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1. Units and Vectors

Units and Vectors

Understanding physical quantities is fundamental in science and engineering. A unit is a
standard quantity used to specify measurements, while a vector is a quantity that has
both magnitude and direction. Although these topics are distinct, they often come
together in problems where both the size of a quantity (its unit) and its direction matter
(as in displacement or force).

_» direction
—_—f

magnitude



Guest
Rectangle


Sl Units

The International System of Units (SI) is the modern form of the metric system. It defines
standard units for various physical quantities:

e Mass: kilogram (kg)
e Time: second (s)
¢ Length: meter (m)
e Force: newton (N)
e Electric Current: ampere (A)
e Temperature: kelvin (K)
SI UNITS: The standardized set of measurements defined by international consensus;

for example, the kilogram is defined using the Planck constant, and the meter is
defined based on the distance traveled by light in a vacuum.

Sl Base Units

Name Typical symbol Name Symbol

electric current

thermodynamic temperature

luminous intensity

candela

Source: NIST Special Publication 330:2019, Table 2.

Example Calculation Using Sl Units

Consider a car moving at 80 km/h. To calculate the distance it travels in 10 seconds:
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1. Convert speed to m/s:

80 km/h = 80 x L ~ 22.22 m/s

2. Calculate distance:
Distance = speed x time =22.22 m/s x 10 s &~ 222.2 m

Speed — Distance

Time

V4 ' v Speed

Distance

J

Defining Sl Units

Sl units are defined using physical constants and precise measurement techniques:

e Mass: Historically defined by the international prototype kilogram, now redefined
using the Planck constant.

e Length: Defined as the distance light travels in a vacuum in 1/299,792,458 seconds.

e Time: Defined by atomic clocks, particularly using the frequency of radiation from
cesium-133 atoms.

e Electric Current: Defined via the elementary charge and other fundamental
constants.

DEFINING SI UNITS: Sl units are grounded in invariant physical constants, ensuring
universal reproducibility and precision.
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The Hydrogen Maser: The Most Stable Atomic Clock

Scientific Notation and Order of Magnitude

Scientific notation is a compact way to express very large or very small numbers. For
example:

e 3,000,000 is written as 3 x 106,
Prefixes in S| Notation:

e Submultiples:

10~3: milli, 10~5: micro, 10~: nano, 10712 pico, 10~ 1%: femto
e Multiples:

103: kilo, 10%: mega, 10%: giga, 10'2: tera

SCIENTIFIC NOTATION: A method to express numbers as a product of a coefficient
and a power of ten, which simplifies the comparison of orders of magnitude.
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Powers Of 10 sciencenotes.org

Prefix  Exponent Number Scientific Notation = Name

Exa (E) 18 1,000,000,000,000,000,000 foie quintillion
Peta (P) 15 1,000,000,000,000,000 T quadrillion
Tera (T) 12 1,000,000,000,000 1012 trillion

Giga (G) 9 1,000,000,000 o billion
Mega (M) 6 1,000,000 10:2 million

kilo (k) 3 1,000 e thousand
hecto (h) o 100 HGEE hundred
deca (da) 1 10 e ten
0 1 T one

deci (d) = 0.1 el one tenth
centi (c) -2 0.01 102 one hundredth
milli (m) 3 0.001 162 one thousandth
micro () 6 0.000001 FO:2 one millionth
nano (n) -9 0.000000001 T one billionth
pico (p) S 0.000000000007 Taute one trillionth
femto (f) 15 0.000000000000001 e one quadrillionth
atto (a) 18 0.000000000000000001 fo:18 one quintillionth

Significant Figures and Uncertainty

Measurements carry uncertainty, and the number of significant figures indicates the
precision of a measurement. For example, "5 meter" and "5.0 meter" are not equivalent in
a measurement context:

e 5 meter implies one significant figure.

e 5.0 meter implies two significant figures.

Finding the Number of Significant Figures
¢ Rule 1: Non-zero digits are always significant.
* Rule 2: Zeros between non-zero digits are significant.
e Rule 3: Leading zeros are not significant.

¢ Rule 4: Trailing zeros are significant only if there is a decimal point.

SIGNIFICANT FIGURES: The digits in a measurement that carry meaning contributing
to its precision.
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Importance of Significant Figures

The precision of a measurement affects how results are reported, especially when
combining measurements:

e Addition/Subtraction: The result should be reported with the same number of
decimal places as the measurement with the fewest decimal places.

o Example: 5 +4.92 = 9.92

= 5is treated as an integer (no decimal places), then the result should be
rounded to 10 (not 9).

e Multiplication/Division: The result should have as many significant figures as the
measurement with the fewest significant figures.

o Example: 1.2 x 50 x 3 = 180
= |f 50 has only 1 significant figure, then the result should be rounded to 200
(1 significant figure).

UNCERTAINTY: The degree of doubt about a measurement’s exact value, expressed
through significant figures.

0 1 2 3 4 o B 7
!||||I||||||||||||!||||||||||||||||||||||||||l|||||||||||§| T
5.650.05 cm

Precision and Accuracy

Precision refers to the consistency or repeatability of measurements, while accuracy
indicates how close a measurement is to the true or accepted value.

e Precision: High precision means repeated measurements yield similar results.
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e Accuracy: High accuracy means the measurement is close to the true value.
Example:

e A set of darts hitting the same spot repeatedly (high precision) but far from the
bullseye (low accuracy).

e Alternatively, darts that scatter around the bullseye (high accuracy, low precision).

PRECISION: The consistency of repeated measurements.

ACCURACY: How close a measurement is to the true value.

__;-_7_..—'-';‘5
(a) Low accuracy (b) Low accuracy (¢) High accuracy (d) High accuracy
Yallas&i&iBrecision Higlmrecislon Low precision High precision
Summary

In this lecture, we covered:
¢ Units and Vectors: Basic concepts of measurements and quantities with direction.

¢ Sl Units: Standardized units for mass, time, length, force, current, and temperature,
along with their definitions.

