MATH203

COURSE NOTES
KOC UNIVERSITY

Aykhan Ahmadzada


Guest
Rectangle


© 2025 AYKHAN AHMADZADA

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means—electronic, mechanical,
photocopying, recording, or otherwise—without prior written permission
from the author.

This work is a personal academic compilation created for educational
purposes as part of the MATH203 (Multivariable Calculus) course at Ko¢
University.

Compiled in Istanbul, Turkey.


Guest
Rectangle


MATHZ203

#8 0.1. Cheatsheet for the Midterm

#8 1. Vectors and Coordinate Geometry in 3-Space

#8 2. Vectors and Coordinate Geometry in 3-Space - Extended

#R 3. Planes and Lines in 3-Space

#8 4. Analytic Geometry in Three Dimensions

#R 5. Curves and Parametrization

# 6. Frenet—Serret Frame, Curvature, and Torsion

#8 7. Fundamental Theorem of Space Curves & Curvature, Torsion for General

Parameterization

#8 8. Partial Differentiation & Functions of Several Variables

#8 9. Limits and Continuity,

#8 10. Tangent Planes, Higher Order Derivatives

#8 11. Chain Rule, Linear Approximation, Differentiability, Differentials



Guest
Rectangle


® F B B F X & B F X B F R

12. Linearization, Differentiability

13. Gradients and Directional Derivatives

14. Midterm Preparation 1

15. Midterm Preparation 2

16. Lagrange Multipliers

17. Double Integrals & Iterated Integrals

18. Improper Integrals & Coordinate Transformations

19. Triple Integrals & 3D Coordinate Transforms

20. Vector Fields & Conservative Fields

21. Line Integrals of Scalar & Vector Fields

22. Surface Integrals & Flux

23. Gradient, Divergence, and Curl

24. Green's, Stokes’s and Divergence Theorem Theorem



Guest
Rectangle


1. Vectors and Coordinate Geometry in 3-Space

In our physical world, space is three-dimensional. This means that to locate any point in space, we require three numbers—one for
each dimension. These concepts are fundamental in fields such as physics, engineering, and computer science. In this note, we will
explore the basics of coordinate geometry in three dimensions, including how points are represented, how distances are calculated,
and how these ideas extend to higher dimensions.

The 3-Dimensional World and Coordinate Systems

The physical world we experience is 3-dimensional. At any given point, we can define three mutually perpendicular directions. In linear
algebra and geometry, these directions are typically represented by the three coordinate axes: x, y, and z.

QUANTITIES: A vector is a quantity with both magnitude and direction, while a scalar is a quantity with only magnitude.
To uniquely identify any point in 3-dimensional space, we use an ordered triple of real numbers. For example, a point P is written as:
P= ('/By Y, Z)
This space is denoted by R3, where:

R? = {(w;yaz) | T,Y,z ER}
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Distance in R>

The distance between two points in 3-dimensional space is a direct extension of the Pythagorean theorem. For a point P = (z,y, 2)
and the origin O = (0, 0, 0), the distance  from the origin to P is given by:

r:«/w2+y2—|—z2

Similarly, the distance between two arbitrary points P; = (z1,y1, 21) and P> = (23, y2, 22) is:

d(Py, Py) = /(21— 22)? + (11 — 12)° + (21 — 22)?
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Example: Right Triangle in 3-Space

Consider a triangle with vertices:

A=(1,-1,2), B=(3,3,8), C=(2,0,1)
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To determine if this triangle has a right angle, we calculate the lengths of its sides.

Step 1: Compute Side Lengths

o Side AB:

4Bl = /(B - 12+ (- (-2 +(B-22=V22+4+6=v2116 136 = 56
o Side AC:

A0 = VR -1+ (00— ()P + (-2 = VP + P+ (1P = VI+1+1=V3
o Side BC:

BOl=v(3-2+(3-07+(8-1)=v12+3+ 7 =v1+9+49 = V59

Step 2: Verify the Pythagorean Theorem
For a triangle with a right angle at A, the lengths must satisfy:

|ABJ* 4 |AC|?* = |BC|?

Plug in the values:

56 +3 =59

Since the equality holds, the triangle is right-angled at A.

Euclidean n-Space
The ideas from 3-dimensional space extend naturally to higher dimensions. For any positive integer n, the Euclidean space R" is

defined as:
R™ = {(z1,22,...,2n) |z €R, 1 =1,2,...,n}

The distance between two points P, = (21, T2, ..., &) and Py = (Y1,Y2, - - - , Yn) in R is given by:
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d(PL, Py) = /(21 — 1) + (22 — 12)2 + - + (Tn — Yn)?

Euclidean space

https://en.wikipedia.org/wiki/File:Coord_system_CA_0.svg

Additional Information and Examples

Importance of Coordinate Geometry

Coordinate geometry provides the framework for analyzing spatial relationships using algebra. This approach is fundamental in many
fields:

¢ In physics, to describe the motion of objects.
¢ Inengineering, for designing structures and systems.

e In computer graphics, for rendering scenes in 3D.

Applications of Euclidean Distance

Understanding the distance formula in R3 and R™ is crucial for tasks such as:
¢ Navigation: Calculating the straight-line distance between two locations.

e Data Analysis: Computing distances in high-dimensional spaces for clustering algorithms.

¢ Robotics: Determining how far a robot must move to reach a target point.

Example: Distance in R*

Consider points in four-dimensional space:
P =(1,2,3,4) and P»=(4,3,2,1)

Their distance is:

dPL,P)=+/(1-42+(2-32+(B3-22+(4—-12=/(-32+(-1)2+(1)2+(3)2=vO0+1+1+9=12

Summary

In this lecture note, we have covered:

¢ Vectors and Coordinate Geometry in 3-Space: The physical world is three-dimensional, and any point in space is represented
by an ordered triple of real numbers.

¢ Coordinates in R3: Points are denoted as P = (z, y, z) in R?, where R? is defined as {(z, y, 2) | z,y, 2 € R}.
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e Distance in R3: The distance from the origin to a point P = (z,y, 2) is computed using 7 = y/2? 4 y? + 22, and the
distance between two points follows the generalized Pythagorean theorem.

¢ Euclidean n-Space: Extended the concept of coordinate geometry to n dimensions with the space R™ and the corresponding
distance formula.

Understanding these concepts lays the foundation for more advanced studies in calculus, physics, and engineering, where precise
spatial measurements and relationships are crucial.

Self Test

R Self-Test: Lecture 1

Raw Notes

#2 Raw Notes
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2. Vectors and Coordinate Geometry
in 3-Space - Extended

Analytic Geometry in Three Dimensions

Our physical space is three-dimensional. To uniquely locate any point in this space, we require three
coordinates, one for each mutually perpendicular axis. In linear algebra and geometry, these axes
are typically denoted as x, y, and z.

COORDINATE SYSTEM: A framework that uses an ordered triple (x, y, z) to specify the

position of a point in R3.
The three-dimensional space is defined as:
R’ = {(z,y,2) | z,y,2 € R}
A point P in this space is represented by:
P = (z,y,2)

Distance in R?

The distance from the origin O = (0, 0, 0) to a point P = (z, y, 2) is calculated by:

T:*/$2+y2—|—22
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Similarly, the distance between any two points P; = (21, Y1, 21) and Py = (22, Yo, 22) is:

d(P1, Py) = /(21 — 22)2 + (g1 — )2 + (21 — 22)2

Euclidean n-Space

The concept of coordinates extends beyond three dimensions. For any positive integer n, the
Euclidean space R" is defined as:

R" = {(z1,x2,...,2,) | xz; € R, i =1,2,...,n}

The distance between two points P = (1, Z3,...,Z,) and P» = (y1, Y2, ..., Yn) in R™is:

d(PL, P) = /(w1 — 31)> + (m2 — 12)2 + -+ + (T — n)?

Introduction to Vectors

Vectors are quantities that have both magnitude and direction, distinguishing them from scalars
(which have only magnitude). They are essential in describing many physical phenomena such as
displacement, velocity, and force.

VECTOR: A quantity with both magnitude and direction, represented as:

A=|AlA

where | A| is the magnitude and A is the unit vector indicating direction.

Unlike fixed points, vectors can be "moved” (translated) without changing their intrinsic properties.

Unit Vectors and Standard Basis Vectors

Unit Vectors

A unit vector has a magnitude of 1and indicates direction. It is used to express the direction
component of any vector without affecting its magnitude.

Standard Basis Vectors

In three-dimensional space, the standard basis vectors are:
i=(1,0,0), j=(0,1,0), k=(0,0,1)

Any vector A in R3 can be expressed as:
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A=Ai+Aj+Ak

These standard basis vectors provide a foundation for representing any vector in component form.

