dimensions.

The 3-Dimensional World and Coordinate Systems

The physical world we experience is 3-dimensional. At any given point, we can define three mutually perpendicular directions. In linear

algebra and geometry, these directions are typically represented by the three coordinate axes: , , and .

QUANTITIES: A vector is a quantity with both magnitude and direction, while a scalar is a quantity with only magnitude.

To uniquely identify any point in 3-dimensional space, we use an ordered triple of real numbers. For example, a point  is written as:

This space is denoted by , where:

x y z

P

P = (x, y, z) 

R3

R =3 {(x, y, z) ∣ x, y, z ∈ R} 
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Distance in 

The distance between two points in 3-dimensional space is a direct extension of the Pythagorean theorem. For a point 

and the origin , the distance  from the origin to  is given by:

Similarly, the distance between two arbitrary points  and  is:

Example: Right Triangle in 3-Space

Consider a triangle with vertices:

R3

P = (x, y, z)
O = (0, 0, 0) r P

r = ​ x + y + z2 2 2

P ​ =1 (x ​, y ​, z )1 1 1 P ​ =2 (x ​, y ​, z ​)2 2 2

d(P ​,P ​) =1 2 ​ (x ​ − x ​) + (y ​ − y ​) + (z ​ − z ​)1 2
2

1 2
2

1 2
2

A = (1, −1, 2), B = (3, 3, 8), C = (2, 0, 1) 
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To determine if this triangle has a right angle, we calculate the lengths of its sides.

Step 1: Compute Side Lengths

Side :

Side :

Side :

Step 2: Verify the Pythagorean Theorem

For a triangle with a right angle at , the lengths must satisfy:

Plug in the values:

Since the equality holds, the triangle is right-angled at .

Euclidean n-Space

The ideas from 3-dimensional space extend naturally to higher dimensions. For any positive integer , the Euclidean space  is

defined as:

The distance between two points  and  in  is given by:

AB

∣AB∣ = ​ =(3 − 1) + (3 − (−1)) + (8 − 2)2 2 2
​ =2 + 4 + 62 2 2

​ =4 + 16 + 36 ​ 56

AC

∣AC∣ = ​ =(2 − 1) + (0 − (−1)) + (1 − 2)2 2 2
​ =1 + 1 + (−1)2 2 2

​ =1 + 1 + 1 ​ 3

BC

∣BC∣ = ​ =(3 − 2) + (3 − 0) + (8 − 1)2 2 2
​ =1 + 3 + 72 2 2

​ =1 + 9 + 49 ​ 59

A

∣AB∣ +2 ∣AC∣ =2 ∣BC∣  2

56 + 3 = 59 

A

n Rn

R =n {(x ​,x ​, … ,x ​) ∣1 2 n x ​ ∈i R, i = 1, 2, … ,n} 

P ​ =1 (x ​,x ​, … ,x ​)1 2 n P ​ =2 (y ​, y ​, … , y ​)1 2 n Rn
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Additional Information and Examples

Importance of Coordinate Geometry

Coordinate geometry provides the framework for analyzing spatial relationships using algebra. This approach is fundamental in many

fields:

In physics, to describe the motion of objects.

In engineering, for designing structures and systems.

In computer graphics, for rendering scenes in 3D.

Applications of Euclidean Distance

Understanding the distance formula in  and  is crucial for tasks such as:

Navigation: Calculating the straight-line distance between two locations.

Data Analysis: Computing distances in high-dimensional spaces for clustering algorithms.

Robotics: Determining how far a robot must move to reach a target point.

Example: Distance in 

Consider points in four-dimensional space:

Their distance is:

Summary

In this lecture note, we have covered:

Vectors and Coordinate Geometry in 3-Space: The physical world is three-dimensional, and any point in space is represented

by an ordered triple of real numbers.

Coordinates in : Points are denoted as  in , where  is defined as .

d(P ​,P ​) =1 2 ​ (x ​ − y ​) + (x ​ − y ​) + ⋯ + (x ​ − y ​)1 1
2

2 2
2

n n
2

R3 Rn

R4

P ​ =1 (1, 2, 3, 4) and P ​ =2 (4, 3, 2, 1) 

d(P ​,P ​) =1 2 ​ =(1 − 4) + (2 − 3) + (3 − 2) + (4 − 1)2 2 2 2
​ =(−3) + (−1) + (1) + (3)2 2 2 2

​ =9 + 1 + 1 + 9 20

R3 P = (x, y, z) R3 R3 {(x, y, z) ∣ x, y, z ∈ R}
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Distance in : The distance from the origin to a point  is computed using , and the

distance between two points follows the generalized Pythagorean theorem.

Euclidean n-Space: Extended the concept of coordinate geometry to  dimensions with the space  and the corresponding

distance formula.

Understanding these concepts lays the foundation for more advanced studies in calculus, physics, and engineering, where precise

spatial measurements and relationships are crucial.

Self Test

Self-Test: Lecture 1

Raw Notes

Raw Notes

R3 P = (x, y, z) r = ​x + y + z2 2 2

n Rn
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2. Vectors and Coordinate Geometry
in 3-Space - Extended

Analytic Geometry in Three Dimensions

Our physical space is three-dimensional. To uniquely locate any point in this space, we require three

coordinates, one for each mutually perpendicular axis. In linear algebra and geometry, these axes

are typically denoted as , , and .

COORDINATE SYSTEM: A framework that uses an ordered triple  to specify the

position of a point in .

The three-dimensional space is defined as:

A point  in this space is represented by:

Distance in 

The distance from the origin  to a point  is calculated by:

x y z

(x, y, z)
R3

R =3 {(x, y, z) ∣ x, y, z ∈ R} 

P

P = (x, y, z) 

R3

O = (0, 0, 0) P = (x, y, z)

r = ​ x + y + z2 2 2
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Similarly, the distance between any two points  and  is:

Euclidean -Space

The concept of coordinates extends beyond three dimensions. For any positive integer , the

Euclidean space  is defined as:

The distance between two points  and  in  is:

Introduction to Vectors

Vectors are quantities that have both magnitude and direction, distinguishing them from scalars

(which have only magnitude). They are essential in describing many physical phenomena such as

displacement, velocity, and force.

VECTOR: A quantity with both magnitude and direction, represented as:

where  is the magnitude and  is the unit vector indicating direction.

Unlike fixed points, vectors can be “moved” (translated) without changing their intrinsic properties.

Unit Vectors and Standard Basis Vectors

Unit Vectors

A unit vector has a magnitude of 1 and indicates direction. It is used to express the direction

component of any vector without affecting its magnitude.

Standard Basis Vectors

In three-dimensional space, the standard basis vectors are:

Any vector  in  can be expressed as:

P ​ =1 (x ​, y ​, z ​)1 1 1 P ​ =2 (x ​, y ​, z ​)2 2 2

d(P ​,P ​) =1 2 ​ (x ​ − x ​) + (y ​ − y ​) + (z ​ − z ​)1 2
2

1 2
2

1 2
2

n

n

Rn

R =n {(x ​,x ​, … ,x ) ∣1 2 n x ​ ∈i R, i = 1, 2, … ,n} 

P ​ =1 (x ​,x ​, … ,x ​)1 2 n P ​ =2 (y ​, y ​, … , y ​)1 2 n Rn

d(P ​,P ​) =1 2 ​ (x ​ − y ​) + (x ​ − y ​) + ⋯ + (x ​ − y ​)1 1
2

2 2
2

n n
2

A = ∣A∣  Â

∣A∣ Â

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) 

A R3
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These standard basis vectors provide a foundation for representing any vector in component form.

Vector Operations: Addition, Subtraction, and Scalar
Multiplication

Vector Addition and Subtraction

Vectors are added by combining their corresponding components:

Properties:

Commutative:

Associative:

Subtraction is defined as the addition of the negative:

where  reverses the direction of .

Scalar Multiplication

When a vector is multiplied by a scalar , its magnitude is scaled by  while its direction remains

unchanged (if ) or reverses (if ):

If , the result is the zero vector, .

Components, Magnitude, and Direction of a Vector

Components and Vector Notation

Any vector in  can be written as:

And in :

A = A ​i +x A ​j +y A ​kz

A + B = (A ​ +x B ​)i +x (A ​ +y B ​)j +y (A ​ +z B ​)k z

A + B = B + A

A + (B + C) = (A + B) + C

A − B = A + (−B) 

−B B

c ∣c∣
c > 0 c < 0

cA = (cA ​)i +x (cA ​)j +y (cA ​)k z

c = 0 0

R2

R = R ​i +x R ​j y

R3
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This representation is essential for performing arithmetic operations on vectors.

Calculating Magnitude

The magnitude of a vector  in  is:

In , the formula simplifies to:

Determining Direction

For a vector in two dimensions, the angle  (with respect to the -axis) is given by:

In three dimensions, direction is typically represented by the unit vector, though spherical

coordinates may also be used.

R = R ​i +x R ​j +y R ​kz

R R3

∣R∣ = ​R ​ + R ​ + R ​x
2

y
2

z
2

R2

∣R∣ = ​ R ​ + R ​x
2

y
2

θ x

θ = arctan ​  (
R ​x

R ​y )
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Dot Product (Scalar Product)

The dot product of two vectors  and  is defined as:

where  is the angle between the vectors.

Key Points:

It results in a scalar.

Commutative:

It measures the extent to which one vector projects onto another.

Example:

Let  and . Then:

The angle  can be found by:

A B

A ⋅ B = A ​B ​ +x x A ​B ​ +y y A ​B ​ =z z ∣A∣ ∣B∣ cos θ 

θ

A ⋅ B = B ⋅ A

A = 2i + 3j + k B = −4i + 2j − k

A ⋅ B = (2 × −4) + (3 × 2) + (1 × −1) = −8 + 6 − 1 = −3 

θ

10/1/25, 3:07 PM 2. Vectors and Coordinate Geometry in 3-Space - Extended

file:///C:/Users/Aykhan/Downloads/MATH203/MATH203%2019d34575a83880898220d0bf1b1f1895/2%20Vectors%20and%20Coordinate%20Geomet… 5/10

Guest
Rectangle



Cross Product (Vector Product)

The cross product of two vectors in  results in a vector that is perpendicular to both:

The magnitude of the cross product is:

where  is the angle between  and .