¢ Scientific Notation and Order of Magnitude: Expressing numbers in a compact
form and understanding Sl prefixes.

¢ Significant Figures and Uncertainty: How measurement precision is indicated and
how to correctly propagate uncertainty in results.

e Precision and Accuracy: Distinguishing between the consistency of measurements
and their closeness to the true value.
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Understanding these concepts is critical in physics and engineering, as they lay the
foundation for accurate measurement, reporting, and further quantitative analysis.

Self Test

%R Self-Test: Lecture 1

Raw Notes

#2 Raw Notes
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2. Units and Vectors - Extended

Introduction to Vectors and Scalars

In many fields such as physics, engineering, and computer science, it is essential to
distinguish between two fundamental types of quantities: scalars and vectors. A scalar is
a quantity described solely by a magnitude (a numerical value), whereas a vector is
defined by both a magnitude and a direction. For example, temperature (a scalar) only
has a value (e.g., 25°C), while displacement (a vector) has both a length and a direction.

Scalar vs Vector Quantities
Vector

ov T
|1

Volume Mass l
l Velocity

Scalar

]

Temperature Force
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What is a Vector?

A vector is a mathematical entity that has both a magnitude and a direction. We denote
the magnitude of a vector A as ]A| and its direction is usually indicated by a unit
vector. Two vectors are considered equal if they have the same magnitude and point in
the same direction. When a vector is multiplied by a scalar (a real number), its magnitude
is scaled by that number, while its direction remains unchanged.

VECTOR: A quantity with both magnitude and direction, represented as A = ‘A\fl

where A is the unit vector indicating direction.

Unit Vectors and Vector Representation

Unit vectors are used to indicate direction. A unit vector has a magnitude of 1and is
typically denoted by symbols such as i, j, and k for the x, y, and z axes respectively. Any
vector in three-dimensional space can be written as the product of its magnitude and a
unit vector in its direction:

A=|AlA
or expressed in component form as:

A=A+ Aj+ Ak
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1A
0
i ,i\r »X
Z Unit vector

Vector Operations: Addition and Subtraction

Vectors can be added together and subtracted from one another. The rules for vector
addition are:

e Commutative Property: A+ B =B + A
e Associative Property: A + (B+ C)=(A+B)+ C

Subtraction of vectors is essentially the addition of the negative. That is,
A-B=A+(-B)

where —B is a vector with the same magnitude as B but opposite direction.
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Components of a Vector and Vector Notation

Any vector in the plane can be decomposed into its components along the  and y axes.

For a vector R
R=R;i+R)j
The magnitude of R is calculated by:

R|= /R +R?

In three dimensions, the formula becomes:

R|= /R + R+ R

The direction (angle ) with respect to the x-axis is given by:

0 = arctan (&)
R,
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Components of a

Vector

X cosO

X sin@

Example: Computing the Magnitude of a Vector Expression

Consider two vectors in three dimensions:
D=6i+3j—k and E =4i-5j+8k

We wish to compute the magnitude of 2D — E.

First, calculate:
2D =2(6i+3j — k) = 12i + 6j — 2k
Then,
2D — E = (12i + 6j — 2k) — (4i — 5j + 8k) = (12 — 4)i + (6 — (—5))j +

(=2 — 8)k = 8i + 11j — 10k

The magnitude is:

IR| = /82 + 112 + (—10)2 = v/64 + 121 + 100 = /285 ~ 16.88

Scalar and Vector Multiplication
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Multiplying by a Scalar

Multiplying a vector by a scalar changes its magnitude without altering its direction:
cA=(c-A))i+(c-Ay))j+(c-A)k
If ¢ > 1, the vector stretches; if 0 < ¢ < 1, it contracts; if c < 0, it reverses direction.

Multiplication Rules Summary
e Scalar x Scalar: Results in a scalar.
e Scalar x Vector: Results in a vector.

e Vector x Vector: Can yield either a scalar (dot product) or a vector (cross product),
depending on the operator.

MULTIPLICATION RULES: The type of multiplication (scalar or vector product)
determines whether the result is a scalar or a vector.

a

Q|
Q|
:

Dot Product (Scalar Product)

The dot product of two vectors A and B is defined as:
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A-B=A,B,+A,B,+ A,B, =|A||B|cosf

where 6 is the smaller angle between the two vectors.

Properties:
e Commutative: A-B=B- A
e Provides a measure of how much one vector extends in the direction of another.
e Used to determine the angle between vectors:

( )

Example Calculation:
Given:

A=2i+3j+k, B=-4i+2j—k
Compute the dot product:
A-B=2x-4)+Bx2)+(1x-1)=-84+6—-1=-3

Find magnitudes:

Al =2+ 32 4+12=V4+9+1=114
Bl =+/(—4)2+22+(-1)2=V16+4+1=+21

Thus,

cos = —" @ = arccos (_—3>
T V14,/21
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DOT PRODUCT OF VECTORS [BBYJUS

0

Cross Product (Vector Product)

The cross product of two vectors A and B results in a vector C that is perpendicular to
both A and B. It is defined as:

AxB= (Asz — Asz)i + (A,B, — A.B,)j + (AwBy — Ame)k
with magnitude:
|A x B| = |A| |B|sin8

where 6 is the smaller angle between A and B.
Properties:
e Anticommutative: A x B=—(B x A)
e The resulting vector is orthogonal (perpendicular) to both A and B.

e Ifthe vectors are parallel, sin@ = 0 and hence A x B = 0.
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Summary of Vector Operations

e Addition/Subtraction: Vectors add component-wise; subtraction is addition of the
negative.

A+B=(4,+B,)i+ (4, +B)j+ (A, + B.)k

Properties such as commutativity and associativity hold.
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e Scalar Multiplication: Multiplying by a scalar changes the magnitude of the vector.
cA = (cA;)i+ (cAy)j+ (cA)k

e Dot Product: Yields a scalar, used to determine the angle between vectors.

e Cross Product: Yields a vector perpendicular to the plane containing the original

vectors.