Vector Operations: Addition, Subtraction, and Scalar
Multiplication

Vector Addition and Subtraction

Vectors are added by combining their corresponding components:
A+B=(A,+B,)i+ (4, + By)j+ (4. + B.)k

Properties:
e Commutativee A+ B=B + A
e Associative: A+ (B+C)=(A+B)+C

Subtraction is defined as the addition of the negative:
A-B=A+(-B)
where —B reverses the direction of B.

Scalar Multiplication

When a vector is multiplied by a scalar ¢, its magnitude is scaled by |c| while its direction remains
unchanged (if ¢ > 0) or reverses (if ¢ < 0):

cA = (cAy)i+ (cAy)j+ (cA)k

If c = 0, the result is the zero vector, 0.

Components, Magnitude, and Direction of a Vector

Components and Vector Notation

Any vector in R? can be written as:

And in R3:
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R = R,i+ R,j+ R.k
This representation is essential for performing arithmetic operations on vectors.

Calculating Magnitude

The magnitude of a vector R in R3is:

R|= /R + R+ R’

In R2, the formula simplifies to:

R|=/R2+R?

Determining Direction

For a vector in two dimensions, the angle 6 (with respect to the z-axis) is given by:

R
0 = arct Y
arctan (R$>

In three dimensions, direction is typically represented by the unit vector, though spherical
coordinates may also be used.
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Dot Product (Scalar Product)

The dot product of two vectors A and B is defined as:
A-B=A,B,+A,B,+ A,B, =|A||B|cosf

where @ is the angle between the vectors.
Key Points:

e ltresultsin a scalar.

e Commutative: A-B=B: A

e |t measures the extent to which one vector projects onto another.

Example:
Let A =2i+ 3j+kand B = —4i+ 2j — k. Then:

A-B=2x-4)4+03x2)+(1x-1)=-8+6—-1=-3

The angle 6 can be found by:
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Dot Product

BWUS

-

6

Cross Product (Vector Product)

The cross product of two vectors in R results in a vector that is perpendicular to both:
A xB=(A,B. - A.By)i+ (A.B, — A.B.)j + (A. By, — A,B, )k
The magnitude of the cross product is:
|A x B| = |A| [B|sin6

where @ is the angle between A and B.

Properties:
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e Anticommutative: A Xx B=—(B x A)

e The resulting vector is orthogonal to both A and B.
e If A and B are parallel, then A x B = 0.

A @BYUs

AxB

->

Cross Product of Unit Vectors

The cross product is an operation on two vectors in three-dimensional space that results in a
vector perpendicular to both. For the standard basis vectors in IR, the following relationships hold:

ixj=k
jxk=i
kxi=]

These rules demonstrate the anticommutative property of the cross product:
jxi=-k, kxj=-1 ixk=-j

This operation is fundamental in determining directions perpendicular to a given plane, with
applications in physics, computer graphics, and engineering.
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Cross Product

Cross Product as a Determinant

The cross product of two vectors in R3 can be computed using the determinant of a 3 X 3 matrix.
Given two vectors:

A= (4,,A,A,) and B=(B;,B,B,),
their cross product A x B is given by the determinant:

i j k
AxB=|A4, A, A,|=i(A,B.— A.B,)—j(A.B.— A.B,) +k(A,B, — A,B,).
B, B, B

x z

<

This determinant method neatly encapsulates the computation and clearly shows that the resulting
vector is perpendicular to both A and B.

Scalar Triple Product (Advanced Topic)

The scalar triple product of three vectors u, v, and w is defined as:
u-(vxw)

This product gives the volume of the parallelepiped spanned by the three vectors. If the result is
zero, the vectors are coplanar.

SCALAR TRIPLE PRODUCT: A measure of the volume of a parallelepiped. A zero result indicates
the vectors lie in the same plane.
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Summary of Vector Concepts

¢ Definition and Representation: Vectors have both magnitude and direction and are
represented as A = | A| A or in component form.

e Unit and Standard Basis Vectors: Unit vectors (with magnitude 1) define direction. In R?,
standard basis vectors are 1, j, and k.

e Vector Operations:
o Addition/Subtraction: Performed component-wise; subtraction is adding the negative.
o Scalar Multiplication: Scales the vector’'s magnitude.

¢ Magnitude and Direction: The magnitude is found using the Euclidean norm, and the
direction can be determined using trigonometric functions (e.g., arctan for 2D).

e Dot Product: Provides a scalar indicating how much one vector extends in the direction of
another.

e Cross Product: Yields a vector perpendicular to two given vectors; its magnitude is related to
the sine of the angle between them.

e Scalar Triple Product: Gives the volume of a parallelepiped formed by three vectors and
indicates coplanarity when zero.

Understanding these concepts is essential for applications in physics, computer graphics,
engineering, and advanced mathematics.
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Self Test

R Self-Test: Lecture 2

Raw Notes

#2 Raw Notes
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3. Planes and Lines in 3-Space

Planes in 3-Space

PLANE (Point-Normal Form): A plane in three-dimensional space can be uniquely
defined by a point Py = (g, Yo, 20) that lies on the plane and a nonzero normal
vector n = (a, b, ¢). The plane consists of all points P = (x, y, z) whose position
vectors I satisfy

n-(r—ry) =0
In scalar form, this equation becomes:
a(x — o) + by —vo) + c(z — 29) = 0.

Examples:
1. Example (i):

The equation

2c —by —hz =0
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represents a plane passing through the origin (0, 0, 0) with normal vector

(2, —b, —h). (Here, specific values for b and h are needed for a concrete example;
assume b = 3 and h = 4 for instance, then the normal vector would be
(2,—-3,—4))

. Example (ii):

The plane given by
2c+y+32=6

passes through a point such as (3, 0, 0) and has a normal vector (2, 1, 3).
. Example (iii):

The equation
20 —y =0
represents a plane that is vertical (parallel to the z-axis) and has a normal vector
(2,-1,0).
. Example (iv):

To find the plane passing through the point (2, 0, 1) and perpendicular to the line
passing through (1, 1,0) and (4, —1, —2), first compute the direction vector of the
line:

v=(4-1,-1-1,-2-0)=(3,-2,-2).
The plane’s normal vector is parallel to v. Thus, using the point-normal form:
3(x—2)—2(y—0)—2(2—1)=0 = 3z—2y—2z=4.

. Example (v):

A plane with intercepts a, b, and c on the x, y, and z axes respectively can be
expressed as:

T z
—+g+—:1.
a b ¢
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Py (X0, Yo, Z0)
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Lines in 3-Space

LINE (Parametric Form): A line in three-dimensional space is determined by a point
Py = (x0, Yo, 20) through which the line passes and a nonzero direction vector v =
(a, b, c). The line is given by the parametric equation:

r(t) =rg+tv

where t is a real parameter.

This equation indicates that every point on the line can be reached by starting at P and

moving some scalar multiple £ of the direction vector v.
Examples:

1. Example:

Consider the line defined by:
x=1+t, y=-3, z=4t.

Here, the line passes through the point (1, —3, 0) (when t = 0) and has the
direction vector (1,0, 4).
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2. Additional Example:

Another line can be represented as:

I‘(t) - (27 1a 5) +1 (37 _27 1)7

which indicates that the line passes through (2, 1, 5) and is parallel to the vector
(3,-2,1).

Summary

In this study material, we have covered:
e Planes in 3-Space:

o A plane is defined by a point and a normal vector.
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o Its equation can be written in vector formn - (r — rg) = 0 or in scalar form
a(x — o) + by — yo) + c(z — z9) = 0.

¢ Linesin 3-Space:
o Alineis represented by a point and a direction vector.
o The parametric form r(t) = ry + t v describes all points on the line.

This material lays a foundation for further studies in multivariable calculus and analytic

geometry, as well as applications in fields such as computer graphics, engineering, and
physics.

Raw Notes

# Raw Notes
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4. Analytic Geometry in Three
Dimensions

Representing Points in 3-Space

POSITION VECTOR: A vector that specifies the location of a point in three-dimensional space.
A point P is given by the ordered triple

P = (z,y,2)

and the set of all points in 3-space is defined as

R = {(z,y,2) | z,y,z € R}.

In linear algebra, any basis for R? consists of three linearly independent vectors, which reflects the
requirement of three numbers to locate a point.

Distance from a Point to the Origin

The distance r from a point P = (z, y, 2) to the origin O = (0, 0, 0) is calculated using the 3-
dimensional Pythagorean theorem:

r=+z2+y?+ 22

This distance is equivalent to the magnitude of the position vector r.

Distance Between Two Points
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For any two points P; = (1, Y1, z1) and Py = (g, Ya, 22) in R?, the distance between them is given
by:

d(Pl, PQ) = \/(371 — -T2)2 + (yl - y2)2 + (zl - z2)2'

This formula generalizes the Pythagorean theorem to three dimensions.