Properties:

θ = arccos ​  (
∣A∣ ∣B∣

−3 )

R3

A × B = (A ​B ​ −y z A ​B ​)i +z y (A ​B ​ −z x A ​B ​)j +x z (A B ​ −x y A ​B ​)k y x

∣A × B∣ = ∣A∣ ∣B∣ sin θ 

θ A B

10/1/25, 3:07 PM 2. Vectors and Coordinate Geometry in 3-Space - Extended

file:///C:/Users/Aykhan/Downloads/MATH203/MATH203%2019d34575a83880898220d0bf1b1f1895/2%20Vectors%20and%20Coordinate%20Geomet… 6/10

Guest
Rectangle



Anticommutative:

The resulting vector is orthogonal to both  and .

If  and  are parallel, then .

Cross Product of Unit Vectors

The cross product is an operation on two vectors in three-dimensional space that results in a

vector perpendicular to both. For the standard basis vectors in , the following relationships hold:

These rules demonstrate the anticommutative property of the cross product:

This operation is fundamental in determining directions perpendicular to a given plane, with

applications in physics, computer graphics, and engineering.

A × B = −(B × A)

A B

A B A × B = 0

R3

i × j = k 

j × k = i 

k × i = j 

j × i = −k, k × j = −i, i × k = −j 
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Cross Product as a Determinant

The cross product of two vectors in  can be computed using the determinant of a  matrix.

Given two vectors:

their cross product  is given by the determinant:

This determinant method neatly encapsulates the computation and clearly shows that the resulting

vector is perpendicular to both  and .

Scalar Triple Product (Advanced Topic)

The scalar triple product of three vectors , , and  is defined as:

This product gives the volume of the parallelepiped spanned by the three vectors. If the result is

zero, the vectors are coplanar.

SCALAR TRIPLE PRODUCT: A measure of the volume of a parallelepiped. A zero result indicates

the vectors lie in the same plane.

R3 3 × 3

A = (A ​,A ,A ) and B =x y z (B ​,B ​,B ​),  x y z

A × B

A × B = ​ ​ ​ ​ ​ =
i
A ​x

B ​x

j
A ​y

B ​y

k
A ​z

B ​z

i(A ​B ​ −y z A ​B ​) −z y j(A ​B ​ −x z A ​B ​) +z x k(A ​B ​ −x y A ​B ​).y x

A B

u v w

u ⋅ (v × w) 
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Summary of Vector Concepts

Definition and Representation: Vectors have both magnitude and direction and are

represented as  or in component form.

Unit and Standard Basis Vectors: Unit vectors (with magnitude 1) define direction. In ,

standard basis vectors are , , and .

Vector Operations:

Addition/Subtraction: Performed component-wise; subtraction is adding the negative.

Scalar Multiplication: Scales the vector’s magnitude.

Magnitude and Direction: The magnitude is found using the Euclidean norm, and the

direction can be determined using trigonometric functions (e.g.,  for 2D).

Dot Product: Provides a scalar indicating how much one vector extends in the direction of

another.

Cross Product: Yields a vector perpendicular to two given vectors; its magnitude is related to

the sine of the angle between them.

Scalar Triple Product: Gives the volume of a parallelepiped formed by three vectors and

indicates coplanarity when zero.

Understanding these concepts is essential for applications in physics, computer graphics,

engineering, and advanced mathematics.

A = ∣A∣ Â

R3

i j k

arctan
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Self Test

Self-Test: Lecture 2

Raw Notes

Raw Notes
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3.  Planes and Lines in 3-Space

Planes in 3-Space

PLANE (Point-Normal Form): A plane in three-dimensional space can be uniquely

defined by a point  that lies on the plane and a nonzero normal

vector . The plane consists of all points  whose position

vectors  satisfy

In scalar form, this equation becomes:

Examples:

1. Example (i):

The equation

P ​ =0 (x ​, y ​, z ​)0 0 0

n = (a, b, c) P = (x, y, z)
r

n ⋅ (r − r ​) =0 0

a(x − x ​) +0 b(y − y ​) +0 c(z − z ​) =0 0. 

2x − by − hz = 0 
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represents a plane passing through the origin  with normal vector 

. (Here, specific values for  and  are needed for a concrete example;

assume  and  for instance, then the normal vector would be 

.)

2. Example (ii):

The plane given by

passes through a point such as  and has a normal vector .

3. Example (iii):

The equation

represents a plane that is vertical (parallel to the -axis) and has a normal vector 

.

4. Example (iv):

To find the plane passing through the point  and perpendicular to the line

passing through  and , first compute the direction vector of the

line:

The plane’s normal vector is parallel to . Thus, using the point-normal form:

5. Example (v):

A plane with intercepts , , and  on the , , and  axes respectively can be

expressed as:

(0, 0, 0)
(2, −b, −h) b h

b = 3 h = 4
(2, −3, −4)

2x + y + 3z = 6 

(3, 0, 0) (2, 1, 3)

2x − y = 0

z

(2, −1, 0)

(2, 0, 1)
(1, 1, 0) (4, −1, −2)

v = (4 − 1, −1 − 1, −2 − 0) = (3, −2, −2). 

v

3(x − 2) − 2(y − 0) − 2(z − 1) = 0 ⟹ 3x − 2y − 2z = 4. 

a b c x y z

​ +
a

x
​ +

b

y
​ =

c

z
1. 

10/1/25, 3:08 PM 3. Planes and Lines in 3-Space

file:///C:/Users/Aykhan/Downloads/MATH203/MATH203%2019d34575a83880898220d0bf1b1f1895/3%20Planes%20and%20Lines%20in%203-Space… 2/5

Guest
Rectangle



Lines in 3-Space

LINE (Parametric Form): A line in three-dimensional space is determined by a point 

 through which the line passes and a nonzero direction vector 

. The line is given by the parametric equation:

where  is a real parameter.

This equation indicates that every point on the line can be reached by starting at  and

moving some scalar multiple  of the direction vector .

Examples:

1. Example:

Consider the line defined by:

Here, the line passes through the point  (when ) and has the

direction vector .

P ​ =0 (x ​, y ​, z ​)0 0 0 v =
(a, b, c)

r(t) = r ​ +0 tv

t

P ​0

t v

x = 1 + t, y = −3, z = 4t. 

(1, −3, 0) t = 0
(1, 0, 4)
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2. Additional Example:

Another line can be represented as:

which indicates that the line passes through  and is parallel to the vector 

.

Summary

In this study material, we have covered:

Planes in 3-Space:

A plane is defined by a point and a normal vector.

r(t) = (2, 1, 5) + t (3, −2, 1),  

(2, 1, 5)
(3, −2, 1)
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Its equation can be written in vector form  or in scalar form 

.

Lines in 3-Space:

A line is represented by a point and a direction vector.

The parametric form  describes all points on the line.

This material lays a foundation for further studies in multivariable calculus and analytic

geometry, as well as applications in fields such as computer graphics, engineering, and

physics.

Raw Notes

Raw Notes

n ⋅ (r − r ​) =0 0
a(x − x ​) +0 b(y − y ) +0 c(z − z ​) =0 0

r(t) = r ​ +0 tv
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4. Analytic Geometry in Three
Dimensions

Representing Points in 3-Space

POSITION VECTOR: A vector that specifies the location of a point in three-dimensional space.

A point  is given by the ordered triple

and the set of all points in 3-space is defined as

In linear algebra, any basis for  consists of three linearly independent vectors, which reflects the

requirement of three numbers to locate a point.

Distance from a Point to the Origin

The distance  from a point  to the origin  is calculated using the 3-

dimensional Pythagorean theorem:

This distance is equivalent to the magnitude of the position vector .

Distance Between Two Points

P

P = (x, y, z) 

R =3 {(x, y, z) ∣ x, y, z ∈ R}. 

R3

r P = (x, y, z) O = (0, 0, 0)

r = ​. x + y + z2 2 2

r
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For any two points  and  in , the distance between them is given

by:

This formula generalizes the Pythagorean theorem to three dimensions.

Example: Right Triangle in 3-Space

Consider a triangle with vertices:

Step 1: Compute Side Lengths

Side :

Side :

Side :

Step 2: Verify the Right Angle

If the triangle is right-angled at vertex , then:

Substituting the values:

Since the equality holds, the triangle has a right angle at .

Equations of Surfaces in 3D

Digital geometry uses equations to describe various surfaces in space. Common examples include:

Plane:

P ​ =1 (x ​, y ​, z ​)1 1 1 P ​ =2 (x ​, y ​, z ​)2 2 2 R3

d(P ​,P ​) =1 2 ​. (x ​ − x ​) + (y ​ − y ​) + (z ​ − z ​)1 2
2

1 2
2

1 2
2

A = (1, −1, 2)

B = (3, 3, 8)

C = (2, 0, 1)

AB

∣AB∣ = ​ =(3 − 1) + (3 − (−1)) + (8 − 2)2 2 2
​ =2 + 4 + 62 2 2

​ =4 + 16 + 36 ​. 56

AC

∣AC∣ = ​ =(2 − 1) + (0 − (−1)) + (1 − 2)2 2 2
​ =1 + 1 + (−1)2 2 2

​ =1 + 1 + 1 ​. 3

BC

∣BC∣ = =(3 − 2) + (3 − 0) + (8 − 1)2 2 2
​ =1 + 3 + 72 2 2

​ =1 + 9 + 49 ​.59

A

∣BC∣ =2 ∣AB∣ +2 ∣AC∣ . 2

59 = 56 + 3 = 59.

A
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A plane passing through a point  with a nonzero normal vector  is

defined by:

Example: The equation  represents the horizontal (xy) plane.

Vertical Plane:

An equation like  describes a vertical plane that contains the line  in the xy-plane.

Cylinder:

A vertical circular cylinder with radius  is given by:

Sphere:

A sphere with center  and radius  is represented as:

Example:  represents a sphere of radius 6 centered at the origin.

Euclidean n-Space

EUCLIDEAN n-SPACE: For any positive integer , the -dimensional Euclidean space is defined as

The distance between two points  and  is given by

This generalization allows us to extend the concepts of geometry in 3-space to higher dimensions.

Summary

In this section, we have covered:

Representation of Points: How points in 3D are represented as ordered triples in .

Distance Calculations: How to compute the distance from a point to the origin and between two

points using the 3D extension of the Pythagorean theorem.

Equations of Surfaces: Common forms for planes, vertical planes, cylinders, and spheres.

Euclidean n-Space: The extension of these geometric concepts to  dimensions.