Putting It All Together: Example Problem
Problem:

Given:
D=6i+3j—k and E =14i-5j+8k
Find [2D — E|.

Solution:

1. Compute 2D:
2D =2(6i+ 3j — k) = 12i + 6j — 2k
2. Subtract E:
2D — E = (12i + 6j — 2k) — (4i — 5j + 8k)
= (12 —4)i+ (6 — (=5))j+ (-2 —8)k
=8i+ 11j — 10k

3. Calculate the Magnitude:

2D — E| = /82 + 112 + (—10)2 = V64 + 121 + 100 = /285 ~ 16.88

Summary

In this lecture note, we have covered:

e The basic definitions of scalars and vectors, emphasizing that vectors have both
magnitude and direction.
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e The use of Sl units and the importance of standardization in measurement.

e The role of unit vectors in representing direction and how vectors can be expressed
in component form.

e Fundamental operations such as vector addition, subtraction, and scalar
multiplication.

e The methods to compute the magnitude and direction of a vector.

e Detailed explanations and examples of the dot product (yielding a scalar) and cross
product (yielding a vector perpendicular to the given vectors).

e A comprehensive worked example illustrating these concepts in action.

Understanding these vector operations and properties is crucial for applications in
physics, computer graphics, engineering, and many areas of science.

Self Test

#R Self-Test: Lecture 2

Raw Notes

#2 Raw Notes
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3. Kinematicsin1D

Motion in One Dimension

Motion in 1D involves understanding how a particle’s position changes over time. The
main quantities are:

POSITION: The location of an object along a line, represented as a vector x (in one

dimension, this is simply a number) with units of meters (m).

DISPLACEMENT: The change in position, defined as the difference between the final
and initial positions, i.e.,

Ax =19 — 13
It is also measured in meters (m).

VELOCITY: The rate of change of position with respect to time. It is a vector, whose
magnitude is given in meters per second (m/s), and its direction is the same as that of
the displacement.

Average Velocity
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Average velocity over a time interval is calculated as the displacement divided by the
change in time:
Ax x99 — 21

Average Velocity = A 1
2 — 11

¢ Unit: meters per second (m/s)

Note: The displacement used here is the net change in position, not the total distance
traveled.

Instantaneous Velocity

Instantaneous velocity is the velocity of an object at a specific moment in time. It is
defined as the derivative of the position function x(t) with respect to time:

(t) = li Az _ dz
YT A AL dt

¢ Interpretation: On an -t graph, the instantaneous velocity at a point is the slope of
the tangent line at that point.

Example: Motion in 1D

Consider the position function:
z(t) = 20 + 5¢°
where t is in seconds and  is in meters.

a) Displacement betweent = 1 second andt = 2 seconds

o Att =1:
(1) =20+ 5(1)> =20 +5=25m
o Att = 2:

z(2) = 20 + 5(2)? =20 +20 = 40 m
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e Displacement:
Az =2(2) —z(1) =40 —-25=15m

b) Average Velocity betweent = 1 andt = 2

Az 15 m
1 ] p— — _—
Average Velocity Ar 3 1s 15m/s
c) Instantaneous Velocityatt = 1l andt = 2
¢ Find the derivative:
dx d
t) = — = — (20 + 5t?) = 10t
ot) = = g (20 +5)
o Att =1:
v(1) = 10(1) = 10 m/s
o Att = 2:
v(2) =10(2) =20 m/s
Acceleration

Acceleration is the rate of change of velocity with respect to time.

ACCELERATION: The change in velocity per unit time, calculated as:

_Av
At

a

Its unit is meters per second squared (m/s?).

Instantaneous Acceleration

Instantaneous acceleration is the derivative of the velocity function with respect to time,
or the second derivative of the position function:
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B dv d’z

ot) =% =3

Example: Acceleration Calculation

Consider the velocity function:
v(t) = 60 + 0.5¢°
a) Change in Velocity fromt = 1tot = 3
o Att=1:
v(1) = 60 + 0.5(1)® = 60 + 0.5 = 60.5 m/s
o Att = 3:
v(3) = 60 + 0.5(3)> = 60 + 4.5 = 64.5 m/s
e Change in Velocity:
Av =v(3) —v(l) = 64.5 —60.5 =4m/s

b) Average Acceleration betweent = 1l andt = 3

Average Acceleration = =

Av  4m/s 4
At 3—-1s 2

c) Instantaneous Accelerationatt = 1l andt = 3

e Find the derivative of v(t):

a(t) = = = %(60 +0.5¢t%) =t

e Att =1:

a(1) = 1m/s’
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e Att = 3:

a(3) = 3m/s’

Summary

Position and Displacement: Position is the location of an object; displacement is
the change in position (Az = x5 — 7).

Az

Average Velocity: Calculated as displacement over time, 7.

Instantaneous Velocity: The derivative of the position function with respect to time,
v(t) = fl—f; graphically, it is the slope of the tangent to the x-t curve.

Acceleration: The rate of change of velocity, with average acceleration % and
. . _dv __ d*z
instantaneous accelerationas a(t) = & = 7.

This material lays the foundation for understanding kinematics in one dimension and
illustrates how calculus is used to derive instantaneous rates from average quantities.

Self Test

#2 Self-Test: Lecture 3

Raw Notes

#2 Raw Notes
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4. Kinematics in 1D - Extended

Motion Along Straight Line

When an object moves so that its position changes with respect to time along a single axis (often the x-axis),
this is called 1D motion.

Reference Frames and Displacement

A reference frame provides the coordinate system and origin used to describe motion.
DISPLACEMENT: If 1 is the initial position and x5 is the final position, then
Ar =19 — 23

Displacement is a vector quantity in 1D, and it can be positive or negative depending on direction.

Average Velocity
AVERAGE VELOCITY: The overall change in position per unit time,

Az
Vavg = Kt

It represents the constant velocity that would take an object from 1 to 2 in the same time interval.