Example: Right Triangle in 3-Space

Consider a triangle with vertices:

« A=(1,-1,2)
« B=(3,3,8)
« C=(2,0,1)

Step 1: Compute Side Lengths
e Side AB:

|AB| =1/ (3—=1)2+(3—(—1))2+ (8—2)2 = V22 +42+62 = v/4+ 16 + 36 = V/56.

e Side AC:

[ACI = V2 =12+ (00— (-1))P+ (1 -2 = VP2 + 12+ (-1 =VI+1+1= V3

e Side BC:

IBC|=+v/(3—22+(3—02+(8—1)2=1+/124+32 472 = /119 +49 = v/59.

Step 2: Verify the Right Angle

If the triangle is right-angled at vertex A, then:
|BC|> = |ABJ* + |AC|*.
Substituting the values:
99 =56 + 3 = 59.

Since the equality holds, the triangle has a right angle at A.

Equations of Surfaces in 3D

Digital geometry uses equations to describe various surfaces in space. Common examples include:

e Plane:
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A plane passing through a point Py = (g, Yo, 29) with a nonzero normal vector n = (a, b, ¢) is
defined by:

a(x — xo) + b(y — o) + c(z — z9) = 0.

Example: The equation 2 = 0 represents the horizontal (xy) plane.

Vertical Plane:

An equation like x = y describes a vertical plane that contains the line = y in the xy-plane.

Cylinder:

A vertical circular cylinder with radius 7 is given by:

Sphere:

A sphere with center (h, k, 1) and radius 7 is represented as:
(x—h)?2+(@y—k)?+(z-0)2=r%

Example: z* + y® + z* = 36 represents a sphere of radius 6 centered at the origin.

Euclidean n-Space

EUCLIDEAN n-SPACE: For any positive integer n, the n-dimensional Euclidean space is defined as
R" = {(z1,za,...,2,) | 1, 22,...,2, € R}.

The distance between two points P; = (21, ..., &) and P, = (y1,. .., Y, ) is given by

d(P, Py) = /(x1 —31)? + (22 — 42)> + -+ + (0 — yn)?

This generalization allows us to extend the concepts of geometry in 3-space to higher dimensions.

Summary

In this section, we have covered:

Representation of Points: How points in 3D are represented as ordered triples in R3.

Distance Calculations: How to compute the distance from a point to the origin and between two
points using the 3D extension of the Pythagorean theorem.

Equations of Surfaces: Common forms for planes, vertical planes, cylinders, and spheres.

Euclidean n-Space: The extension of these geometric concepts to n dimensions.
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This material lays the groundwork for further studies in multivariable calculus and analytic geometry.

Raw Notes

8 Raw Notes
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5. Curves and Parametrization

Curves and Parametrizations
Definition: Curve in R3
CURVE: A curve in R3 can be regarded as the image of a vector-valued function

r(t) = z(t)i + y(t)j + z)k, a <t <b

IN

The function r(t) is often called a parametrization of the curve.

e Intuitively, as ¢ varies from a to b, the point (z(t), y(t), z(t)) traces out the curve in space.

e Acurve can also exist in R? when z(¢) is absent or fixed.

Examples of Parametrizations

Example 1: Line of Intersection of Two Planes

Suppose we have the planes y = 2 — 4 and z = 3x + 1. We want to parametrize the line of
intersection from the point (2, 0, 7) to (3, 2, 10).

1. Fromy = 2z — 4, we set y = t as our parameter. Then x can be solved as

t+4
t=2z-4 — x:%
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2. From z = 3z + 1, substitute x = % to get

223(t+4)+1:3t+12+1_3t+14

2 2 2

3. Hence the parametric equations become

o) =25 w0 =1, =)

4. Putting them together in vector form:

t4+4  3t+14
r(t):< 5 b T >

5. We determine the parameter range 0 < ¢ < 2 to move from (2,0, 7) — (3,2, 10).

Example 2: Intersection of a Plane and a Paraboloid
e Theplaneisz +y = 1.
e The paraboloidis z = x2 + y2.
¢ One can parametrize this intersection by choosing:
o t=ux,s0y=1—tthenz=1t>+ (1 —1t)>2
o Alternatively,t = y ort = z. Each choice leads to a different but valid parametrization.

¢ In general, there can be multiple equivalent parametrizations for the same curve.

Example 3: 2D Parametrizations

e r(t) = (sint, cost), —m/2 <t <m/2.
e r(t)=(t—1, V2t —#2), 0 <t < 2.

e r(t)=(tv2—1t%, 1 -1, -1 <t<1.

r(t)| = 1 or the resulting curve is a semicircle in the zy-plane from

In several such examples,

(—1,0) to (1,0).

Closed and Not-Self-Intersecting Curves

CLOSED CURVE: Acurver(t), a < t < b,isclosedifr(a) = r(b).

NOT-SELF-INTERSECTING: A curve is not-self-intersecting if its parametrization is one-to-
one (injective) on [a, b], except possibly for the endpoints if it is closed.
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Smoothness

SMOOTH CURVE (of order 1): A curve r(t) is said to be smooth of order 1if it has a
continuous first derivative r'(t) on [a, b]. If it has derivatives of all orders, we call it a (fully)

smooth curve.

e “Smoothness” of a curve measures the continuity of its derivatives.

e In most calculus or geometry contexts, “smooth” often means at least C'': continuous and
once differentiable with no corners.

Arc Length

Definition: Arc Length of a Smooth Curve

Let r(¢) be a bounded, continuous, and smooth curve for a < ¢t < b. We define the arc
length S by the limit of polygonal approximations:

1. Subdivide [a, b] into n subintervals:
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a=ty<t1 <---<t, 1<t,=bd
2. Ateach t;, definer; = r(t;).
3. The polygonal length is

n
Sn = ||I‘i—1‘z'71||
i=1

4. When r(t) has a continuous derivative v(¢) = r'(t), the arc length is given by the

integral

b b
5= Jim Su= [ Ir@lde= [ Ivio)]ar

Example: Circular Helix

A circular helix in R? can be parametrized by
r(t) = (acost, asint, bt), 0<t<T
1. Compute r'(t):
r'(t) = (—asint, acost, b)

2. Find its magnitude:

'(t)| = v/(—asint)? + (acost)? + b2 = \/a2(sin2t + cos?t) + b? = VVa? + b?
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3. The arclength fromt = Otot = 27is
2m
S = Va2 +bdt=+va®+b (2r —0) =27V a?+b?
0

4. Remark: The arc length is independent of how we choose to parametrize the curve. If there
are multiple valid parametrizations, they all yield the same length.

Piecewise Smooth Curves

A piecewise smooth curve C (of order 1) is formed by a finite number of smooth arcs. We can

write
C=Ci+Cy+ - +Cj

where each C} is smooth on its own. Then, the total length is the sum of the lengths of these

arcs:

20

A4

Condition for Constant Speed

Although slightly outside the main topic, it is often shown that a particle moves with constant
speed if and only if its acceleration a(t) is perpendicular (orthogonal) to its velocity v (t) for

all t in the interval of motion. Formally,
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| fv(t) - a(t) = 0forallt, then |v(t)| remains constant.

Sketch of Proof:

Since % (3v(t)[*) = v(t) - a(t), if this derivative is zero at all £, then 3 |v(t)|? is
constant. Hence,

v(t)] is also constant.

Final Summary & Takeaways

Parametrization allows us to describe curves in R? or R? via vector-valued functions r(t).

Closed curves satisfy r(a) = r(b), and we say a curve is not-self-intersecting if r(t) is
injective except for endpoints (if closed).

Smoothness refers to the continuity of derivatives. A curve is smooth of order 1if r'() is
continuous.

Arc length is computed via the integral f: Ir'(t)| dt.

Piecewise smooth curves are composed of finitely many smooth arcs, and their lengths
add up.

Constant speed occurs precisely when a(t) is perpendicular to v (t).

All of these concepts set the stage for deeper explorations in vector calculus and the geometry
of curves in multiple dimensions.

Raw Notes

#2 Raw Notes


Guest
Rectangle


6. Frenet-Serret Frame,
Curvature, and Torsion

Prerequisites

Assumes a regular, sufficiently smooth space curve \Assumes a regular, sufficiently
smooth space curve r(t) with nonzero velocity r’ (). We will often reparameterize by

arc length s, so that || 2 || = 1. (%) with nonzero velocity r'(t). We will often
reparameterize by arc length s, so that || % | =1.
Unit Tangent Vector

Unit Tangent Vector (T)

The unit tangent vector to the curve is

r'(t)

T® = @)

or, when using arc length s, T(s) = £

Curvature and Unit Normal
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Curvature (k)

A scalar measure of how sharply the curve bends, defined by

dT
k(s) = HE

Equivalently, in any parameter ,

=" < =]

= 1°

Unit Normal Vector (IN)

The principal normal points toward the center of curvature:

Binormal and Torsion

Binormal Vector (B)

Defined as the cross product of T and N:
B(s) = T(s) x N(s).