P ​ =0 (x ​, y ​, z ​)0 0 0 n = (a, b, c)

a(x − x ​) +0 b(y − y ​) +0 c(z − z ​) =0 0. 

z = 0

x = y x = y

r

x +2 y =2 r . 2

(h, k, l) r

(x − h) +2 (y − k) +2 (z − l) =2 r . 2

x +2 y +2 z =2 36

n n

R =n {(x ​,x ​, … ,x ​) ∣1 2 n x ​,x ​, … ,x ​ ∈1 2 n R}. 

P ​ =1 (x ​, … ,x ​)1 n P ​ =2 (y ​, … , y ​)1 n

d(P ​,P ​) =1 2 ​. (x ​ − y ​) + (x ​ − y ​) + ⋯ + (x ​ − y ​)1 1
2

2 2
2

n n
2

R3

n
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This material lays the groundwork for further studies in multivariable calculus and analytic geometry.

Raw Notes

Raw Notes
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5. Curves and Parametrization

Curves and Parametrizations

Definition: Curve in 

CURVE: A curve in  can be regarded as the image of a vector-valued function

The function  is often called a parametrization of the curve.

Intuitively, as  varies from  to , the point  traces out the curve in space.

A curve can also exist in  when  is absent or fixed.

Examples of Parametrizations

Example 1: Line of Intersection of Two Planes

Suppose we have the planes  and . We want to parametrize the line of

intersection from the point  to .

1. From , we set  as our parameter. Then  can be solved as

R3

R3

r(t) = x(t) i + y(t) j + z(t) k, a ≤ t ≤ b

r(t)

t a b (x(t), y(t), z(t))

R2 z(t)

y = 2x − 4 z = 3x + 1
(2, 0, 7) (3, 2, 10)

y = 2x − 4 y = t x

t = 2x − 4 ⟹ x = ​

2
t + 4
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2. From , substitute  to get

3. Hence the parametric equations become

4. Putting them together in vector form:

5. We determine the parameter range  to move from .

Example 2: Intersection of a Plane and a Paraboloid

The plane is .

The paraboloid is .

One can parametrize this intersection by choosing:

, so , then .

Alternatively,  or . Each choice leads to a different but valid parametrization.

In general, there can be multiple equivalent parametrizations for the same curve.

Example 3: 2D Parametrizations

In several such examples,  or the resulting curve is a semicircle in the -plane from 

 to .

Closed and Not-Self-Intersecting Curves

CLOSED CURVE: A curve , , is closed if .

NOT-SELF-INTERSECTING: A curve is not-self-intersecting if its parametrization is one-to-

one (injective) on , except possibly for the endpoints if it is closed.

z = 3x + 1 x = ​2
t+4

z = 3( ​)+
2

t + 4
1 = ​ +

2
3t + 12

1 = ​

2
3t + 14

x(t) = ​, y(t) =
2

t + 4
t, z(t) = ​

2
3t + 14

r(t) = ⟨ ​,  t,  ​⟩
2

t + 4
2

3t + 14

0 ≤ t ≤ 2 (2, 0, 7) → (3, 2, 10)

x + y = 1

z = x +2 y2

t = x y = 1 − t z = t +2 (1 − t)2

t = y t = z

r(t) = ⟨sin t, cos t⟩, −π/2 ≤ t ≤ π/2.

r(t) = ⟨t − 1, ​⟩, 0 ≤2t − t2 t ≤ 2.

r(t) = ⟨t ​, 1 −2 − t2 t ⟩, −1 ≤2 t ≤ 1.

∣r(t)∣ = 1 xy

(−1, 0) (1, 0)

r(t) a ≤ t ≤ b r(a) = r(b)

[a, b]
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Smoothness

SMOOTH CURVE (of order 1): A curve  is said to be smooth of order 1 if it has a

continuous first derivative  on . If it has derivatives of all orders, we call it a (fully) 

smooth curve.

“Smoothness” of a curve measures the continuity of its derivatives.

In most calculus or geometry contexts, “smooth” often means at least : continuous and

once differentiable with no corners.

Arc Length

Definition: Arc Length of a Smooth Curve

Let  be a bounded, continuous, and smooth curve for . We define the arc

length  by the limit of polygonal approximations:

1. Subdivide  into  subintervals:

r(t)
r (t)′ [a, b]

C1

r(t) a ≤ t ≤ b

S

[a, b] n
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2. At each , define .

3. The polygonal length is

4. When  has a continuous derivative , the arc length is given by the

integral

Example: Circular Helix

A circular helix in  can be parametrized by

1. Compute :

2. Find its magnitude:

a = t ​ <0 t ​ <1 ⋯ < t ​ <n−1 t ​ =n b

t ​i r ​ =i r(t ​)i

S ​ =n ​ ​∣r ​ −
i=1

∑
n

i r ​ ​∣i−1

r(t) v(t) = r (t)′

S = ​S ​ =
n→∞
lim n ​ ​r (t) ​dt =∫

a

b
′

​ ​v(t) ​dt∫
a

b

R3

r(t) = ⟨a cos t, a sin t, b t⟩, 0 ≤ t ≤ T

r (t)′

r (t) =′ ⟨−a sin t, a cos t, b⟩

​r (t) ​ =′
​ =(−a sin t) + (a cos t) + b2 2 2

​ =a (sin t + cos t) + b2 2 2 2 a + b2 2
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3. The arc length from  to  is

4. Remark: The arc length is independent of how we choose to parametrize the curve. If there

are multiple valid parametrizations, they all yield the same length.

Piecewise Smooth Curves

A piecewise smooth curve  (of order 1) is formed by a finite number of smooth arcs. We can

write

where each  is smooth on its own. Then, the total length is the sum of the lengths of these

arcs:

Condition for Constant Speed

Although slightly outside the main topic, it is often shown that a particle moves with constant

speed if and only if its acceleration  is perpendicular (orthogonal) to its velocity  for

all  in the interval of motion. Formally,

t = 0 t = 2π

S = ​ ​dt =∫
0

2π

a + b2 2
​ (2π −a + b2 2 0) = 2π ​a + b2 2

C

C = C ​ +1 C ​ +2 ⋯ + C ​k

C ​i

S(C) = ​S(C ​). 
i=1

∑
k

i

a(t) v(t)
t
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If  for all , then  remains constant.

Sketch of Proof:

Since , if this derivative is zero at all , then  is

constant. Hence,  is also constant.

Final Summary & Takeaways

Parametrization allows us to describe curves in  or  via vector-valued functions .

Closed curves satisfy , and we say a curve is not-self-intersecting if  is

injective except for endpoints (if closed).

Smoothness refers to the continuity of derivatives. A curve is smooth of order 1 if  is

continuous.

Arc length is computed via the integral .

Piecewise smooth curves are composed of finitely many smooth arcs, and their lengths

add up.

Constant speed occurs precisely when  is perpendicular to .

All of these concepts set the stage for deeper explorations in vector calculus and the geometry

of curves in multiple dimensions.

Raw Notes

Raw Notes

v(t) ⋅ a(t) = 0 t ​v(t) ​

​( ​∣v(t)∣ ) =
dt
d

2
1 2 v(t) ⋅ a(t) t ​∣v(t)∣2

1 2

∣v(t)∣

R2 R3 r(t)

r(a) = r(b) r(t)

r (t)′

​ ∣r (t)∣ dt∫
a

b ′

a(t) v(t)
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6. Frenet–Serret Frame,
Curvature, and Torsion

Prerequisites

Assumes a regular, sufficiently smooth space curve \Assumes a regular, sufficiently

smooth space curve  with nonzero velocity .  We will often reparameterize by

arc length s, so that .  with nonzero velocity .  We will often

reparameterize by arc length , so that .

Unit Tangent Vector

Unit Tangent Vector ( )

The unit tangent vector to the curve is

or, when using arc length , .

Curvature and Unit Normal

r(t) r (t)′

∥ ​∥ =ds
dr 1 r(t) r (t)′

s ∥ ​∥ =
ds
dr 1

T

T(t) = ​ ,
∥r (t)∥′

r (t)′

s T(s) = ​

ds
dr
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Curvature ( )

A scalar measure of how sharply the curve bends, defined by

Equivalently, in any parameter ,

Unit Normal Vector ( )

The principal normal points toward the center of curvature:

Binormal and Torsion

Binormal Vector ( )

Defined as the cross product of  and :

Torsion ( )

Measures how the curve twists out of the osculating plane:

In a general parameter ,

Frenet–Serret Formulas

κ

κ(s) = ​ ​ ​ .
ds

dT

t

κ = ​.
∥r ∥′ 3

∥r × r ∥′ ′′

N

N(s) = ​ .
∥dT/ds∥
dT/ds

B

T N

B(s) = T(s) ×N(s).

τ

τ(s) = − ​ ⋅
ds

dB
N(s).

t

τ = ​.
∥r × r ∥′ ′′ 2

(r × r ) ⋅ r′ ′′ ′′′
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Frenet–Serret Formulas

For a unit‐speed curve parameterized by arc length , the derivatives of the frame 

 are:

These equations describe the instantaneous rotation of the orthonormal triad along

the curve.

s

(T,N,B)

​ ​

​

ds

dT

​

ds

dN

​

ds

dB

= κN,

= −κT + τ B,

= − τ N.
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7. Fundamental Theorem of Space
Curves & Curvature, Torsion for
General Parameterization

Objective & Scope

This note states the Fundamental Theorem of Space Curves, which asserts existence

and uniqueness of a space curve given curvature and torsion, and then summarizes the

formulas for curvature and torsion when the curve is given by a general parameter .

Curvature and Torsion for General Parameterization

Curve Parameterization: A smooth vector‐valued function , , with 

 for all .

Curvature

Curvature ( ) for general : Measures how rapidly the curve deviates from a straight

line, given by 

t

r(t) t ∈ I r (t) =′ 
0 t

κ t
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Interpretation:

A larger  indicates tighter bending of the curve at that point.

Torsion

Torsion ( ) for general : Measures how rapidly the curve departs from its osculating

plane, given by 

Interpretation:

A nonzero  indicates twisting of the curve out of the plane of curvature.

Fundamental Theorem of Space Curves

Fundamental Theorem of Space Curves: Let  and  be two smooth

functions defined on an interval, with .  Then there exists a regular, unit‐

speed space curve , unique up to a rigid motion (rotation and translation), whose

curvature and torsion are exactly  and , respectively.

Existence:

One can integrate the Frenet–Serret system with given  and  to recover 

, , and , and thereby reconstruct .

Uniqueness (up to Rigid Motion):

Any two curves with the same prescribed  and  differ only by a fixed

orthogonal transformation and translation in space.

Summary

General‐parameter formulas allow computation of curvature and torsion directly

from .