Instantaneous Velocity

INSTANTANEOUS VELOCITY: The velocity at a specific instant, given by the time derivative of position,
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This tells us how fast an object is moving and in which direction at a particular moment.

Speed vs Velocity
e Speed: A scalar, the magnitude of velocity (always non-negative).

e Velocity: A vector in 1D, can be positive or negative indicating direction.

| SPEED: If v(t) is the velocity, speed is |v(t)].

Average and Instantaneous Acceleration

ACCELERATION: The rate of change of velocity with respect to time,

_do(t) d*z(t)
o)== = ae

_ Av

e Average acceleration: a,,; = At

¢ Instantaneous acceleration: The limit of @y, as At — 0

Motion with Constant Acceleration

When acceleration a is constant, we can derive the kinematic equations using integrals:

1. Velocity

a:@ — dv=adt
dt

Integrating both sides from initial velocity vo to v, and fromt¢ = 0 to ¢:
v t
/ dv:/ adt = wv—vyy=at = v(t)=v+at
Vo 0

2. Position

Hence,
dz = (vo +at)dt

Integrate from zy att = Oto x attime ¢:
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. t
1

/dw:/(v0+a7)dT — $—$0:UOt+§at2 —  a(t) =20 + vt + 3at”

0 0

3. Velocity-Displacement Relation

Eliminating time t betweenv = vg + atand x = xg + vt + %a t? gives another useful formula:

v2:v§+2a(w—w0)

Example

Problem: An object starts from rest (v, = 0) at y = 0, accelerating at 3 m/sz. Find its velocity and

positionatt = 5s.
Solution:

1. Sincev(t) =vg+at =0+ 3t att =5s:
v(5) =3 x5 =15m/s

2. Integrating for position, z(t) = o + vt + 3at* =0+ 0+ £(3)(5%) = 2 x 25 = 37.5m
So, after 5 seconds, velocity is 15 m /s and position is 37.5 m from the starting point.

Final Summary & Takeaways
¢ Displacement measures change in position along a line.

¢ Velocity is the rate of change of position. Average velocity looks at a time interval, while instantaneous
velocity is the derivative of position.

e Acceleration is the rate of change of velocity. Average acceleration uses Av over At, while

instantaneous acceleration is the derivative of velocity.

¢ Constant acceleration formulas can be derived via integrals:
v(t) =vo+at, =z(t)==zo+vot+ 3at’, v’ =v]+2a(z— )

e These equations form the basis of 1D kinematics and are widely used to solve motion problems.

Raw Notes

2 Raw Notes
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5. Kinematics in 2D and 3D

From 1D to 2D/3D Motion

In higher dimensions, an object’s position is represented by a vector rather than a single

number. The same basic concepts apply as in 1D, but each coordinate is now a function
of time.

POSITION VECTOR: A vector that describes the location of an object in space. In 2D,
it is written as:

~
°

r(t) = 2(t)i+y(t)]

andin 3D as:

Units: meters (m).
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Give the coordinates (x ; y ;z) of the vector
you want to see constructed

x=l5
y=3

2=5

Speed =3.2

®

Displacement in 2D and 3D

Displacement is the change in the position vector over a time interval:
Ar =r(ty) — r(t1)

e Note:Displacement is a vector and accounts for both magnitude and direction.

Displacement vector

- ﬁ?lr: ?E-Fi

y-axis

X-axis

Velocity

Average Velocity
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Average velocity over a time interval [t1, to] is defined as:

_x(ty) —x(t)
avg ty — 1

e Units: meters per second (m/s).

Instantaneous Velocity

Instantaneous velocity is the derivative of the position vector with respect to time:

v(t) = dl;lit) = (Z—f) i+ (%)3 (+ (%) k in 3D)

e Graphically, it is the slope of the tangent line to the x-t (or r-t) curve.

Acceleration

Acceleration is the rate of change of velocity with respect to time.

Average Acceleration

v(ta) — v(t1)
to — 61

Aavg =

Instantaneous Acceleration
dv(t) d’r(t) d’z\ ; d*y\ ; d’z\ ¢ .
= = = [ == — —— ) kin 3D
alt) = =3 dt? )it @ )d O (g ) kinsD)

e Units: meters per second squared (m/s?).

Projectile Motion (2D Motion Example)

When an object is launched with an initial speed v at an angle @ (relative to the

horizontal), under uniform gravity g and no air resistance, we have:
e No acceleration in the z-direction (a; = 0)

e A constant acceleration —g in the y-direction
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Equations of Motion

INITIAL VELOCITIES:
Vog = Vg cosb, wvg, = vpsinf
POSITION:

z(t) = vop t = vgcosh - t,

y(t) = vyt — %gt2 —vpsinf -t — %gt2
VELOCITY:
v(t) = <v0m, Voy — gt> = <v0 cos 0, vysinf — gt>

The velocity vector remains tangent to the parabolic trajectory.

Projectile motion is a common example in two dimensions. When an object is projected,
its motion can be decomposed into horizontal and vertical components.

¢ Key Quantities:
o Time of flight determined by the vertical motion.

o Horizontal range calculated from x(t) at the time of landing.
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Relative Velocity
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Relative velocity describes the velocity of an object as observed from different frames of

reference:

Vp/A =Vp/B+ VB/A

e Vp/4is the velocity of particle P relative to observer A

e Vp,pisthe velocity of P relative to B.