Torsion (7)

Measures how the curve twists out of the osculating plane:

dB

= — — - N(s).
r(s) = — == - N(s)
In a general parameter ¢,
! ny . W
. (r'xr")-r
||I" % rHH2

Frenet—-Serret Formulas
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Frenet-Serret Formulas

For a unit-speed curve parameterized by arc length s, the derivatives of the frame

(T, N, B) are:

dT

2 — kN

ds

dN

— =—-kT + 7B,
ds

aB

— = —7N.

ds T

These equations describe the instantaneous rotation of the orthonormal triad along
the curve.
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7. Fundamental Theorem of Space
Curves & Curvature, Torsion for
General Parameterization

Objective & Scope

This note states the Fundamental Theorem of Space Curves, which asserts existence
and uniqueness of a space curve given curvature and torsion, and then summarizes the
formulas for curvature and torsion when the curve is given by a general parameter t.

Curvature and Torsion for General Parameterization
Curve Parameterization: A smooth vector-valued function r(t), t € I, withr'(t) =
0 for all £.

Curvature

Curvature (k) for general {: Measures how rapidly the curve deviates from a straight

line, given by
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B ||r’(t) xr"(t)H
") = e

¢ Interpretation:
A larger K indicates tighter bending of the curve at that point.

Torsion

Torsion (7) for general ¢: Measures how rapidly the curve departs from its osculating
plane, given by

(r'(8) xx"() - "'()

() = TOEEZ0IE

¢ Interpretation:
A nonzero T indicates twisting of the curve out of the plane of curvature.

Fundamental Theorem of Space Curves

Fundamental Theorem of Space Curves: Let k() and 7(s) be two smooth
functions defined on an interval, with £(s) > 0. Then there exists a regular, unit-

speed space curve r(s), unique up to a rigid motion (rotation and translation), whose

curvature and torsion are exactly k() and 7(s), respectively.

e Existence:

One can integrate the Frenet-Serret system with given k(s) and 7 () to recover
T(s), N(s), and B(s), and thereby reconstruct r(s).

¢ Uniqueness (up to Rigid Motion):

Any two curves with the same prescribed k() and 7(s) differ only by a fixed
orthogonal transformation and translation in space.

Summary

¢ General-parameter formulas allow computation of curvature and torsion directly
fromr(t).
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e The Fundamental Theorem guarantees that curvature and torsion completely
determine the shape of a space curve (modulo rigid motions), encapsulating the
intrinsic geometry of the curve.
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8. Partial Differentiation &
Functions of Several Variables

Functions of Several Variables

Multivariable Function: A mapping f : D C R™ — R (or(R™) that assigns to each

point (z1, ®a, ..., T,) € D asingle real value (or an m-vector).

e Domain D is a subset of R".

e Codomain is typically R for scalar-valued functions.

Level Sets & Contours: For a scalar f(z,y), the set {(x,y) | f(z,y) = c}isa
level curve (contour) in the plane. In higher dimensions, { x | f(x) = c} is alevel
surface.

Partial Derivatives

Partial Derivative (First Order): The rate of change of f with respect to one variable
Z;, holding all other variables constant:

of . flen e mi by ) = f(oy T, T)
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I Notations include f;,, 0; f, or D, f.

Existence: A function may have partial derivatives without being continuous or jointly
differentiable.

Differentiability and the Total Differential

Differentiability: f is differentiable at a if there exists a linear map (the total
derivative) D f (a) such that

f(a+h) = f(a) + Df(a)h] + o(||hl]),
where o(||h||)/||k|| — Oas ||h|| — 0.

Total Differential: For a differentiable scalar function f(z, y),

df = fmdm‘i'fydya

where f; and f, are partial derivatives.

Summary

e Partial derivatives capture change in one coordinate direction.

o Differentiability ensures a good linear approximation (total differential).
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9. Limits and Continuity

LIMIT (Multivariable): For a function f : D C R™ — Randapointa € D,

lim f(x) =L

X—a

means that for every € > 0 there exists > 0 such that whenever 0 < ||x — al| <
d,then |f(x) — L| < e.

CONTINUITY (Multivariable): f is continuous at a if

lim f(x) = f(a)

X—a

Continuity on a domain means this holds at every point in the domain. Continuity
implies that small changes in each coordinate yield arbitrarily small changes in the

function’s value.

Partial Derivatives

PARTIAL DERIVATIVE: The partial derivative of f with respect to its i-th variable at x

IS
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8_f(x):].IIIl f(xl’.”’wi_i_h""’m”) T f(x17"'7wi7"'7wTL)

62[31' h—0 h
provided this limit exists.
NOTATION: Common notations include f,,, O, f, or D, f.

EXISTENCE & PROPERTIES:

e Partial derivatives may exist individually without guaranteeing overall
differentiability or continuity of f.

e If all first-order partials exist and are continuous on a domain, then f is

differentiable there, and its total differential is given by

4 =Y 1 da.
1=1
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10. Tangent Planes, Higher Order
Derivatives

Tangent Planes and Normal Lines

Surface in Explicit Form: A surface given by z = f(z, y) with continuous first partials has
at each point (wo, Yo, f(xo, yg)) a unique tangent plane.

Tangent Plane (Explicit):

Z— 20 = fm(wo,yo) (13—5(30) + fy($0,y0) (y_y0)7

where f, and f, are the first partial derivatives.

| Surface in Implicit Form: A surface defined by F'(z,y, z) = 0 with VF' = 0 at a point.
Tangent Plane (Implicit):

Fy (0, Y0, 20) (z — o) + Fy(Zo,%0,20) (¥ — %) + F:(Z0,%0,20) (2 — 20) = 0.

Normal Line: The line through (a:o, Yo, zo) in the direction of the surface normaln =
V (20, Yo, 20)-

Parametric form:
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| (ZL’,y,Z) = (ZBanO)zO) +1 (FmaFy,Fz)-

Higher Order Derivatives

Second and Higher-Order Partial Derivatives: For f: R" — IR, the second partials are

Higher-order derivatives are defined by iterating this process.

Mixed Partial Symmetry (Clairaut’s Theorem): If the mixed partials f,.,. and f;.,, are
continuous in a neighborhood, then

fa:ia:j - fa:ja;i *

Multi-Index Notation: For a multi-index @ = (v, . . ., ),
9l
Dafzaalaagf Qp ?
2131 282 c e 8337,,

where || = > ;.

Hessian Matrix: The matrix of second partials for f(z, y):

Hy(e) = (2 1),
fym fyy
It encodes curvature information and is symmetric if mixed partials commute.

Higher-Order Differentials: The total differential extends to higher order via Taylor’s

theorem, using the derivatives up to the desired order.
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11. Chain Rule, Linear
Approximation, Differentiability,
Differentials

Chain Rule

Chain Rule (Multivariable): If F' : R™ — R is differentiable aty = g(x)and g :
R™ — R™ is differentiable at x, then the composite F' o g is differentiable at x and

D(F o g)(x) = DF (g(x)) - Dy(x).

Equivalently, for scalar functions 2z = F(u, Vy.n. ) and each intermediate variable
U = u(:c,y,...),

0z OF Ou;

and similarly for other variables.

Linear Approximation
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Linear Approximation (Tangent Plane Approximation):

For a differentiable function f : R™ — R at a point a, the linear approximation (or

first-order Taylor expansion) is

fla+h)= f(a)+ Df(a)lb] = f(a) + Vf(a)-h.

where h is a small increment vector and V f is the gradient.

Differentiability

Differentiability:

Afunction f : R™ — R is differentiable at a if there exists a linear map L (the total

derivative) such that

L flath) — f(a) - D) _
)0 b '

In that case, L = D f(a) and f admits the linear approximation above.
Differentiability implies continuity and the existence of all partial derivatives, but the
converse requires those partials to be continuous.

Differentials

Differential (d f):

The differential df of a differentiable function f(x1, ..., ;) at ais the linear form

where dx; denotes an infinitesimal change in x;. The differential gives the best linear
estimate of the change in f corresponding to small changes (dz1, . . . , dz,).
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12. Linearization, Differentiability

Linearization

Linearization:

The process of approximating a differentiable function f : R™ — R near a point a by
its first-order Taylor polynomial (the tangent hyperplane).