κ(t) = ​ .
∥r (t)∥′ 3

​r (t) × r (t) ​

′ ′′

κ

τ t

τ(t) = ​ .
∥r (t) × r (t)∥′ ′′ 2

(r (t) × r (t)) ⋅ r (t)′ ′′ ′′′

τ

κ(s) τ(s)
κ(s) > 0

r(s)
κ(s) τ(s)

κ(s) τ(s)
T(s) N(s) B(s) r(s)

κ(s) τ(s)

r(t)
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The Fundamental Theorem guarantees that curvature and torsion completely

determine the shape of a space curve (modulo rigid motions), encapsulating the

intrinsic geometry of the curve.
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8. Partial Differentiation &
Functions of Several Variables

Functions of Several Variables

Multivariable Function: A mapping  (or( ) that assigns to each

point  a single real value (or an -vector).

Domain  is a subset of .

Codomain is typically  for scalar-valued functions.

Level Sets & Contours: For a scalar , the set  is a 

level curve (contour) in the plane. In higher dimensions,  is a level

surface.

Partial Derivatives

Partial Derivative (First Order): The rate of change of  with respect to one variable 

, holding all other variables constant:

f : D ⊆ R →n R Rm

(x ​,x ​, … ,x ​) ∈1 2 n D m

D Rn

R

f(x, y) {(x, y) ∣ f(x, y) = c}
{x ∣ f(x) = c}

f

x ​i

​(x) =
∂x ​i

∂f
​ ​ .

h→0
lim

h

f(x ​, … ,x ​ + h, … ,x ​) − f(x ​, … ,x ​, … ,x ​)1 i n 1 i n
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Notations include , , or .

Existence: A function may have partial derivatives without being continuous or jointly

differentiable.

Differentiability and the Total Differential

Differentiability:  is differentiable at  if there exists a linear map (the total

derivative)  such that

where  as .

Total Differential: For a differentiable scalar function ,

where  and  are partial derivatives.

Summary

Partial derivatives capture change in one coordinate direction.

Differentiability ensures a good linear approximation (total differential).

f ​x ​i
∂ ​fi D ​fx ​i

f a
Df(a)

f(a + h) = f(a) + Df(a)[h] + o(∥h∥),

o(∥h∥)/∥h∥ → 0 ∥h∥ → 0

f(x, y)

df = f ​ dx +x f ​ dy,y

f ​x f ​y
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9. Limits and Continuity

LIMIT (Multivariable): For a function  and a point ,

means that for every  there exists  such that whenever 

, then .

CONTINUITY (Multivariable):  is continuous at  if

Continuity on a domain means this holds at every point in the domain. Continuity

implies that small changes in each coordinate yield arbitrarily small changes in the

function’s value.

Partial Derivatives

PARTIAL DERIVATIVE: The partial derivative of  with respect to its -th variable at 

is

f : D ⊆ R →n R a ∈ D

​f(x) =
x→a
lim L

ε > 0 δ > 0 0 < ∥x − a∥ <
δ ∣f(x) − L∣ < ε

f a

​f(x) =
x→a
lim f(a)

f i x
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provided this limit exists.

NOTATION: Common notations include , , or .

EXISTENCE & PROPERTIES:

Partial derivatives may exist individually without guaranteeing overall

differentiability or continuity of .

If all first‐order partials exist and are continuous on a domain, then   is

differentiable there, and its total differential is given by

​(x) =
∂x ​i

∂f
​ ​ ,

h→0
lim

h

f(x ​, … ,x ​ + h, … ,x ​) − f(x ​, … ,x ​, … ,x ​)1 i n 1 i n

f ​x ​i
∂ ​fx ​i

D ​fx ​i

f

f

df = ​f ​ dx ​.
i=1

∑
n

x ​i i
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10. Tangent Planes, Higher Order
Derivatives

Tangent Planes and Normal Lines

Surface in Explicit Form: A surface given by  with continuous first partials has

at each point  a unique tangent plane.

Tangent Plane (Explicit):

where  and  are the first partial derivatives.

Surface in Implicit Form: A surface defined by  with  at a point.

Tangent Plane (Implicit):

Normal Line: The line through  in the direction of the surface normal 

.

Parametric form:

z = f(x, y)
(x ​, y ​, f(x ​, y ​))0 0 0 0

z − z ​ =0 f ​(x ​, y ​) (x −x 0 0 x ​) +0 f ​(x ​, y ​) (y −y 0 0 y ​),  0

f ​x f ​y

F (x, y, z) = 0 ∇F = 0

F ​(x ​, y ​, z ) (x −x 0 0 0 x ​) +0 F ​(x ​, y ​, z ​) (y −y 0 0 0 y ​) +0 F ​(x ​, y ​, z ) (z −z 0 0 0 z ​) =0 0.

(x ​, y ​, z ​)0 0 0 n =
∇F (x ​, y ​, z ​)0 0 0
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Higher Order Derivatives

Second and Higher‐Order Partial Derivatives: For , the second partials are

Higher‐order derivatives are defined by iterating this process.

Mixed Partial Symmetry (Clairaut’s Theorem): If the mixed partials  and  are

continuous in a neighborhood, then

Multi‐Index Notation: For a multi‐index ,

where .

Hessian Matrix: The matrix of second partials for :

It encodes curvature information and is symmetric if mixed partials commute.

Higher‐Order Differentials: The total differential extends to higher order via Taylor’s

theorem, using the derivatives up to the desired order.

(x, y, z) = (x ​, y ​, z ​) +0 0 0 t (F ​,F ​,F ​).x y z

f : R →n R

f ​ =x ​x ​i j
​( )

∂x ​j

∂
∂xi

∂f

f ​x ​x ​i j f ​x ​x ​j i

f ​ =x ​x ​i j
f ​.x ​x ​j i

α = (α ​, … ,α ​)1 n

D f =α
​,

∂x ​ ∂x ​ ⋯ ∂x ​1
α ​1

2
α ​2

n
α ​n

∂ f∣α∣

∣α∣ = α ​∑ i

f(x, y)

H ​(x, y) =f ​ ​ .(f ​xx

f ​yx

f ​xy

f ​yy
)
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11. Chain Rule, Linear
Approximation, Differentiability,
Differentials

Chain Rule

Chain Rule (Multivariable): If  is differentiable at  and 

 is differentiable at , then the composite  is differentiable at  and

Equivalently, for scalar functions  and each intermediate variable 

,

and similarly for other variables.

Linear Approximation

F : R →m R y = g(x) g :
R →n Rm x F ∘ g x

D(F ∘ g)(x) = DF (g(x)) ⋅ Dg(x) .

z = F (u, v, … )
u = u(x, y, … )

​ =
∂x
∂z

​ ​ ​ ,
i

∑
∂u ​i

∂F
∂x
∂u ​i
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Linear Approximation (Tangent Plane Approximation):

For a differentiable function  at a point , the linear approximation (or

first‐order Taylor expansion) is

where  is a small increment vector and  is the gradient.

Differentiability

Differentiability:

A function  is differentiable at  if there exists a linear map  (the total

derivative) such that

In that case,  and  admits the linear approximation above.

Differentiability implies continuity and the existence of all partial derivatives, but the

converse requires those partials to be continuous.

Differentials

Differential ( ):

The differential  of a differentiable function  at  is the linear form

where  denotes an infinitesimal change in . The differential gives the best linear

estimate of the change in  corresponding to small changes .

f : R →n R a

f(a + h) ≈ f(a) + Df(a)[h] = f(a) + ∇f(a) ⋅ h .

h ∇f

f : R →n R a L

​ ​ =
∥h∥→0
lim

∥h∥
f(a + h) − f(a) − Df(a)[h]

0.

L = Df(a) f

df

df f(x ​, … ,x ​)1 n a

df(a) = ​ ​(a) dx ​,
i=1

∑
n

∂x ​i

∂f
i

dx ​i x ​i

f (dx ​, … , dx )1 n

10/1/25, 3:07 PM 11. Chain Rule, Linear Approximation, Differentiability, Differentials

file:///C:/Users/Aykhan/Downloads/MATH203/MATH203%2019d34575a83880898220d0bf1b1f1895/11%20Chain%20Rule,%20Linear%20Approximatio… 2/2

Guest
Rectangle



12. Linearization, Differentiability

Linearization

Linearization:

The process of approximating a differentiable function  near a point  by

its first‐order Taylor polynomial (the tangent hyperplane).

The linearization  at  is the affine map

which provides the best linear approximation of  for  close to .

Differentiability

Differentiability:

A function  is differentiable at a point  if there exists a linear map 

 (the total derivative) such that

f : R →n R a

L a

L(x) = f(a) + Df(a)[x − a] = f(a) + ∇f(a) ⋅ (x − a),

f x a

f : R →n R a
Df(a)

​ ​ =
h→0
lim

∥h∥
f(a + h) − f(a) −Df(a)[h]

0.

10/1/25, 3:07 PM 12. Linearization, Differentiability

file:///C:/Users/Aykhan/Downloads/MATH203/MATH203%2019d34575a83880898220d0bf1b1f1895/12%20Linearization,%20Differentiability%201ce34… 1/2

Guest
Rectangle



Differentiability implies continuity at  and guarantees that  can be locally

approximated by its linearization.

a f
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13. Gradients and Directional
Derivatives

Gradients and Directional Derivatives

Gradient ( ): For a differentiable scalar function , the gradient is

the vector of its first partial derivatives:

It points in the direction of steepest increase of  and its magnitude is the maximum

rate of change.

Directional Derivative ( ): The rate of change of  at  in the direction of a unit

vector  is given by

This scalar measures how  changes per unit displacement along .

Gradient in 3D

∇f f(x ​,x ​, … ,x ​)1 2 n

∇f(x) = (f ​(x), f ​(x), … , f ​(x)).x ​1 x ​2 x ​n

f

D ​fu f x
u

D ​f(x) =u ​ ​ =
h→0
lim

h

f(x + hu) − f(x)
∇f(x) ⋅ u.

f u
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Gradient in Three Dimensions: For a function , the gradient is

Interpretation: At each point,  is orthogonal to the level surface 

.

Properties:

Its direction is that of maximal increase of .

Its magnitude  equals the maximal directional derivative at that point.

It serves as the normal vector in the tangent‐plane equation for the surface 

.

f(x, y, z)

∇f(x, y, z) = (f ​(x, y, z), f ​(x, y, z), f ​(x, y, z)).x y z

∇f

f(x, y, z) = constant

f

∥∇f∥

f(x, y, z) = c
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14. Midterm Preparation 1

Curve Parameterization:  with .  When reparameterized by arc length 

, .