 Vp/ 4 isthe velocity of B relative to A.
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Observer 2

A V) VA
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5 VvV
’ Observer 1

Example: Projectile from a Cliff
Consider a projectile launched horizontally from a cliff:
¢ Initial Conditions:
o Initial position: (g, Yo)
o Initial velocity: vo = (vog, 0)

¢ Equations of Motion:

:B(t) = X9 + ’Uowt
1

y(t) = yo — §gt2

e Analysis:

o Time of flight is determined by when y(t) = 0 (assuming the ground isaty = 0
).

o The horizontal range is then (t) at that time.
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(a) Projectile motion (b) Horizontal component: constant velocity

)i 2 s e @ o0 ] @ @ [+
v Vv
e e vV, V, V, V, V, V, V, V, V, V,
o\\
y VRS V, 1AV
v, / V,
v, V, VY\V (c) Vertical (d) Total vglocity
v component: at a point
v Vi constant y
v 0 acceleration
Vg X Vyx o v,
V o —
i 0, V. Vy 0 v, X
X 2 v [*] vV
v, =-v, | \0=-0 d
A Vy J9
\% Q Vy
VX
v 9
y
v, o v,
\'
]
Voy Vy
Q
@)
V

Deriving Maximum Height and Horizontal Range

Assume the projectile is launched from y = 0. We use the integral or derivative
approaches as follows:

1. Maximum Height, .,

This occurs when vertical velocity becomes zero. From vy () = v sinf — g t:

Vo sin 6
0=wvysinf —gt, — thzo—

Substituting tj, into y(t):

IR
husax = y(t1) = vy sin 6 (an) -4 (oS_n)

Simplify:
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v2sin’f wvZsin?’0  v2sin® 60

hma,x -
g 29 29

If the projectile is not launched vertically (6 7 %), the formula remains valid; the

maximum height just depends on the sin? 6 factor.

2. Horizontal Range, R,

The range is the horizontal distance when the projectile returns to y = 0. Solve
y(t) = Ofort = O

0 =wvgsinft — %th — t(vosinﬁ — %gt) =0
The non-zero solution is

2v sin 6
tf = ——
g

Plug into z(t) to get

2vp sin 6 202 sin @ cos 0
Ryax = z(tf) = vocosf - ( vost ) = =0
g g
Using the identity sin(26) = 2 sin 6 cos 6

v sin(26)
g

Rmax —

Constant Acceleration (Kinematics) Cheat Sheet

Velocity as a Function of Time:
v=19+at
Position as a Function of Time:
_ 1,42
r=x9)+vt+satl

Velocity as a Function of Position (Time Eliminated):
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v =) +2a(x — )

Displacement Using Average Velocity:

The average velocity under constant acceleration is

v+

V= 5

so that the displacement is given by

(’U +’Uo)t

DO =

Tr—xyg=0Vt=

Summary

e Position and Displacement: In 2D/3D, position is described by a vector r(t), and
displacement is the difference between two position vectors.

e Velocity: Average velocity is the displacement divided by the time interval, while

instantaneous velocity is the derivative v (t) = 4.
e Acceleration: Defined as the derivative of velocity, a(t) = (fl_‘t" with both average

and instantaneous forms.

e Projectile Motion: Motion in two dimensions where horizontal and vertical motions
are treated independently.

e Relative Velocity: How velocities transform between different reference frames.

Understanding these vector-based kinematic concepts is crucial for analyzing complex
motions in both two and three dimensions.

Self Test

#2 Self-Test: Lecture 5

Raw Notes

#2 Raw Notes
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6. Kinematics in 2D and 3D -
Circular Motion, Forces, and
Newton's Laws

Circular Motion
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Circular Motion

( cir-cu-lar-Mo-tion)
Definition:
Circular motion is the movement of

an object along the circumference
of a circle or a circular path.

Formula:

Where:

F. = Centripetal Force (N)

m = Mass of the object (kg)
v=Tangential velocity (m/s)

= Radius of the circular path (m)

m Examples.com

Uniform Circular Motion (UCM)

¢ Position Function:
The position vector for an object moving in a circle of radius R is given by:

r(t) = Rcos(0(t))i+ Rsin(6(t))]j

¢ Tangential Displacement and Velocity:

o Displacement:
In circular motion, the small displacement As along the circle is tangential to the
path. For a small angle € (in radians), the arc length is:

As = RO

o Velocity:
The velocity vector is the time derivative of the position vector and is always
tangent to the circular path:

dr

v(t) = s (tangent to the circle)
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Even though the speed (magnitude of velocity) might be constant in UCM, the
direction changes continuously.

e Acceleration (Radial/Normal Component):

For uniform circular motion, the radial (centripetal) acceleration, which is directed
inward, is:

,02

Arad = —

R

Using a small-angle approximation (sin # /= ), one can relate the changes in
displacement and velocity:

As =vAt and Av =16

Taking the limit as At — 0 leads to the acceleration formula.

Uniform Circular Motion

Uniform circular motion occurs when an object moves in a

circular path with constant speed.

e v is the tangential speed of the object,

e ris the radius of the circular path.

E Examples.com

Non-Uniform Circular Motion

e Characteristics:

In non-uniform circular motion, the speed is not constant (|v1| = |v2|).
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e Tangential Acceleration:
There is an additional component of acceleration along the tangent to the circle due
to the change in speed:

dv
dt

Qtan —

e Total Acceleration:
The total acceleration is the vector sum of the radial (centripetal) and tangential
accelerations:

a = araq + Atan

with the radial acceleration still given by:

2

<

Arad = E

and directed inward.

Non-Uniform Circular Motion

Tangential Acceleration The component of acceleration that is

tangential to the circular path, responsible
for changing the speed of the object in non-
uniform circular motion.

In non-uniform circular motion, the total
acceleration aaa is the vector sum of the
centripetal acceleration ax and the
tangential acceleration

m Examples.com
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Period and Frequency

e Period (T):
The time required for one complete cycle (full circle). For uniform circular motion:

2R
T="2 (seconds)
v
¢ Frequency (f):
The number of cycles per unit time:

1
= — (Hz
f=g (H)

¢ Radial Acceleration in Terms of Period:
Expressing a;,q using the period:
4m2R
T2

Arad =

Angular vs. Linear Displacement and Velocity
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e Angular Displacement (6):
Measured in radians, it represents the angle through which an object has rotated.

@BBYJUS

Angular displacement

¢ Linear Displacement (s):
The arc length on the circle corresponding to the angular displacement:

s — RO

e Angular Velocity (w):
The rate of change of angular displacement:

do
w=—
dt
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W
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Direction _ hand
of rotation - I
N
Direction
of rotation
¢ Linear Velocity (v):
Related to angular velocity by:
v=wR

This shows the direct relation between the angular motion and the linear speed along
the circular path.