The linearization L at a is the affine map

L(x) = f(a) + Df(a)[x —a] = f(a) + Vf(a)-(x —a),

which provides the best linear approximation of f for x close to a.

Differentiability

Differentiability:

Afunction f : R™ — R is differentiable at a point a if there exists a linear map
D f(a) (the total derivative) such that

L fa+h) -~ f(a) - Df(a)[h)

h—0 |h||

= 0.
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Differentiability implies continuity at a and guarantees that f can be locally
approximated by its linearization.
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13. Gradients and Directional
Derivatives

Gradients and Directional Derivatives

Gradient (V f): For a differentiable scalar function f(x1, zs, . . . , @, ), the gradient is
the vector of its first partial derivatives:

Vf(X) - (-fw1(x)? f$2(x)7 SRR fwn(x))

It points in the direction of steepest increase of f and its magnitude is the maximum
rate of change.

Directional Derivative (D, f): The rate of change of f at X in the direction of a unit
vector uis given by

Do) — timm £ — £

h—0 h - Vf(X) S

This scalar measures how f changes per unit displacement along u.

Gradient in 3D
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Gradient in Three Dimensions: For a function f(x, y, z), the gradient is

Vf(z,y,z) = (fw(:c, v, 2), fy(z,y,2), f.(x,y, z))
e Interpretation: At each point, V f is orthogonal to the level surface
f(x,y,z) = constant.
e Properties:
o lIts direction is that of maximal increase of f.
o Its magnitude ||V f|| equals the maximal directional derivative at that point.

o It serves as the normal vector in the tangent-plane equation for the surface
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14. Midterm Preparation 1

Curve Parameterization: r(t) with r'() # 0. When reparameterized by arc length
s I = 1

Unit Tangent Vector

e General t:

r'(t)
T(t) =
9= )
e Arclength s:
dr
Curvature
e Arclength s:
dT
- |g

e General t:
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_ @) x 2" @)]]

N Ol
Principal Normal Vector
dT
N(s) = i1

Binormal Vector

Torsion
e Arclength s:

e General t:

() = (r'(t) x x"(t)) - x"(2)
I (&) < ">

Frenet-Serret Formulas (w.r.t. s)

dT

2T — kN

ds 0

N
d—I—HT—l-TB,
ds

B

d = — 7 N.

ds
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15. Midterm Preparation 2

Limits and Continuity

limf(x) =L <= Ve>0,36d>0:0<|x—a|l<déd = |f(x)—L|<e

X—a

f continuous at a <= lim f(x) = f(a)

X—a

Partial Derivatives

of . flxyyecc i+ hy oo my) — foor, . Xy, Ty)
=1
8$Z(X) hlir(l) h

Differentiability & Total Differential
fla+h) = f(a)Df(a)[hjo(|h]]) , Df(a)h]=Vf(a) -h

i=1

Linear Approximation & Linearization

L(x) = f(a)Vf(a) - (x - a)
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Chain Rule
If y = g(x) and F differentiable at y, then

D(F og)(x) = DF(g(x)) - Dg(x) <= 5 -F(g(x))=

Gradient & Directional Derivative
VF(x) = (fors fors-- -2 o) » Duf(x)=Vf(x)-u

Tangent Plane & Normal Line
Explicit: z = f(x,y)

Z—2)= fx(iBo,yo) (33 - ﬂﬁo)fy(wo,yo) (y - yo)
Implicit: F'(x,y,2) =0
Fy (0, Y0, 20) (x — o) + Fy(x0, Y0, 20) (¥ — v0) + F=(x0,Y0,20) (2 — 20) =0

Higher-Order Derivatives & Clairaut's Theorem

0 .
friz; = . ( fo> s Jzz; = fe;e, if mixed partials are continuous
j
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16. Lagrange Multipliers

Theorem

Our aim is to maximize or minimize f(x, y) subject to p(z,y) = 0.

Theorem: Suppose that f and p have continuous first partial derivatives near Py =
(0, Yo) on the curve C with equation p(z,y) = 0. Suppose also that, when restricted
to points on C, f(x, y) has a local max or min at Pj. Finally, suppose that

e (i) Py is not an endpoint of C, and
o (i) Vp(Fy) # 0.

Then, there exists a number \g such that
VL(zo,y0,A0) =0 where L(z,y,A) = f(z,y) + Ap(z,y).
This leads to the following system of equations:

fi(zo, o) + Xopi(zo, o) =0
fa(zo, Y0) + Aop2(zo, yo) =0
p(zo,y0) =0

which is equivalent to
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f1(zo, yo)p2(z0, yo) = f2(z0, Yo)p1(T0, Yo)
P(xo,yo) =0

Example 1: Shortest Distance from the Origin to the Curve
z?y = 16
We want to minimize f(z,y) = x2 + y? subject to p(z,y) = x*y — 16.

filz,y) =2z, fo(z,y) =2y, pi(z,y) =22y, pa(z,y) =2’

The equations are:

2+ A - 22y =0
2y—|—)\0'$2:0
ziy = 16

Solving these, we find:
o =z =0o0rz? =292
o x=0orz=+yv2.
Substituting back into 2y = 16:
e 23=16 = y=2
Thus, at (24/2, 2) and (—24/2, 2), the distance is minimum. It is:

V8 +4=+12.

(This cannot be a maximum because, for example, the distance from (1, 1) to the origin
is greater.)

Example 2: Find the Closest and Farthest Points from the
Origin

Find the points on the curve 322 4 122y + 8y? = 100 that are closest and farthest
away from the origin.
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We want to maximize and minimize f(z,y) = x> + y? subject to p(z,y) = 3z2 +
12zy + 8y* — 100.

L(way7)‘) — f(xay) +A- p(way)

The equations are:

oL
= 12
0 o 2z + A\(6z + 12y)
oL
= == =2y + A(12z + 16
0 oy y + A(12z + 16y)
oL
0:5:3x2+12xy+8y2—100

Solving the system of equations:
2x(12x + 16y) = 2y(6x + 12y).

This leads to the following system and solutions for & and y:

Forx = 2,wegety = lory = —4.

Forx = —2,wegety =1 ory = 4.

Thus, the candidate points are (2, 1), (2, —4), (=2, 1), (-2, 4).

The function values for these points are:
f(27 1) =5, .f(27 _4) = 20, f(_za 1) =5, f(_27 _4) = 20.

Therefore, (2,1) and (—2, 1) are closest to the origin, and (2, —4) and (—2, —4) are
farthest away from the origin.
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17. Double Integrals & Iterated
Integrals

Double Integrals

Definitions

DOMAIN D: A region in the zy-plane over which a function f(z, y) is integrated.

//D f(z,y)dA

represents the “limit” of Riemann sums and gives the volume under z = f(z, y) above

D.

ELEMENT OF AREA:

DOUBLE INTEGRAL:

dA = dxdy = dydx

Riemann Sum & Integrability
1. Partition a rectangle D = [a, b] X [c, d] into subrectangles R;; with sides Az;, Ay;.

2. Choose sample point (x;;, y;;) in each R;;.
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3. Riemann sum:

1=1 j=1

4. Integrability: f is integrable if there exists I such that for every € > 0 a partition norm
|| P|| small enough implies | R(f, P) — I| < e.

Double Integral over General Domain

EXTENDED FUNCTION:

A . f(x7y)a (:c,y) ED)
f2,y) = {O, otherwise.

Then // fdA = // fdA for any rectangle R O D.
D R

Theorems & Properties

CONTINUITY = INTEGRABILITY: If f is continuous on a closed, bounded D with
piecewise-smooth boundary, then f is integrable.

[Lf+Mg|dA=L [| fdA+M [| gdA.
D D D
ORDER: If f < gon D, then
//DfdAg//ngA.
[ raa| < [[ 15144

ADDITIVITY: If D = D U D5 with nonoverlapping D,

LINEARITY:

TRIANGLE INEQUALITY:
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//DfdA://ledAJr//D2fdA.

SYMMETRY (Odd Functions):
If D is symmetric about the y-axis and f is odd in x, then ffD fdA =0.

Similarly for odd in y over x-axis symmetry.

Examples

Example 1: Approximate // (:L'2 + y) d A using 4 subsquares and centers.
[0

1) (3 2): (359): (5, 9):

1
4 .

e Centers: (

e FachAA

R

Rme(az’y)AA:(%Jr%)%%—---:f’—ﬁ.

Example 2: Volume under z = f(z,y) = /1 — 22 — y2overz? + 3> < 1.

e Recognize hemisphere of radius 1.

// V1—a?2 —y2dA=2.
z24+y?<1

Iteration of Double Integrals in Cartesian Coordinates

Domain Types

y-SIMPLE Domain: Bounded by vertical lines ¢ = a, x = band curvesy = c(x), y =

d(z).

x-SIMPLE Domain: Bounded by horizontal lines y = ¢, y = d and curves = a(y),
z = b(y).