Unit Tangent Vector

General :

Arc length :

Curvature

Arc length :

General :

r(t) r (t) =′  0
s ∥ ​∥ =

ds
dr 1

t

T(t) = . 
∥r (t)∥′

r (t)′

s

T(s) = ​ .
ds

dr

s

κ(s) = ​ ​ ​ . 
ds

dT

t
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Principal Normal Vector

Binormal Vector

Torsion

Arc length :

General :

Frenet–Serret Formulas (w.r.t. )

κ(t) = ​. 
∥r (t)∥′ 3

∥r (t) × r (t)∥′ ′′

N(s) = ​. 
∥ ​∥

ds
dT

​

ds
dT

B(s) = T(s) ×N(s). 

s

τ(s) = − ​ ⋅
ds

dB
N(s). 

t

τ(t) = ​. 
∥r (t) × r (t)∥′ ′′ 2

(r (t) × r (t)) ⋅ r (t)′ ′′ ′′′

s

​ ​

​

ds

dT

​

ds

dN

​

ds

dB

= κN,

= −κT + τ B,

= − τ N.
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15. Midterm Preparation 2

Limits and Continuity

Partial Derivatives

Differentiability & Total Differential

Linear Approximation & Linearization

​f(x) =
x→a
lim L ⟺ ∀ ε > 0, ∃ δ > 0 : 0 < ∥x − a∥ < δ ⟹ ∣f(x) − L∣ < ε

f  continuous at a ⟺ ​f(x) =
x→a
lim f(a)

​(x) =
∂x ​i

∂f
​ ​

h→0
lim

h

f(x ​, … ,x ​ + h, … ,x ​) − f(x , … ,x ​, … ,x ​)1 i n 1 i n

f(a + h) = f(a)Df(a)[h]o(∥h∥) , Df(a)[h] = ∇f(a) ⋅ h

df = ​f ​ dx ​

i=1

∑
n

x ​i i

L(x) = f(a)∇f(a) ⋅ (x − a)
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Chain Rule

If  and  differentiable at , then

Gradient & Directional Derivative

Tangent Plane & Normal Line

Explicit:

Implicit: 

Higher‐Order Derivatives & Clairaut’s Theorem

y = g(x) F y

D(F ∘ g)(x) = DF (g(x)) ⋅ Dg(x) ⟺ ​F (g(x)) =
∂x ​j

∂
​ ​ ​

i

∑
∂y ​i

∂F
∂x ​j

∂g ​i

∇f(x) = (f ​, f ​, … , f ) , D ​f(x) =x ​1 x ​2 x ​n u ∇f(x) ⋅ u

z = f(x, y)

z − z ​ =0 f ​(x ​, y ​) (x −x 0 0 x ​)f ​(x ​, y ​) (y −0 y 0 0 y ​)0

F (x, y, z) = 0

F ​(x ​, y ​, z ​) (x −x 0 0 0 x ​) +0 F ​(x ​, y ​, z ​) (y −y 0 0 0 y ​) +0 F ​(x ​, y ​, z ​) (z −z 0 0 0 z ​) =0 0

f ​ =x ​x ​i j
​(f ​) , f ​ =

∂x ​j

∂
x ​i x ​x ​i j

f ​  if mixed partials are continuousx ​x ​j i
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16. Lagrange Multipliers

Theorem

Our aim is to maximize or minimize  subject to .

Theorem: Suppose that   and  have continuous first partial derivatives near 

 on the curve  with equation . Suppose also that, when restricted

to points on ,  has a local max or min at . Finally, suppose that

(i)  is not an endpoint of , and

(ii) .

Then, there exists a number  such that

This leads to the following system of equations:

which is equivalent to

f(x, y) ρ(x, y) = 0

f ρ P ​ =0

(x ​, y ​)0 0 C ρ(x, y) = 0
C f(x, y) P ​0

P ​0 C

∇ρ(P ​) =0  0

λ ​0

∇L(x ​, y ​,λ ​) =0 0 0 0 where L(x, y,λ) = f(x, y) + λρ(x, y).

​ ​

f ​(x ​, y ​) + λ ​ρ ​(x ​, y ​)1 0 0 0 1 0 0

f ​(x ​, y ​) + λ ​ρ ​(x ​, y ​)2 0 0 0 2 0 0

ρ(x ​, y ​)0 0

= 0

= 0

= 0
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Example 1: Shortest Distance from the Origin to the Curve 

We want to minimize  subject to .

The equations are:

Solving these, we find:

 or ,

 or .

Substituting back into :

.

Thus, at  and , the distance is minimum. It is:

(This cannot be a maximum because, for example, the distance from  to the origin

is greater.)

Example 2: Find the Closest and Farthest Points from the
Origin

Find the points on the curve  that are closest and farthest

away from the origin.

​ ​

f ​(x ​, y ​)ρ ​(x ​, y ​)1 0 0 2 0 0

ρ(x ​, y ​)0 0

= f ​(x ​, y ​)ρ ​(x ​, y ​)2 0 0 1 0 0

= 0

x y =2 16
f(x, y) = x +2 y2 ρ(x, y) = x y −2 16

f ​(x, y) =1 2x, f ​(x, y) =2 2y, ρ ​(x, y) =1 2xy, ρ ​(x, y) =2 x . 2

​ ​

2x + λ ​ ⋅ 2xy0

2y + λ ​ ⋅ x0
2

x y2

= 0

= 0

= 16

x = 0 x =2 2y2

x = 0 x = ±y ​2

x y =2 16

2y =3 16 ⇒ y = 2

(2 ​, 2)2 (−2 ​, 2)2

​ =8 + 4 ​.12

(1, 1)

3x +2 12xy + 8y =2 100
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We want to maximize and minimize  subject to 

.

The equations are:

Solving the system of equations:

This leads to the following system and solutions for  and :

For , we get  or .

For , we get   or .

Thus, the candidate points are .

The function values for these points are:

Therefore,  and  are closest to the origin, and  and  are

farthest away from the origin.

f(x, y) = x +2 y2 ρ(x, y) = 3x +2

12xy + 8y −2 100

L(x, y,λ) = f(x, y) + λ ⋅ ρ(x, y). 

​ ​

0

0

0

= ​ = 2x + λ(6x + 12y)
∂x
∂L

= ​ = 2y + λ(12x + 16y)
∂y
∂L

= ​ = 3x + 12xy + 8y − 100
∂λ
∂L 2 2

2x(12x + 16y) = 2y(6x + 12y). 

x y

x = 2 y = 1 y = −4

x = −2 y = 1 y = 4

(2, 1), (2, −4), (−2, 1), (−2, 4)

f(2, 1) = 5, f(2, −4) = 20, f(−2, 1) = 5, f(−2, −4) = 20. 

(2, 1) (−2, 1) (2, −4) (−2, −4)
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17. Double Integrals & Iterated
Integrals

Double Integrals

Definitions

DOMAIN D: A region in the -plane over which a function  is integrated.

DOUBLE INTEGRAL:

represents the “limit” of Riemann sums and gives the volume under  above 

.

ELEMENT OF AREA:

Riemann Sum & Integrability

1. Partition a rectangle  into subrectangles  with sides , .

2. Choose sample point ( ) in each .

xy f(x, y)

​ f(x, y) dA∬
D

z = f(x, y)
D

dA = dx dy = dy dx

D = [a, b] × [c, d] R ​ij Δx ​i Δy ​j

x ​, y ​ij ij R ​ij
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3. Riemann sum:

4. Integrability:  is integrable if there exists  such that for every  a partition norm 

 small enough implies .

Double Integral over General Domain

EXTENDED FUNCTION:

Then  for any rectangle .

Theorems & Properties

CONTINUITY ⇒ INTEGRABILITY: If  is continuous on a closed, bounded  with

piecewise-smooth boundary, then  is integrable.

LINEARITY:

ORDER: If  on , then

TRIANGLE INEQUALITY:

ADDITIVITY: If  with nonoverlapping ,

R(f ,P ) = ​ ​f(x ​, y ​) Δx ​ Δy ​.
i=1

∑
m

j=1

∑
n

ij
∗

ij
∗

i j

f I ε > 0
∥P∥ ​R(f ,P ) − I ​ < ε

​(x, y) =f̂ ​ ​{
f(x, y),
0,

(x, y) ∈ D,
otherwise.

​ f dA =∬
D

​ ​dA∬
R

f̂ R ⊃ D

f D

f

​[Lf +∬
D

M g] dA = L ​ f dA +∬
D

M ​ g dA.∬
D

f ≤ g D

​ f dA ≤∬
D

​ g dA.∬
D

​ ​ f dA ​
≤∬

D

​
∣f ∣ dA.∬

D

D = D ​ ∪1 D ​2 D ​i
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SYMMETRY (Odd Functions):

If  is symmetric about the -axis and  is odd in , then .

Similarly for odd in  over -axis symmetry.

Examples

Example 1: Approximate  using 4 subsquares and centers.

Centers: .

Each .

Example 2: Volume under  over .

Recognize hemisphere of radius 1.

Iteration of Double Integrals in Cartesian Coordinates

Domain Types

-SIMPLE Domain: Bounded by vertical lines ,  and curves , 

.

-SIMPLE Domain: Bounded by horizontal lines ,  and curves , 

.

REGULAR Domain: Finite union of nonoverlapping simple domains.

Fubini’s Theorem for Simple Domains

THEOREM: If  is continuous on a bounded -simple domain  with , 

, then

​ f dA =∬
D

​ f dA +∬
D ​1

​ f dA.∬
D ​2

D y f x ​ f dA =∬
D

0

y x

​(x +∬
[0,1]2

2 y) dA

( ​, ), ( ​, ​), ( ​, ​), ( ​, ​)4
1

4
1

4
3

4
1

4
1

4
3

4
3

4
3

ΔA = ​4
1

R ≈ f(x y ΔA =∑ , ) ( ​ +16
1

​) ​ +4
1

4
1 ⋯ = ​.16

3

z = f(x, y) = ​1 − x − y2 2 x +2 y ≤2 1

​ ​dA =∬
x +y ≤12 2

1 − x − y2 2
​.3

2π

y x = a x = b y = c(x) y =
d(x)

x y = c y = d x = a(y)
x = b(y)

f y D a ≤ x ≤ b

c(x) ≤ y ≤ d(x)
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Similarly for -simple domains with  order.

Notation

Examples

Example 3: Volume over square  under plane .

Example 4:  over triangle  with vertices .

Describe as .

Example 5: .