Forces

Overview of Fundamental Forces

¢ Gravitational Force:
The attractive force between two masses, described by Newton's law of universal
gravitation.

e Electromagnetic Force:
The force between charged particles, responsible for electricity, magnetism, and
light.

e Strong Nuclear Force:
The force that holds the protons and neutrons together in the nucleus.

e Weak Nuclear Force:
Responsible for certain types of radioactive decay.
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¢ Fifth Force (Hypothetical):
Some theories suggest the existence of an additional force beyond the four known
fundamental forces. Experiments such as the E6tvos experiment have investigated
potential anomalies.

Force as a Vector

¢ Definition:
Force is a vector quantity, meaning it has both magnitude and direction.

e Components:
Any force vector can be broken down into components (e.g., horizontal and vertical).

e Vector Addition:
The net force acting on an object is the vector sum of all individual forces acting on
it:

Fnet - Z Fz

Newton's Laws of Motion

Newton's First Law (Law of Inertia)

e Statement:
An object at rest remains at rest, and an object in motion continues in motion with a
constant velocity unless acted upon by a net external force.

¢ Inertial Frame of Reference:
Newton's laws are valid in inertial frames—reference frames that are not accelerating.
In a non-inertial frame, additional fictitious forces (like the centrifugal force) appear.

e Examples:
o A hockey puck sliding on ice eventually slows due to friction (an external force).

o In space (an inertial environment), an astronaut will float indefinitely if no forces
act.

Newton's Second Law (Law of Acceleration)
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e Statement:
The net force acting on an object is equal to the mass of the object multiplied by its
acceleration:

F =ma
e Explanation:
This law quantitatively relates the change in an object's motion to the applied force.
e Examples:

o Pushing a shopping cart: A greater force produces a higher acceleration.

o Circular motion: The centripetal force required to maintain circular motion is
2
. _ v
givenby F' = mF.

Newton's Third Law (Action-Reaction Law)

e Statement:
For every action, there is an equal and opposite reaction. If object A exerts a force on
object B, then object B exerts a force of equal magnitude but opposite direction on
object A.

e Examples:

o Rocket propulsion: Expelling gas out of the rocket’s engine produces a thrust in
the opposite direction.

o Walking: The foot pushes backward against the ground, and the ground pushes
the foot forward.
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1st Law of Motion 2nd Law of Motion 3rd Law of Motion

A

F=ma Fe= -Fea
The amount of acceleration of a body For every action there is an equal
is proportional to the acting force & but oppaosite reaction. If an object A
inversely proportional to the exerts a force on object B, then
mass of the body object B will exert an equal
but oppaosite force on abject A,

Mass vs. Weight

e Mass:

A scalar quantity that measures the amount of matter in an object (measured in
kilograms).

e Weight:
A vector quantity that represents the gravitational force acting on an object:

Weight =m - g

where g is the acceleration due to gravity (approximately 9.8 m/s2 on Earth).

e Key Difference:
Mass is constant regardless of location, while weight varies with the local
gravitational field.

Final Summary & Key Takeaways

e Circular Motion:
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o In uniform circular motion, displacement and velocity are tangential, with
constant speed but continuously changing direction.

o Non-uniform circular motion introduces tangential acceleration in addition to
centripetal (radial) acceleration.

o The relationship between angular and linear quantities (6 vs. s, w vs. v) is crucial
in analyzing circular motion.

e Forces:

o Fundamental forces (gravitational, electromagnetic, strong, weak, and possibly a
fifth force) govern the interactions between objects.

o Force is a vector and is the basis for understanding motion through vector
addition.

e Newton's Laws:
o Newton's First Law emphasizes inertia and the importance of inertial frames.
o The Second Law quantifies the relation between force, mass, and acceleration.
o The Third Law establishes the concept of action-reaction pairs.
o The distinction between mass and weight is fundamental in physics.
This note integrates the provided details with additional context and explanations to

create a clear, comprehensive resource on circular motion, forces, and Newton's laws.

Raw Notes

#2 Raw Notes
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7. Newton's Laws - Force Analysis

Gravitational Force

GRAVITATIONAL FORCE: Gravitational force, or weight, is the force exerted by the Earth to pull
objects toward its center.

e Formula:
F,=mxg

o m: Mass of the object

o g:Acceleration due to gravity (approximately 9.8 m/s2).
¢ Key Points:

o Acts vertically downward.

o Independent of the object’s orientation.
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Normal Force

NORMAL FORCE: The normal force is the support force provided by a surface, acting
perpendicular to that surface.

e Characteristics:
o On aflat surface, the normal force equals the gravitational force in magnitude.

o On aninclined surface, the normal force is reduced and calculated as:
Fy =m x g x cos(6)
where 0 is the angle of the incline.

e Usage:

Adjusts to balance forces perpendicular to the contact surface.
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Normal Force
Fy

Force Analysis & Free Body Diagram (FBD)

A Free Body Diagram is an essential tool to visualize all external forces acting on an object. When

drawing an FBD:
e Steps:
o lIsolate the Object: Represent it as a simple shape or a dot.
o ldentify All Forces:
= Gravitational Force (Fg) : Drawn as an arrow pointing straight down.
= Normal Force (Fy) : Drawn perpendicular to the contact surface.

= Applied or Other Forces:

e |f a force is neither horizontal nor vertical, show its angle relative to a reference axis

(horizontal or vertical).

e Clearly label the force and its angle.

Remark: Accurate angle representation is crucial when forces act at an angle to ensure proper

component resolution.
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Applying Newton’s Laws

Newton'’s laws are the foundation of force analysis and motion prediction.

Newton'’s First Law (Law of Inertia)

Statement: An object remains at rest or moves with a constant velocity unless acted upon by a
net external force.

e Formula:
ZF:O = a=0

e Application:
If all forces balance (net force equals zero), the object remains in equilibrium.