REGULAR Domain: Finite union of nonoverlapping simple domains.

Fubini’'s Theorem for Simple Domains

THEOREM: If f is continuous on a bounded y-simple domain D witha < x < b,
c(z) <y <d(x), then
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[ seraa= [ [ osiavie

Similarly for x-simple domains with dx dy order.

Notation
b pd(z)
//fdA://f(w,y)dwdy:// fdydz etc.
D a Je(x)

Example 3: Volume oversquare ) : 0 <z <1, 1 <y < 2underplanez =4 —x — v.

V:/y21/:0(4—:1c—y)dxdy:/12[4w—%Q—my];dy:/j(%—y)dyzl

Example 4: // xy d A over triangle T with vertices (0, 0), (1,0), (1,1).
T

Examples

e Describeas0 <z <1, 0<y <=z

1 o 1 i 1
/ / xydyda::/ w[%] d:c:/ "“'2—3d:c:
=0 Jy=0 0 0 0

1 vz s
Example 5:/ / e dydzx.
z=0 Jy=1

e (Set up iterated integral; evaluation may require numerical methods or change of order.)

o=
.

Final Summary & Takeaways
 Double integral gives volume under z = f(z, y).
¢ Riemann sum definition and integrability criterion.
e Properties: linearity, order, additivity, symmetry for odd functions.
¢ Fubini's Theorem: evaluate ffD as iterated ff

e Common mistake: forgetting to adjust limits when changing integration order.
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18. Improper Integrals &
Coordinate Transformations

Improper Double Integrals

Definitions

Improper Domain: A double integral ffD f(a:, y) dA is improper if the region D is
unbounded.

Unbounded Integrand: The integral is also improper if f(x,y) becomes unbounded

on or near D or its boundary.

Convergence Criterion

Nonnegative Functions: If f(z,y) > 0on D, then ffD f dA either converges to a
finite value or diverges to +00.

Comparison Tests: Analogous to single-variable tests (e.g., p-integral test).

Example: Exponential Integrand over an Unbounded Region

Problem: Evaluate
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// e ™ dA, R={(z,y) |z>0, —z <y < z}.
R

Solution:

Express as an iterated integral:

/0 oo( /_ Z e dy) da.

2
Inner integral gives 2z e~ .

Then

o0 72 7200
/ 2azewda::[—ex]0:1.
0

Example: Singularity near the Boundary

Problem: Evaluate

1
———dA, D ={(z, 0<z<1 0<y<az’}
/[ aior {(@,v) y <o)

Solution:

Write as a limit to handle the singularity at x = 0:

1 z? 1
1i —— dydz.
CLI(%/C/O (ac+y)2 yaz
1 2 1 1

Inner antiderivative: — == - ——.
z+ylo =z z(1+x)

Simplify and integrate to get In 2.

Absolute Convergence

Absolute Convergence Criterion: I [}, | f(z,y)| dA converges, then the original
integral [[, f(z,y) dA also converges.

Mean-Value Theorem for Double Integrals
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Theorem: For a continuous function f on a closed, bounded, connected domain D of
area A, there exists (2o, yo) € D such that

//D f(z,y) dA = A f(z0, o).

Average Value:

= %//Df(w,y)dfl-

Example: Average of a Quadratic Function

Compute the average of f(x,y) = z2 + y? over the triangle with vertices (0, 0),
(1,0),and (1,1).

1
The areais A = % Set up 2 // (a:2 + y2) dA and evaluate.
T

Polar Coordinates & Change of Variables

Polar Coordinates Review

Coordinate Transformation: z = rcosf, y = rsinf, r > 0, 0 < 6 < 2.

Area Element: dA = rdr d6.

Double Integrals in Polar Form

Fubini’s Theorem (Polar): If D isgivenbya < 0 < 3, 0 < r < R(6), then

//Df(w,y)dA:/j/OR(e)f(rcos@,rsin@)rdrdo,

Example: Volume under a Paraboloid
Evaluate // (1-— z? — y2) d A by using polar coordinates.
z2+y?<1

Substitute £2 4+ y? = r2 and integrate fromr = 0to 1, @ = 0 to 2, yielding /2.
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Example: Annular Sector Integral

Evaluate // = d A where R is the region in the first quadrant bounded by a < r < b

and0 < 0 < 7/4.

2
Note & = tan

Z

boe(1-13).

General Change of Variables

Change-of-Variables Theorem: For a C'!, one-to-one mapping (u,v) —
(x(u,v),y(u,v)) fromregion S to D, let

J = det[8(z,y)/0(u,v)]. Then

//fa: y d:z:dy—//f 2w, v), y(u, v)) | (u, v)| du dv.

Example: Rectangle-to-Ellipse Mapping

Under z = au, y = bv, the unit disk uw+0v2 <1 maps to the ellipse :r:2/a2 +

Y

Fi

2/b* < 1.

nal Summary & Takeaways

Improper integrals handle unbounded domains or integrands; use iterated limits and
comparison tests.

Absolute convergence implies convergence of the original integral.
A continuous function attains its average value in the domain.

Polar coordinates simplify integration over circular regions, with area element

rdr do.

The change-of-variables formula requires the Jacobian determinant.

Common Mistake: Omitting the 7 factor in polar integrals or \J\ in general

transformations.
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19. Triple Integrals & 3D
Coordinate Transforms

Triple Integrals
Definition

Triple Integral: For a bounded function f(x, y, z) on aregion D C R3,

J|[ s@w.2av

is the limit of Riemann sums partitioning D.

Properties

Linearity & Additivity: Constants factor out; integrals over unions of nonoverlapping
regions sum.

Symmetry: If f is odd in one coordinate over a region symmetric about that

coordinate-plane, the integral vanishes.

Fubini’'s Theorem
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Iterated Integrals: If f is continuous on a “simple” region D, then any order of

///Dde:///f(w,y,z)dzdydm

Average Value & Center of Mass

Average Value: f = ﬁ / / /D fav.

Center of Mass (uniform density p):

=l o 5= . = i ]

Coordinate Transformations in 3D

integration applies:

Jacobian Determinant

Jacobian: For (u, v, w) — (z(u, v, w),y(u, v, w), z(u, v,w)),
J = det|d(z,y, 2)/0(u, v, w)].
Change-of-Variables:

///D flz,y,2)dV = ///Sf(m(%"’,w)ay(u,v,w),z(u,v,w)) 17| du dv dw.

Cylindrical Coordinates

Transformation:
x=rcosf, y=rsinb, z = z.

Volume Element: dV = rdr df dz.

Spherical Coordinates

Transformation:
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x = psin¢cosl, y = psingpsinf, z = pcos .

Volume Element: dV = p? sin ¢ dp d¢ d6.

Examples

Mass of a Tetrahedron
Region: Tetrahedron with vertices (0, 0, 0), (1,0, 0), (0, 1,0), (0,0, 1); density p = 1.

Expresslimits: 0 <z <1, 0<y<1—-z,0<2<1—z—y.

1 pl—z pl—zxz—y
///1dV:// / dzdydz = §.
D 0 J0 0

Volume of an Ellipsoid

2 2 2
x z
Reglon——{—%—i——<1

Use mapping £ = au, ¥y = bv, z = cw onu? + v2 + w? < 1. Jacobian = abc.

V:abc/// dU = 4?“abc.
u24vi+w?i<l

Final Summary & Takeaways

e Triple integrals compute volumes, masses, averages, and centers of mass via iterated
integration.

e Jacobian determinants adjust the volume element under coordinate changes.
e Cylindrical and spherical coordinates simplify regions with rotational symmetry.

e Common Mistake: Omitting factors 7 in cylindrical or p? sin ¢ in spherical integrals.
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20. Vector Fields & Conservative
Fields

Vector & Scalar Fields

SCALAR FIELD: A function f assigning a real value to each point (z, y, 2).

VECTOR FIELD: A function F(z,y, z) = F1i+ Fyj + F3k, where each Fj isa
scalar field.

Common examples include

N . . r—Ip
e Gravitational field of a point mass: F = —k T3
[r — rol]

e Velocity field of a steady rotating fluid: v. = —Qy1i + Qx j.

Field Lines & Polar Representation

FIELD LINES: Curves whose tangent at each point is parallel to the vector field there,
satisfying
de.  dy dz

R K F
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For a plane field in polar form

A

F(r,0) = F.(r,0)7 + Fy(r,0)0

with
7 =cosfi+sinfj, § = —sinfi+ cosbj.

Example: The rotating-field lines of v = Q(—y i + z j) are circles 22 + y? = C.