(Set up iterated integral; evaluation may require numerical methods or change of order.)

Final Summary & Takeaways

Double integral gives volume under .

Riemann sum definition and integrability criterion.

Properties: linearity, order, additivity, symmetry for odd functions.

Fubini’s Theorem: evaluate  as iterated .

Common mistake: forgetting to adjust limits when changing integration order.

​ f(x, y) dA =∬
D

​ ​ f(x, y) dy dx.∫
x=a

b

∫
y=c(x)

d(x)

x dx dy

​ f dA =∬
D

f(x, y) dx dy =∫ ∫ ​ ​ f dy dx etc.∫
a

b

∫
c(x)

d(x)

Q : 0 ≤ x ≤ 1, 1 ≤ y ≤ 2 z = 4 − x − y

V = ​ ​(4 −∫
y=1

2

∫
x=0

1

x − y) dx dy = ​[4x −∫
1

2

​ −2
x2

xy] ​dy =
0

1
​( ​ −∫

1

2

2
7 y)dy = 2.

​ xy dA∬
T

T (0, 0), (1, 0), (1, 1)

0 ≤ x ≤ 1, 0 ≤ y ≤ x

​ ​ xy dy dx =∫
x=0

1

∫
y=0

x

​ x[ ​] ​ dx =∫
0

1

2
y2

0

x

​ ​ dx =∫
0

1

2
x3

​.8
1

​ ​ e dy dx∫
x=0

1

∫
y=1

​x
y3

z = f(x, y)

​∬D ∫∫
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18. Improper Integrals &
Coordinate Transformations

Improper Double Integrals

Definitions

Improper Domain: A double integral  is improper if the region  is

unbounded.

Unbounded Integrand: The integral is also improper if  becomes unbounded

on or near  or its boundary.

Convergence Criterion

Nonnegative Functions: If  on , then  either converges to a

finite value or diverges to .

Comparison Tests: Analogous to single-variable tests (e.g., -integral test).

Example: Exponential Integrand over an Unbounded Region

Problem: Evaluate

​ f(x, y) dA∬
D

D

f(x, y)
D

f(x, y) ≥ 0 D ​ f dA∬
D

+∞

p
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Solution:

Express as an iterated integral:

Inner integral gives .

Then

Example: Singularity near the Boundary

Problem: Evaluate

Solution:

Write as a limit to handle the singularity at :

Inner antiderivative: 

Simplify and integrate to get 

Absolute Convergence

Absolute Convergence Criterion: If  converges, then the original

integral  also converges.

Mean-Value Theorem for Double Integrals

​ e dA, R =∬
R

−x2
{(x, y) ∣ x ≥ 0, −x ≤ y ≤ x}.

​( ​ e dy) dx.∫
0

∞

∫
−x

x
−x2

2x e−x2

​
2x e dx =∫

0

∞
−x2

[−e ] ​ =−x2

0

∞
1.

​ ​
dA, D =∬

D (x + y)2

1
{(x, y) ∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ x }.2

x = 0

​ ​ ​ ​ dy dx.
c→0+
lim ∫

c

1

∫
0

x2

(x + y)2

1

− ​ ​ ​ =
x + y

1
0

x2

​ −
x

1
​.

x(1 + x)
1

ln 2.

​ ∣f(x, y)∣ dA∬D

​ f(x, y) dA∬
D
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Theorem: For a continuous function  on a closed, bounded, connected domain  of

area , there exists  such that

Average Value:

Example: Average of a Quadratic Function

Compute the average of  over the triangle with vertices , 

, and .

The area is . Set up  and evaluate.

Polar Coordinates & Change of Variables

Polar Coordinates Review

Coordinate Transformation: 

Area Element: 

Double Integrals in Polar Form

Fubini’s Theorem (Polar): If  is given by , then

Example: Volume under a Paraboloid

Evaluate  by using polar coordinates.

Substitute  and integrate from  to ,  to , yielding .

f D

A (x ​, y ​) ∈0 0 D

​ f(x, y) dA =∬
D

Af(x ​, y ​).0 0

​
=f ​ ​ f(x, y) dA.
A

1 ∬
D

f(x, y) = x +2 y2 (0, 0)
(1, 0) (1, 1)

A = ​2
1

​ ​(x +
A

1 ∬
T

2 y ) dA2

x = r cos θ, y = r sin θ, r ≥ 0, 0 ≤ θ < 2π.

dA = r dr dθ.

D α ≤ θ ≤ β, 0 ≤ r ≤ R(θ)

​ f(x, y) dA =∬
D

​ ​ f(r cos θ, r sin θ) r dr dθ.∫
α

β

∫
0

R(θ)

​(1 −∬
x +y ≤12 2

x −2 y ) dA2

x +2 y =2 r2 r = 0 1 θ = 0 2π π/2
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Example: Annular Sector Integral

Evaluate  where  is the region in the first quadrant bounded by 

and .

Note , integrate  then , and simplify to 

General Change of Variables

Change-of-Variables Theorem: For a , one-to-one mapping 

 from region  to , let

. Then

Example: Rectangle-to-Ellipse Mapping

Under , , the unit disk  maps to the ellipse 

.

Final Summary & Takeaways

Improper integrals handle unbounded domains or integrands; use iterated limits and

comparison tests.

Absolute convergence implies convergence of the original integral.

A continuous function attains its average value in the domain.

Polar coordinates simplify integration over circular regions, with area element 

.

The change-of-variables formula requires the Jacobian determinant.

Common Mistake: Omitting the  factor in polar integrals or  in general

transformations.

​ ​ dA∬
R x

2

y2

R a ≤ r ≤ b

0 ≤ θ ≤ π/4

​ =x2
y2

tan θ2 θ r ​(1 −2
b −a2 2

​).4
π

C1 (u, v) ↦
(x(u, v), y(u, v)) S D

J = det[∂(x, y)/∂(u, v)]

​ f(x, y) dx dy =∬
D

f(x(u, v), y(u, v)) ∣J(u, v)∣ du dv.∬
S

x = au y = bv u +2 v ≤2 1 x /a +2 2

y /b ≤2 2 1

r dr dθ

r ∣J ∣
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19. Triple Integrals & 3D
Coordinate Transforms

Triple Integrals

Definition

Triple Integral: For a bounded function  on a region ,

is the limit of Riemann sums partitioning .

Properties

Linearity & Additivity: Constants factor out; integrals over unions of nonoverlapping

regions sum.

Symmetry: If  is odd in one coordinate over a region symmetric about that

coordinate-plane, the integral vanishes.

Fubini’s Theorem

f(x, y, z) D ⊂ R3

​ f(x, y, z) dV∭
D

D

f
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Iterated Integrals: If  is continuous on a “simple” region , then any order of

integration applies:

Average Value & Center of Mass

Average Value:

Center of Mass (uniform density ):

Coordinate Transformations in 3D

Jacobian Determinant

Jacobian: For ,

.

Change-of-Variables:

Cylindrical Coordinates

Transformation: 

Volume Element:

Spherical Coordinates

Transformation:

f D

​ f dV =∭
D

f(x, y, z) dz dy dx∫ ∫ ∫

​ =f ​ ​ f dV .
V (D)

1
∭

D

ρ

=x̄ ​ ​x dV , ​ =
V (D)

1 ∭
D

ȳ ​ ​ y dV , =
V (D)

1 ∭
D

z̄ ​ ​ z dV .
V (D)

1 ∭
D

(u, v,w) ↦ (x(u, v,w), y(u, v,w), z(u, v,w))

J = det[∂(x, y, z)/∂(u, v,w)]

​ f(x, y, z) dV =∭
D

​ f(x(u, v,w), y(u, v,w), z(u, v,w)) ​J ​du dv dw.∭
S

x = r cos θ, y = r sin θ, z = z.

dV = r dr dθ dz.
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Volume Element:

Examples

Mass of a Tetrahedron

Region: Tetrahedron with vertices ; density .

Express limits: .

Volume of an Ellipsoid

Region:

Use mapping  on . Jacobian .

Final Summary & Takeaways

Triple integrals compute volumes, masses, averages, and centers of mass via iterated

integration.

Jacobian determinants adjust the volume element under coordinate changes.

Cylindrical and spherical coordinates simplify regions with rotational symmetry.

Common Mistake: Omitting factors  in cylindrical or  in spherical integrals.

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ.

dV = ρ sinϕdρ dϕ dθ.2

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) ρ = 1

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y

​ 1 dV =∭
D

​ ​ ​dz dy dx =∫
0

1

∫
0

1−x

∫
0

1−x−y

​.6
1

​ +
a2

x2

​ +
b2

y2

​ ≤
c2

z2

1.

x = au, y = bv, z = cw u +2 v +2 w ≤2 1 = abc

V = abc ​dU =∭
u +v +w ≤12 2 2

​abc.3
4π

r ρ sinϕ2
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20. Vector Fields & Conservative
Fields

Vector & Scalar Fields

SCALAR FIELD: A function f assigning a real value to each point .

VECTOR FIELD: A function , where each  is a

scalar field.

Common examples include

Gravitational field of a point mass: .

Velocity field of a steady rotating fluid: . 

Field Lines & Polar Representation

FIELD LINES: Curves whose tangent at each point is parallel to the vector field there,

satisfying

(x, y, z)

F(x, y, z) = F ​ i +1 F ​ j +2 F ​ k3 F ​i

F = −k ​

∥r − r ​∥0
3

r − r ​0

v = −Ωy i + Ωx j

​ =
F ​1

dx
​ =

F ​2

dy
​.

F ​3

dz
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For a plane field in polar form

with

Example: The rotating-field lines of  are circles .

Conservative Fields & Exact Differentials

CONSERVATIVE FIELD:  for some scalar potential . 

EXACT DIFFERENTIAL: An expression

is exact if it equals  for some .

Necessary Conditions

In the plane:

In space:

Finding a Potential

Integrate componentwise and match “constants” of integration:

Example: The gravitational point‐mass field

has potential 

F(r, θ) = F ​(r, θ) +r r̂ F ​(r, θ)  θ θ̂

=r̂ cos θ i + sin θ j, =θ̂ − sin θ i + cos θ j.

v = Ω(−y i + x j) x +2 y =2 C

F = ∇ϕ ϕ

F ​ dx +1 F ​ dy +2 F ​ dz3

dϕ ϕ

​ =
∂y

∂F ​1
​.