Newton'’s Second Law (Law of Acceleration)

I Statement: The net force acting on an object equals its mass multiplied by its acceleration.
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e Formula:

ZF:mxa

¢ Application Examples:

o Flat Surface:
Fyn—-F,=0 = Fy=mxg

o Inclined Plane:
Resolve forces into components parallel and perpendicular to the incline to determine the
net force and acceleration.

Newton'’s Third Law (Action-Reaction)
I Statement: For every action, there is an equal and opposite reaction.

e Formula:

FA—>B - _FB—>A

e Example:
The normal force exerted on an object by a surface is met by an equal force exerted by the
object on that surface.

Conclusion

Understanding how to analyze forces and apply Newton’s laws is crucial for solving problems in
mechanics. By:

¢ Identifying gravitational and normal forces,

e Constructing a clear Free Body Diagram with proper force directions (including angles for non-
vertical/horizontal forces),

e And applying Newton's laws, you can accurately predict and analyze an object's motion in
various physical scenarios.

Raw Notes

#% Raw Notes
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8. Friction and Its Role in Multi-
Body Systems

This note explains friction, its types, and how friction forces interact between objects in
contact. It also covers the role of friction in uniform circular motion where there is no
tangential acceleration.

Friction

FRICTION: Friction is the force that acts parallel to the contact area between two
surfaces. Its direction is opposite to the relative motion between the surfaces. When
one object is on top of another, friction can either prevent slipping or allow the
objects to move together if the frictional force is sufficient.

e Friction always acts along the interface between surfaces.

e According to Newton's Third Law, the friction force acting on one object has an
equal and opposite counterpart on the other.

e Friction exists even in the absence of motion (static friction).
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4 Friction force Shear reaction l’
force

© Byjus.com

Kinetic Friction

KINETIC FRICTION: Kinetic friction occurs when two surfaces slide relative to each
other. It is calculated by:

fo=pp XN

where piy, is the coefficient of kinetic friction and IV is the normal force.

¢ Kinetic friction opposes the relative sliding motion between surfaces.
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Formula for Kinetic Friction

Normal force (F))
F_=pmg

Direction of motion

Kinetic friction (F )

—

Weight = mg

Static Friction

STATIC FRICTION: Static friction acts when there is no relative motion between two

contacting surfaces. Its maximum value is:
fs < ps X N

where p; is the coefficient of static friction (typically greater than ) and IV is the

normal force.

e Static friction adjusts to balance an applied force up to its maximum limit.

e When the applied force F'is less than or equal to this maximum, the objects remain
stationary.

e |If F' exceeds the maximum static friction, motion begins and kinetic friction takes

over.
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Static Friction on an Inclined Plane]

mg
F. : Normal force F. : Static friction
m : Mass of the block 6 : Angle of inclination

u - Coefficient of static friction g : Acceleration due to gravity

Friction in Multi-Body Systems

e When one object is placed on top of another, friction determines whether the
objects move together or slip relative to each other.

¢ Inasystem where ms is on top of mq and my = 2me.:

o The static friction between the two objects can allow them to move as a single
unit if it is strong enough.

o By Newton's Third Law, the friction force exerted on ms by m is equal in

magnitude and opposite in direction to the friction force exerted on 1 by ™ms.
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Friction in Uniform Circular Motion

e In uniform circular motion, there is no tangential acceleration (a;,, = 0); the net

force is entirely radial (centripetal).

e The net force needed to maintain circular motion is:

Fnet =M X Qpqd

¢ Friction (or another force) may act as the centripetal force, directing the object
towards the center of the circle.
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A e ¥ I sin
7 f
- / . /ff P v mg
mg
(a) (b)

Circular motion of a car on (a) a level road, (b) a banled road.

Conclusion

Understanding friction is essential in analyzing the dynamics of multi-body systems.
Friction, acting parallel to surfaces, can either prevent or facilitate relative motion. In
systems with objects in contact, such as when one object rests on another, friction may
allow them to accelerate together if it is sufficient. Additionally, in uniform circular
motion, friction can provide the necessary centripetal force even when no tangential
acceleration is present.

Raw Notes

#2 Raw Notes
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9. Midterm 1 Preparation


Guest
Rectangle


PrYS1ol = Fall '3%3- PSL — Chl (~B) % Rur Bralon

4.46 #¢ The two blocks in Fig. P4.46 are connected Figure P4.46

by a heavy uniform rope with a mass of 4.00 kg. An up- F = 200N
ward force of 200 N is applied as shown. (a) Draw three |
free-body diagrams: one for the 6.00 kg block, one for
the 4.00 kg rope. and another one for the 5.00 kg block. For each force. @ o00ke
indicate what object exerts that force. (b) What is the acceleration of the o

system? (c) What is the tension at the top of the heavy rope? (d) What is )

the tension at the midpoint of the rope? ® 400 kg

500 ke

@ﬁ o) HArcoms are not do 2cole @
n F =200N ( exlerned | applied force)

_-,Bta block -

t Vengon of the rope of te ugper end of Yo mPQ
QaPpFed bﬁ noc&)

1) 4T ¢ Tensoo of Ha cope o He bottom of e rope

led rodd))
T T Ty
G= Mg ( applied bd eacth)
Vu (agplied éa (1) 6bg block )
- Rope

G=m33[a,¢pﬁw by earth )
%(a/y/fw % (2) {5’&; obfject ).
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P101_Index: Student ID Number:
Exam Room: Signature:

Q3-(25 pts) Three blocks, labeled A, B &
C as shown, all of them of mass m, are
initially positioned as in the figure.
There is a horizontal force of
magnitude F on the leftmost block, and
there is no friction on any of the
surfaces in the system.

a) Draw the free body diagrams for all blocks.