Conservative Fields & Exact Differentials

CONSERVATIVE FIELD: F = V ¢ for some scalar potential ¢.
EXACT DIFFERENTIAL: An expression

Fidz + Fydy + F3dz

is exact if it equals d¢ for some ¢.

Necessary Conditions

¢ Inthe plane:

OF, _ OF,
oy Oz
e In space:

OFy, O0F, O0F, O0F; O0F, OF;

Oy or’ 0Oz or’ 0Oz Oy

Finding a Potential

Integrate componentwise and match “constants” of integration:
Example: The gravitational point-mass field

ri+yj+zk

F—_
(392 +y2 _|_22)3/2

k
has potential p = — + C.
\/mz + y2 + 22
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Equipotential Surfaces

EQUIPOTENTIAL SURFACES: Level sets ¢(x, y, z) = C of a potential function.

Field lines intersect these surfaces at right angles, illustrating orthogonality of V¢ to
level sets.

Final Takeaways
e Vector fields assign vectors to points; scalar fields assign scalars.

ield i de _ dy _ dz
e Field lines follow F—F — B
o Afield is conservative iff it equals a gradient; check mixed partials for exactness.
e Potentials are found by integrating components and ensuring consistency.

e Equipotential surfaces visualize scalar potentials and their orthogonality to field lines.
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21. Line Integrals of Scalar & Vector
Fields

Line Integrals of Scalar Functions

Line Integral (scalar): For a continuous f(, y, z) onasmooth curve C: r(t), a <t <b,

b
[ras = [ 1a@) 7o) ax

Properties

e Parametrization independent: any smooth re-parametrization of C' gives the same value.

¢ Improper integrals: allow unbounded curves or singular f.

Example (Arc-length weighted integral)
Compute / (z* 4 y?) ds where C'is the line from (0, 0) to (2, 1).
C
Parametrize r(t) = (2t,t),0 < ¢t < 1L.Then||r'(t)|| = V4 + 1 = /5.

1 1
/($2+y2)ds:/ (4t2+t2)\/3dt:5\/3/ tzdt:%\/g.
C 0 0

Line Integrals of Vector Fields
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Work/Circulation: For a vector field F = (Fy, Fy, F3) along an oriented curve C,

/F-dr:/F-’i‘ds:/Fld:z:+F2dy+F3dz.
C C C

Evaluation via Parametrization
Ifr(t), a <t < b, parametrizes C,

/CF Cdr = /abF(r(t)) ¥ (2) dt.

Closed-Curve & Circulation

| Circulation: f F' - dr measures net “work” around a closed path.
C

Examples

Example 1 (Non-conservative field):

F = (y, —). Compute fC F - dr along the quartercirclez? + y* = 1,0 < 0 < 7/2.
Parametrize r(0) = (cos 6, sin 6). Then

r'(#) = (—siné, cos6),

F(r(9)) = (sin6, — cosb).

/2 ™/2
/F-dr:/ (sin@,—cos@)-(—sin@,cos@)d@z/ (—sin20—cos20) dez—g.
c 0 0

Example 2 (Conservative field):

F = (2zy, x?). Verify path-independence from (0, 0) to (1, 1).
OF, /0y = 2x = 0F,/0x = conservative.

Potential ¢(z,y) = z%v.

/F-dr:¢(1,1)—¢(0,0) = 1.
C

Fundamental Theorem for Conservative Fields

Theorem: On an open, connected domain D, the following are equivalent for smooth F":

1. Fis conservative (F = V ¢).
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2. ?{ F - dr = O forevery closed C' C D.
C

P
3. / F - dr is path-independent.
Py

Final Summary & Takeaways
e Scalar integrals fc f ds weight by arc length.
e Vector integrals fC F' - dr compute work or circulation.
e Parametrization reduces both to single-variable integrals.
e Conservative fields admit potentials; their line integrals depend only on endpoints.

o Common Mistake: Forgetting the Jacobian ||r’(t)]| in scalar integrals or sign/orientation in
vector integrals.
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22. Surface Integrals & Flux

Parametric Surfaces

A parametric surface in R3 is given by

r(u,v) = (z(uw,v), y(v,v), 2(u,v)), (u,v) € R,

where R is a region in the uwv-plane. Each point of the surface corresponds uniquely to a

(u,v).

Boundary of Parametric Surfaces

If r is one-to-one on R, the image of the boundary OR is the boundary curve of the
surface. Traversing O R induces an orientation on this curve.

Composite Surfaces

When two (or more) parametric surfaces join along a common boundary curve—with
matching parameterizations so normals agree—the union is a composite surface.

Surface Integrals

For a scalar function f(z, y, z) on a smooth surface S, the surface integral is
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//fds // ) I|w x £ dudv,

where r,, and r,, are partial derivatives.

Smooth Surfaces, Normals, and Area Elements

A surface is smooth if it has a unique tangent plane at each point. A normal vector is
n=r, Xr,,
and the area element is

dS = ||n|| du dv.

Oriented Surfaces

An orientable surface S admits a continuous unit normal field N (P). Choosing N
defines a “positive side.”

e If S has boundary curve C, walking around C' so that S stays on your left
corresponds to the orientation induced by N.

Flux of a Vector Field Across an Oriented Surface

For a continuous vector field F' and oriented surface S with unit normal N, the flux is

//F-Nds.
S

If S is given by G(z, y, 2) = 0 with VG = 0 and projection onto the zy-plane, then

dS = 3
6.l VG|

and signs chosen to match the desired orientation.

Examples
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Example 1 (Surface Integral):

Compute // zdS where Sistheconez = /22 + 42,0 < z < 1.
S

e Parametrizeby x = ucosv, y =usinv, z=u, 0<u <1, 0 <v <27

e 1T, Xr,\norm= \/iu

2m
// 2u dudv—27r\/_/udu——

Example 2 (Flux Integral):

e Integral:

Find the outward flux of F = (z, y, z) through the closed cylinder z? 4 y2 = a”,
—h<z<h.

e Side: N = (cos#,sin,0),dS = adfdz F-N = a.

/};/O%a (adf dz) = 2ma’®(2h).

e Top & bottom disks contribute each ma?h, so total flux

e Flux through side:

4wa’h + 2(wa’h) = 6ma’h.
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23. Gradient, Divergence, and
Curl

The Gradient of a Scalar Field

o If f(x,y, z) is ascalar function, its gradient is

. of . 0
Vi(z,y,2) = %1 — 6—5,] + 8—J;k.

e We abbreviate the vector differential operator as

Divergence and Curl of a Vector Field

° LetF(xayaz) :Fl(wayaz)i + Fz(a:,y,z)j + F3(x9y7z)kbeaveCtor
field.

e The divergence of F' is
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e Thecurlof Fis

0z Ox

0F3 8F2) . ( o0F; 8F3) . ( 0F, 8F1) I

VXF:(ay_8z1+ 37\ %~ By

Equivalently, one can remember the determinant form:

V xF =

TP -
Y| e
NP &

Warning

Do not confuse V - F (the divergence) with F' - V (which is an operator acting on

another function).

Interpretation of the Divergence

e Atapoint P,V - F measures the "net outward flux per unit volume” of F at P .

e Intuitively, if V - F(P) > 0, the field is “spreading out” from P.If V - F(P) < 0,
the field is “converging” at P.

Interpretation of the Curl
e Atapoint P, V x F(P) measures the “local rotation” or “tendency to swirl” of F
around P.

o IfV X F(P) = 0, the field has a nonzero infinitesimal circulation about P.

Irrotational Vector Fields
o Avectorfield F = Fi(x,y,2)i+ Fy(x,y,2)j+ F3(z,y, z) kis called

irrotational if

VXF = 0.

e Equivalently, F' is irrotational if and only if
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OF, OF, OF  0F; O0F,  OF

dy 9z’ 9z Bz’ 8z 9y’
Simply Connected Domains

e Adomain D C R3is simply connected if it is connected and every simple closed
curve in D can be continuously shrunk (homotoped) to a point without leaving D.

¢ Inasimply connected domain, closed-loop integrals of an irrotational field must
vanish.

Scalar Potentials (Conservative Fields)

Theorem (Existence of a Scalar Potential).

If F' is a smooth, irrotational vector field on a simply connected domain D C R3, then
there exists a scalar function ¢(z, y, z) on D such that

F = Vo

In this case, ¢ is called a potential function for F, and F is often said to be a
conservative field.

Solenoidal Vector Fields
e Avector field F is called solenoidal if
V-F =0

everywhere in the domain.

e Equivalently, F has zero divergence.

Vector Potentials

Theorem (Existence of a Vector Potential).

If F' is a smooth, solenoidal vector field on a domain D with the property that every
closed surface in D bounds a region contained in D (for instance, any simply
connected region in IR3), then there exists a vector field G(z,y,2) on D suchthat
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F = VxG.