∂x
∂F ​2

​ =
∂y

∂F ​1
​, ​ =

∂x
∂F ​2

∂z
∂F ​1

​, ​ =
∂x
∂F ​3

∂z
∂F ​2

​.
∂y

∂F ​3

F = −k ​

(x + y + z )2 2 2 3/2

x i + y j + z k

ϕ = − +
x + y + z2 2 2

k
C.
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Equipotential Surfaces

EQUIPOTENTIAL SURFACES: Level sets  of a potential function.

Field lines intersect these surfaces at right angles, illustrating orthogonality of  to

level sets. 

Final Takeaways

Vector fields assign vectors to points; scalar fields assign scalars.

Field lines follow .

A field is conservative iff it equals a gradient; check mixed partials for exactness.

Potentials are found by integrating components and ensuring consistency.

Equipotential surfaces visualize scalar potentials and their orthogonality to field lines.

ϕ(x, y, z) = C

∇ϕ

​ =
F ​1

dx
​ =

F ​2

dy
​

F ​3

dz
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21. Line Integrals of Scalar & Vector
Fields

Line Integrals of Scalar Functions

Line Integral (scalar): For a continuous  on a smooth curve , ,

Properties

Parametrization independent: any smooth re-parametrization of  gives the same value.

Improper integrals: allow unbounded curves or singular .

Example (Arc-length weighted integral)

Compute  where  is the line from  to .

Parametrize , . Then .

Line Integrals of Vector Fields

f(x, y, z) C : r(t) a ≤ t ≤ b

​ f ds =∫
C

​ f(r(t)) ​r (t) ​dt. ∫
a

b
′

C

f

​(x +∫
C

2 y ) ds2 C (0, 0) (2, 1)

r(t) = (2t, t) 0 ≤ t ≤ 1 ∥r (t)∥ =′
​ =4 + 1 ​5

​(x +∫
C

2 y ) ds =2
​(4t +∫

0

1
2 t ) ​dt =2 5 5 ​ ​ t dt =5 ∫

0

1
2

​.
3

5 ​5
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Work/Circulation: For a vector field  along an oriented curve ,

Evaluation via Parametrization

If , , parametrizes ,

Closed-Curve & Circulation

Circulation:  measures net “work” around a closed path.

Examples

Example 1 (Non-conservative field):

. Compute  along the quarter-circle , .

Parametrize . Then

,

.

Example 2 (Conservative field):

. Verify path-independence from  to .

 ⇒ conservative.

Potential .

Fundamental Theorem for Conservative Fields

Theorem: On an open, connected domain , the following are equivalent for smooth :

1.  is conservative ( ).

F = (F ​,F ​,F ​)1 2 3 C

​F ⋅∫
C

dr = ​F ⋅∫
C

ds =T̂ ​ F ​ dx +∫
C

1 F ​ dy +2 F ​ dz.3

r(t) a ≤ t ≤ b C

​F ⋅∫
C

dr = ​F(r(t)) ⋅∫
a

b

r (t) dt.′

​F ⋅∮
C

dr

F = (y, −x) ​F ⋅∫
C

dr x +2 y =2 1 0 ≤ θ ≤ π/2

r(θ) = (cos θ, sin θ)

r (θ) =′ (− sin θ, cos θ)

F(r(θ)) = (sin θ, − cos θ)

​F ⋅∫
C

dr = ​(sin θ, − cos θ) ⋅∫
0

π/2

(− sin θ, cos θ) dθ = ​(− sin θ −∫
0

π/2
2 cos θ) dθ =2 − ​.

2
π

F = (2xy, x )2 (0, 0) (1, 1)

∂F ​/∂y =1 2x = ∂F ​/∂x2

ϕ(x, y) = x y2

​F ⋅∫
C

dr = ϕ(1, 1) − ϕ(0, 0) = 1.

D F

F F = ∇ϕ
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2.  for every closed .

3.  is path-independent.

Final Summary & Takeaways

Scalar integrals  weight by arc length.

Vector integrals  compute work or circulation.

Parametrization reduces both to single-variable integrals.

Conservative fields admit potentials; their line integrals depend only on endpoints.

Common Mistake: Forgetting the Jacobian  in scalar integrals or sign/orientation in

vector integrals.

​F ⋅∮
C

dr = 0 C ⊂ D

​F ⋅∫
P ​0

P ​1

dr

​ f ds∫
C

​F ⋅∫
C

dr

∥r (t)∥′
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22. Surface Integrals & Flux

Parametric Surfaces

A parametric surface in  is given by

where  is a region in the -plane. Each point of the surface corresponds uniquely to a 

.

Boundary of Parametric Surfaces

If  is one-to-one on , the image of the boundary  is the boundary curve of the

surface. Traversing  induces an orientation on this curve.

Composite Surfaces

When two (or more) parametric surfaces join along a common boundary curve—with

matching parameterizations so normals agree—the union is a composite surface.

Surface Integrals

For a scalar function  on a smooth surface , the surface integral is

R3

r(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ R,  

R uv

(u, v)

r R ∂R
∂R

f(x, y, z) S
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where  and  are partial derivatives.

Smooth Surfaces, Normals, and Area Elements

A surface is smooth if it has a unique tangent plane at each point. A normal vector is

and the area element is

Oriented Surfaces

An orientable surface  admits a continuous unit normal field . Choosing 

defines a “positive side.”

If  has boundary curve , walking around  so that  stays on your left

corresponds to the orientation induced by .

Flux of a Vector Field Across an Oriented Surface

For a continuous vector field  and oriented surface  with unit normal , the flux is

If  is given by  with  and projection onto the -plane, then

and signs chosen to match the desired orientation.

Examples

​ f dS =∬
S

​ f(r(u, v)) ​r ​ ×∬
R

u r ​ ​ du dv,v

r ​u r ​v

n = r ​ ×u r ​,v

dS = ∥n∥ du dv.

S (P )N̂ N̂

S C C S

N̂

F S N̂

​F ⋅∬
S

dS. N̂

S G(x, y, z) = 0 ∇G = 0 xy

dS = ​ dx dy, =
∣G ​∣z

∥∇G∥
N̂ ± ​,

∥∇G∥
∇G
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Example 1 (Surface Integral):

Compute  where  is the cone , .

Parametrize by .

\ norm .

Integral:

Example 2 (Flux Integral):

Find the outward flux of  through the closed cylinder , 

.

Side: , , .

Flux through side: 

Top & bottom disks contribute each , so total flux

​ z dS∬
S

S z = ​x + y2 2 0 ≤ z ≤ 1

x = u cos v, y = u sin v, z = u, 0 ≤ u ≤ 1, 0 ≤ v < 2π

r ​ ×u r ​v = ​u2

​ ​u ( ​u) du dv =∫
0

2π

∫
0

1

2 2π ​ ​u du =2 ∫
0

1
2

​.3
2π ​2

F = (x, y, z) x +2 y =2 a2

−h ≤ z ≤ h

=N̂ (cos θ, sin θ, 0) dS = a dθ dz F ⋅ =N̂ a

​ ​a (a dθ dz) =∫
−h

h

∫
0

2π

2πa (2h).2

πa h2

4πa h +2 2(πa h) =2 6πa h.2
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23. Gradient, Divergence, and
Curl

The Gradient of a Scalar Field

If  is a scalar function, its gradient is

We abbreviate the vector differential operator as

Divergence and Curl of a Vector Field

Let  be a vector

field.

The divergence of   is

f(x, y, z)

∇f(x, y, z) = ​ i +
∂x
∂f

​ j +
∂y
∂f

​ k.
∂z
∂f

∇ = i ​ +
∂x
∂

j ​ +
∂y
∂

k ​.
∂z
∂

F(x, y, z) = F ​(x, y, z) i +1 F ​(x, y, z) j +2 F ​(x, y, z)k3

F

∇ ⋅ F = ​ +
∂x
∂F ​1

​ +
∂y

∂F ​2
​.

∂z
∂F ​3
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The curl of  is

Equivalently, one can remember the determinant form:

Warning

Do not confuse  (the divergence) with  (which is an operator acting on

another function).

Interpretation of the Divergence

At a point  ,  measures the “net outward flux per unit volume” of  at  .

Intuitively, if , the field is “spreading out” from . If ,

the field is “converging” at .

Interpretation of the Curl

At a point ,  measures the “local rotation” or “tendency to swirl” of 

around .

If  , the field has a nonzero infinitesimal circulation about .

Irrotational Vector Fields

A vector field  is called 

irrotational if

Equivalently,  is irrotational if and only if

F

∇ × F = ( ​ −
∂y

∂F ​3
​) i +

∂z
∂F ​2 ( ​ −

∂z
∂F ​1

​) j +
∂x
∂F ​3 ( ​ −

∂x
∂F ​2

​)k.
∂y

∂F ​1

∇ × F = ​ ​ ​ ​ ​ .
i

​∂x
∂

F ​1

j
​∂y

∂

F ​2

k
​∂z

∂

F ​3

∇ ⋅ F F ⋅ ∇

P ∇ ⋅ F F P

∇ ⋅ F(P ) > 0 P ∇ ⋅ F(P ) < 0
P

P ∇ × F(P ) F
P

∇ × F(P ) = 0 P

F = F ​(x, y, z) i +1 F ​(x, y, z) j +2 F ​(x, y, z)k3

∇ × F = 0. 

F
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Simply Connected Domains

A domain  is simply connected if it is connected and every simple closed

curve in  can be continuously shrunk (homotoped) to a point without leaving .

In a simply connected domain, closed-loop integrals of an irrotational field must

vanish.

Scalar Potentials (Conservative Fields)

Theorem (Existence of a Scalar Potential).

If  is a smooth, irrotational vector field on a simply connected domain , then

there exists a scalar function  on  such that

In this case,  is called a potential function for , and  is often said to be a 

conservative field.

Solenoidal Vector Fields

A vector field  is called solenoidal if

everywhere in the domain.

Equivalently,  has zero divergence.

Vector Potentials

Theorem (Existence of a Vector Potential).

If   is a smooth, solenoidal vector field on a domain  with the property that every

closed surface in  bounds a region contained in   (for instance, any simply

connected region in ), then there exists a vector field   on   such that

​ =
∂y

∂F ​1
​, ​ =

∂x
∂F ​2

∂z
∂F ​1

​, ​ =
∂x
∂F ​3

∂z
∂F ​2

​.
∂y

∂F ​3

D ⊂ R3

D D

F D ⊂ R3

ϕ(x, y, z) D

F = ∇ϕ. 

ϕ F F

F

∇ ⋅ F = 0 

F

F D

D D

R3 G(x, y, z) D
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In this situation,  is called a vector potential for .