In this situation, G is called a vector potential for F'.

¢ Nonuniqueness of G:
Since V x (V¢) = 0 for any smooth scalar ¢, one may add any gradient field V¢
to G without changing V X G. Hence, vector potentials are never unique.

Identities Involving Grad, Div, and Curl

Below are key vector-calculus identities (all assume sufficiently smooth functions and
appropriate domains):

1. Vx(Vg) =0
(The curl of any gradient field vanishes.)
2V (VxG) =0
(The divergence of any curl field vanishes.)
3. VX (VxF)=V(V-F)-AF,
where AF = (AF})i+ (AF,)j+ (AF3) kis the vector Laplacian.
4 V- (fF)=f(V-F)+Vf - F.
5 VX (fF)=f(VxF)+VfxF.
6. VIF-G)=(F-V)G + (G-V)F + Fx(VxG) + G x (VxF).
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24. Green'’s, Stokes’s and Divergence
Theorem Theorem

Green’'s Theorem in the Plane

Introduction

Green's Theorem connects a line integral around a simple closed curve C'in the plane with a
double integral over the region R bounded by C. It is a special case of Stokes's Theorem in two
dimensions.

Preliminaries
e Region R: Aregion R C R? is called simple if it can be described as

o x-simple:{(z,y):a <z <b, gi(z) <y <ga(z)} or
o y-simple: {(z,y) :c <y <d, hi(y) <z < hao(y)}-

e Piecewise-smooth boundary C': Denote by C' the positively oriented (counterclockwise)
boundary of R.

Statement of Green’s Theorem
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Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane, and let R be
the region enclosed by C'. If

F(z,y) = P(z,y)i + Q(=z,9)]

has continuous partial derivatives Py, P, @5, @, on an open region containing R, then

7{C(Pd.’n+Qdy) = //R(Z—Cj — aa—z)dA.

Interpretation

e The left side is the circulation of F around C.
e Theright side is the signed area integral of the “curl” component (Qx — Py) over R.

e |Intuitively, Green's Theorem says that the net “rotation” of F inside R equals the total line
integral around the boundary.

Sketch of Proof

1. Divide R into simple subregions:
e Decompose R into finitely many z-simple or y-simple regions.

e Prove the theorem on each subregion, using the Fundamental Theorem of Calculus to
convert the line integral to a double integral.

2. Add up contributions:
e Boundary integrals on interior edges cancel in pairs (opposite orientations).

e Only the outer boundary C remains, yielding the stated equality.

Examples
¢ Rectangle Example:

Let R = [a,b] X [c,d] and F = (P, Q). Then

b d
frac+ai) = [ [P -Peald + [ Q6w - a) d
C r=a Yy

=C

which matches
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//R(Qm ~P))dA= /i /yi(Qm(a:,y) — P,(z,y)) dy dz.

e Area via Green's Theorem:

To compute Area(R), choose F = (—321, %).Then Q: — P, =150
Area(R) = // 1dA = ]{ (—%daz+ %dy).
R C

The Divergence Theorem

The Two-Dimensional Divergence Theorem (Green's Flux Form)

Let D be a region in the plane with positively oriented, piecewise-smooth boundary C. If

F(z,y) = P(z,y)i+ Q(z,y)]

has continuous partials on an open set containing D, then

]éc(de—Qd:c) = //D(ch—i—Qy)dA.

Equivalently, in flux form,
fF-nds://V-FdA,
C D

where n is the outward-pointing unit normal to C.

Regular Domains in R?

A three-dimensional domain D C R? is called regular if it can be written as a finite union of

nonoverlapping subregions, each of which is simultaneously:
e 1 -simple: Each line parallel to the x-axis intersects the subregion in at most two points.
e 1y -simple: Each line parallel to the y-axis intersects the subregion in at most two points.

e z-simple: Each line parallel to the z-axis intersects the subregion in at most two points.

The Three-Dimensional Divergence Theorem
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Let D be a bounded, regular domain in R3 with piecewise-smooth boundary surface S, oriented
by the outward unit normal n. If

F(az,y,z) =F1($,y,2)i + Fz(x,y,z)j + F3(m7yaz)k

has continuously differentiable components on an open set containing D, then

flwis - 5 war

whereV - F = Fy, + F5 + F3..

Interpretation
e The left-hand side is the total outward flux of F' through the closed surface S.
¢ The right-hand side is the triple integral of the divergence V - F' over the volume D.

e |Intuitively, the net “source strength” inside D equals the net flux out of D.

Variants and Consequences

¢ Constant Vector Field:
If ¢ is a constant vector, then V - (F x ¢) = 0. Applying the Divergence Theorem to F x

c yields identities involving surface integrals of cross products.

e Scalar Times a Constant Vector:
If ¢(z,y, z) is a scalar function and ¢ is constant, then
V - (¢ c) = ¢ - V. One can derive flux identities by applying the Divergence Theorem to

¢c.

Examples
¢ Flux Through a Cylinder:

Let D be the solid cylinder 22 + y? < a?, 0 < z < h,and F(z,y, 2) = (z, v, 22).
Compute

[J¢F -ndS.
o Divergence:V-F=1+4+142=4
o Volume integral: fffD 4dV = 4(Volume of D) = 4ma’h.

o Hence, flux = 4ma’h.
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e Sphere:
For D theballz? + y? + 22 < R*and F = (z,y, 2),
V-F =3.
fffD3dV =3 %WR?’ = 4w R3.

By the Divergence Theorem, flux through the sphere is ATR3.

Stokes’'s Theorem

Introduction

Stokes's Theorem generalizes Green’s Theorem to surfaces in R3. It relates the surface integral
of the curl of a vector field over a surface S to the line integral of the field around the boundary

curve 0.

Preliminaries
e Surface S: A piecewise-smooth, oriented surface in R3.

e Boundary Curve 0.S: The (possibly) closed, piecewise-smooth curve bounding S, oriented
consistently with S (right-hand rule).

e Unit Normal n: Choose a continuous unit normal vector field n(z, y, z) on S.

e Vector Field: Let
F(l’,y,Z):Fli + FQj + F3k7

with continuous partial derivatives on an open set containing S.

Statement of Stokes’s Theorem

If S'is oriented by the unit normal n and .S is given the induced positive orientation (right-

//S(VXF)-ndS = }éSF-dr.

¢ Left-hand side: Surface integral of the normal component of V x F.

hand rule), then

e Right-hand side: Circulation of F around the boundary 05S.
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Orientation Convention

Use the right-hand rule: Curl the fingers of your right hand in the direction of traversal around

0.S; your thumb points in the direction of the chosen normal n.

Interpretation

The integral of “local rotation” (curl) over the entire surface equals the total “circulation”
along the boundary curve.

fV xF =0o0nS, then fas F - dr = 0. This generalizes the fact that a conservative field
has zero circulation around any closed loop.

Examples

Graph of a Function:

Let S be the graph z = g(z, y) over adomain D in the zy-plane. Then one can express
J[5(V x F) - ndS as a double integral over D, and S projects to 0D.

Flat Disk in Plane:

Take S to be the disk 22 + y2 < a?inthe xy-plane (oriented upward, n = k). For F =

(P,Q,R),

_0Q OP
(VxF)-k_ax R

Stokes's Theorem reduces to Green's Theorem:

//S(Q“’ ~Py))dA = ]£2+y2_a2 (Pdz + Qdy).

Half-Sphere:

Let .S be the upper hemisphere z? 4+ y2 + 2% = R2, z > 0. Its boundary 0.5 is the circle
2> +1y* = R? z=0.For F = (—y, x, 0), one checks V x F = (0,0, 2). Then

// (VxF) -ndS = // 2dS = 2 - (Area of hemisphere) = 2 - 2w R? = 4T R®.
S S

On the other hand,


Guest
Rectangle


?{ F-dr:% (—yd:c+wdy):47rR2,
oS z2+y?=R?

consistent with Stokes's Theorem.

Generalized Stokes’s Theorem (Outline)

On an oriented n-dimensional manifold M with boundary O M, if w is a smooth (n — 1)-form

/dw:/w.
M oM

e Here, d is the exterior derivative, and integration is taken with respect to the induced

with compact support, then

orientations.

e Green's Theorem, the Divergence Theorem, and Stokes’s Theorem are all special cases of

this general result.

Summary of Key Relationships

e Green’'s Theorem (2D)

]{C(Pdeery) = //R(Qx — P,) dA.

¢ Divergence Theorem (3D Flux Form)

J[¥-nas = [[[ v-Fav.

e Stokes’s Theorem (Surface-Curve)

//(VxF)-ndS: F - dr.
s os
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