Nonuniqueness of :

Since  for any smooth scalar , one may add any gradient field 

to  without changing . Hence, vector potentials are never unique.

Identities Involving Grad, Div, and Curl

Below are key vector‐calculus identities (all assume sufficiently smooth functions and

appropriate domains):

1. 

(The curl of any gradient field vanishes.)

2. 

(The divergence of any curl field vanishes.)

3. 

where  is the vector Laplacian.

4. 

5. 

6. 

F = ∇ × G. 

G F

G
∇ × (∇ϕ) = 0 ϕ ∇ϕ

G ∇ × G

∇ × (∇ϕ) = 0

∇ ⋅ (∇ × G) = 0

∇ × (∇ × F) = ∇(∇ ⋅ F) − ΔF,

ΔF = (ΔF ​) i +1 (ΔF ​) j +2 (ΔF ​)k3

∇ ⋅ (f F) = f (∇ ⋅ F) + ∇f ⋅ F.

∇ × (f F) = f (∇ × F) + ∇f × F.

∇(F ⋅ G) = (F ⋅ ∇)G + (G ⋅ ∇)F + F × (∇ × G) + G × (∇ × F).
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24. Green’s, Stokes’s and Divergence
Theorem Theorem

Green’s Theorem in the Plane

Introduction

Green’s Theorem connects a line integral around a simple closed curve  in the plane with a

double integral over the region   bounded by . It is a special case of Stokes’s Theorem in two

dimensions.

Preliminaries

Region : A region  is called simple if it can be described as

 -simple: , or

-simple: 

Piecewise‐smooth boundary : Denote by  the positively oriented (counterclockwise)

boundary of .

Statement of Green’s Theorem

C

R C

R R ⊂ R2

x {(x, y) : a ≤ x ≤ b, g ​(x) ≤1 y ≤ g ​(x)}2

y {(x, y) : c ≤ y ≤ d, h ​(y) ≤1 x ≤ h ​(y)}.2

C C

R
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Let  be a positively oriented, piecewise‐smooth, simple closed curve in the plane, and let   be

the region enclosed by  . If

has continuous partial derivatives  on an open region containing , then

Interpretation

The left side is the circulation of  around .

The right side is the signed area integral of the “curl” component  over .

Intuitively, Green’s Theorem says that the net “rotation” of  inside  equals the total line

integral around the boundary.

Sketch of Proof

1. Divide  into simple subregions:

Decompose  into finitely many -simple or -simple regions.

Prove the theorem on each subregion, using the Fundamental Theorem of Calculus to

convert the line integral to a double integral.

2. Add up contributions:

Boundary integrals on interior edges cancel in pairs (opposite orientations).

Only the outer boundary  remains, yielding the stated equality.

Examples

Rectangle Example:

Let  and . Then

which matches

C R

C

F(x, y) = P (x, y) i + Q(x, y) j 

P ​, P ​, Q ​, Q ​x y x y R

​(P dx +∮
C

Qdy) = ​( ​ −∬
R ∂x

∂Q
​) dA.

∂y
∂P

F C

(Q ​ −x P ​)y R

F R

R

R x y

C

R = [a, b] × [c, d] F = (P ,Q)

​(P dx +∮
C

Qdy) = ​[P (x, d) −∫
x=a

b

P (x, c)] dx + ​[Q(b, y) −∫
y=c

d

Q(a, y)] dy,

b d
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Area via Green’s Theorem:

To compute , choose . Then , so

The Divergence Theorem

The Two‐Dimensional Divergence Theorem (Green’s Flux Form)

Let  be a region in the plane with positively oriented, piecewise‐smooth boundary . If

has continuous partials on an open set containing , then

Equivalently, in flux form,

where  is the outward‐pointing unit normal to .

Regular Domains in 

A three‐dimensional domain  is called regular if it can be written as a finite union of

nonoverlapping subregions, each of which is simultaneously:

 -simple: Each line parallel to the -axis intersects the subregion in at most two points.

 -simple: Each line parallel to the -axis intersects the subregion in at most two points.

-simple: Each line parallel to the -axis intersects the subregion in at most two points.

The Three‐Dimensional Divergence Theorem

​(Q ​ −∬
R

x P ​) dA =y ​ ​(Q ​(x, y) −∫
x=a

b

∫
y=c

d

x P ​(x, y)) dy dx.y

Area(R) F = (− ​, ​)2
y

2
x Q ​ −x P ​ =y 1

Area(R) = ​ 1 dA =∬
R

​(− ​ dx +∮
C

2
y

​ dy).2
x

D C

F(x, y) = P (x, y) i + Q(x, y) j 

D

​(P dy −∮
C

Qdx) = ​(P ​
+∬

D
x Q ​) dA.y

​
F ⋅∮

C

n ds = ​
∇ ⋅∬

D

F dA,

n C

R3

D ⊂ R3

x x

y y

z z
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Let  be a bounded, regular domain in  with piecewise‐smooth boundary surface , oriented

by the outward unit normal . If

has continuously differentiable components on an open set containing , then

where 

Interpretation

The left‐hand side is the total outward flux of  through the closed surface .

The right‐hand side is the triple integral of the divergence  over the volume .

Intuitively, the net “source strength” inside  equals the net flux out of .

Variants and Consequences

Constant Vector Field:

If  is a constant vector, then . Applying the Divergence Theorem to 

 yields identities involving surface integrals of cross products.

Scalar Times a Constant Vector:

If  is a scalar function and  is constant, then

. One can derive flux identities by applying the Divergence Theorem to 

.

Examples

Flux Through a Cylinder:

Let  be the solid cylinder , and .

Compute

.

Divergence: .

Volume integral: .

Hence, flux .

D R3 S

n

F(x, y, z) = F ​(x, y, z) i +1 F ​(x, y, z) j +2 F ​(x, y, z)k3

D

​ F ⋅∬
S

n dS = ​ ∇ ⋅∭
D

F dV ,

∇ ⋅ F = F ​ +1 ​x F ​ +2 ​y F ​.3 ​z

F S

∇ ⋅ F D

D D

c ∇ ⋅ (F × c) = 0 F ×
c

ϕ(x, y, z) c
∇ ⋅ (ϕ c) = c ⋅ ∇ϕ

ϕ c

D x +2 y ≤2 a , 0 ≤2 z ≤ h F(x, y, z) = (x, y, 2z)

​ F ⋅∬S n dS

∇ ⋅ F = 1 + 1 + 2 = 4

​ 4 dV =∭
D

4(Volume of D) = 4πa h2

= 4πa h2
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Sphere:

For   the ball  and ,

.

By the Divergence Theorem, flux through the sphere is .

Stokes’s Theorem

Introduction

Stokes’s Theorem generalizes Green’s Theorem to surfaces in . It relates the surface integral

of the curl of a vector field over a surface  to the line integral of the field around the boundary

curve .

Preliminaries

Surface : A piecewise‐smooth, oriented surface in .

Boundary Curve : The (possibly) closed, piecewise‐smooth curve bounding , oriented

consistently with  (right‐hand rule).

Unit Normal : Choose a continuous unit normal vector field  on .

Vector Field: Let

with continuous partial derivatives on an open set containing .

Statement of Stokes’s Theorem

If  is oriented by the unit normal  and  is given the induced positive orientation (right‐

hand rule), then

Left‐hand side: Surface integral of the normal component of .

Right‐hand side: Circulation of  around the boundary .

D x +2 y +2 z ≤2 R2 F = (x, y, z)

∇ ⋅ F = 3

​ 3 dV =∭
D

3 ⋅ ​πR =3
4 3 4πR .3

4πR3

R3

S

∂S

S R3

∂S S

S

n n(x, y, z) S

F(x, y, z) = F ​ i +1 F ​ j +2 F ​ k,  3

S

S n ∂S

​(∇ ×∬
S

F) ⋅ n dS = ​ F ⋅∮
∂S

dr.

∇ × F

F ∂S
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Orientation Convention

Use the right‐hand rule: Curl the fingers of your right hand in the direction of traversal around 

; your thumb points in the direction of the chosen normal .

Interpretation

The integral of “local rotation” (curl) over the entire surface equals the total “circulation”

along the boundary curve.

If  on , then . This generalizes the fact that a conservative field

has zero circulation around any closed loop.

Examples

Graph of a Function:

Let  be the graph  over a domain  in the -plane. Then one can express 

 as a double integral over , and  projects to .

Flat Disk in Plane:

Take  to be the disk  in the -plane (oriented upward, ). For 

,

Stokes’s Theorem reduces to Green’s Theorem:

Half‐Sphere:

Let  be the upper hemisphere . Its boundary  is the circle 

. For , one checks . Then

On the other hand,

∂S n

∇ × F = 0 S ​ F ⋅∮∂S dr = 0

S z = g(x, y) D xy

​(∇ ×∬
S

F) ⋅ n dS D ∂S ∂D

S x +2 y ≤2 a2 xy n = k F =
(P ,Q,R)

(∇ × F) ⋅ k = ​ −
∂x
∂Q

​.
∂y
∂P

​(Q ​ −∬
S

x P ​) dA =y ​(P dx +∮
x +y =a2 2 2

Qdy).

S x +2 y +2 z =2 R , z ≥2 0 ∂S
x +2 y =2 R , z =2 0 F = (−y, x, 0) ∇ × F = (0, 0, 2)

​(∇ ×∬
S

F) ⋅ n dS = ​ 2 dS =∬
S

2 ⋅ (Area of hemisphere) = 2 ⋅ 2πR =2 4πR .2
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consistent with Stokes’s Theorem.

Generalized Stokes’s Theorem (Outline)

On an oriented -dimensional manifold  with boundary , if  is a smooth -form

with compact support, then

Here,  is the exterior derivative, and integration is taken with respect to the induced

orientations.

Green’s Theorem, the Divergence Theorem, and Stokes’s Theorem are all special cases of

this general result.

Summary of Key Relationships

Green’s Theorem (2D)

Divergence Theorem (3D Flux Form)

Stokes’s Theorem (Surface–Curve)

​ F ⋅∮
∂S

dr = ​(−y dx +∮
x +y =R2 2 2

x dy) = 4πR ,2

n M ∂M ω (n − 1)

​dω =∫
M

​ω. ∫
∂M

d

​(P dx +∮
C

Qdy) = ​(Q ​ −∬
R

x P ​) dA.y

​ F ⋅∬
S

n dS = ​ ∇ ⋅∭
D

F dV .

​(∇ ×∬
S

F) ⋅ n dS = F ⋅∮
∂S

dr.
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