§ S R L SIS VT A U Ui

>e W W

SN

"% ™

b) If F = 0, find the acceleration of the triangular Block B. ‘

Job us obsecwe i aé&&em more o‘,ose,v-s,

Ll T

&, our Saalem has Some kind oF an %\Knmdr}/
U brsfslo.cww of A o He M Is olum:ds e7un1
dbo he dkp oFf B 0 verHedl axis -
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o also —a =|dg = A |= = %y > Disess.
o ¢
towerds 4 (*HE’) UK)
Ad we con e From pord ax
qﬁ)( = M‘éfﬁﬁﬁf‘

m
GCD( = A.}z .Sin é[ffo
mw

557 = (N + Ny )- sinkd mg
)

T we uwse (%) oand leb =0,
M :,—-—'Nz' S.«MG‘O = /U| = /\}Z «-"—-'-N '
a4

2q
Then use (ex)
N sinhS® _ NS UY ?I% N= "¥
™ | 2 3-sinks”

o, = 35k "% -—%
44
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c) Determine the force F for which the vertical acceleration of the triangular Block B is
zero?
I |

D A @ desn'¢ hove verhica) accelerodion, we con
:'magm dhis +Hiree olflect 08 a Syslem mov?n% o“ogdim
Job's  obserwe Vs S‘d,m

A/ i

— 3% AL oS- AyeeshS = MaAx (1
=¥
5

(N 4N) sans® = e (4)

cesgus” = VA'F (L)
(NN ) sinus = 9 ()

[ET N 5 e
Q.N| coshd’ = %_i_mg, ()
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P101_Index:

Student ID Number:

Signature:

Exam Room:

Q2-(25 pts) A mass m; is on top of a platform with

mass 1, (assume m; < m,). There is no friction

e D *-
IJ'I?I F

between the mass and the platform, or between the s I .

platform and the horizontal floor. The two masses SR e i = T S L S S S

are connected by an ideal massless string going

over a massless pulley. Initially mz is a distance D away from the right edge of the platform and
all masses are at rest. Starting at time t=0, a force F is applied to the pulley horizontally, as

shown in the figure.

a) Draw free-body diagrams of the blocks and the pulley for > 0. (6pts)

b) What is the tension on the string? (4 pts)

P T = Tpy putey = ©

O

LE=AT =» T=F/2

Na w

R
-

m'% m-zﬁ

T = F/_g_

¢) Find how long it would take for the mass m; to cover the distance D to reach the edge of the

platform. (8 pts)

\
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d) Find the acceleration of the pulley with respect to the ground. (7 pts)

L"" Li""L'L = doexn It QP\W?L

Lo—X2 U}

L= L-X+ Lz‘x‘?."‘o-’-" = L+l

T | |
L_l = X\—\' LGV _
N} 2

Xp > displocement ot

a2
%3%&& = Q¥ | (mtm)
J 4y MM

121
acceleration oF e ﬁauﬂog,-
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Exam Room: <N P10Z_index: @i 4}

| Student ID Number D ' Signature:

Q4-(25 pts) A car of mass m is going around a circular turn
of radius R over a wet concrete road, that is banked at an
" angle of 8=45¢° with respect to the ground (cross section of
the road is in the figure). The coefficient of static friction

between the rubber tires and the road can be taken as 2
p=0.5. You may neglect the kinetic friction,
a) Sketch the free bodv diagram of the car if it jus

N \?

e 2N Romark -
A — a(-
e
s Grudesl port IS to  show Frchon upuards:

b) Sketch the free body diagram of the car if i just starts to slip up.

n%Y N
"" —_— Or QQWIWJL d

X Crudicol port IS +o showm Frchon ownword
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c) Ifth{ car does not want to sl@what are the minimum and maximum allowed speeds?

Gy = O
i,

For Vmex  we need do loo ot dHe Free Body
b‘i‘darofm PV ?o(‘c}— \::3

maa - F;'r N»cx;.sub‘"-mg—- Fe oomstd® = O.
where ] Fe = /Uru

llg
Hlee we hove
e "
qxz ¥ | = N‘.Sl"nhsoy"FprQ\ﬂhSD: Ax = O = Vimax
AR m (P\.
Use (H?) Aff
L _\fm_%,___ Nsinks (1+pm) _ 24317 _ 3?
P m m

. g:&r Vo we Seudd use FRD m poct o)

F}T;m e want - a,\a_—.o LAy = @~
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Exam Room: «Exafn_koom;' - P101_Index: «MT1_Index» '
~ Student ID Number: «ID» i ;

Signature:

Q3-(25 pts) A triangular block with an exactly
horizontal upper surface can slide down an inclined
plane. There is a rectangular block on top of the
triangular one as shown in the figure. There is_no
friction between the two blocks, but the coefficient of
kinetic and static friction between the triangular
block and the inclined plane is p. Both blocks have
mass m, and the inclination angle of the plane is 6.

a) Draw the free body diagrams of the blocks.

_U f\/\[| _ll

vm%

b) How is the magnitude of the acceleration of the rectangular block (a,.) related to the
magnitude of the acceleration of the triangular black (a,])?

frma?ne c}-ﬁm%«aﬂw Hodkl moved a  dinkonca

den® -
2 ol O L Y A P R A

d-snd aa distence .89 -

5 OAXe - snD
AX
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T
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AX(‘ = af"t

5 Axe = 9r _ SIS s |ap=ag -sn®

I ¢) Find a; and a,.

ad = mﬁ'"N’ L ae_a'mSL
i Dmg#\h-—- magsind C4)
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m-ag = P fnjam9+ Nign © — Fp C’U
whee Fp = Moy
whore N = rrig.co>9+N.m39-
Then, Fp = mj/v-ooag + N pees§ -
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10. Fundamentals of Work and
Energy

Work and Its Definition

WORK (Integral Form): Work is defined as the integral of the force along the path of
displacement,

Wf=/F-dl or W=/Fcos(a)dl.

e For a constant force, work simplifies to the dot product:

Constant Force Work:
W=F-.d.

e For a variable force, the work is computed by integrating the force over the
displacement:

Variable Force Work:
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W:/m@m.

Expression of Work — When force is in the
direction of displacement

W = Fcos® x S

- "'ﬂ e 'l?ra _ﬁﬂ‘ ~
r,;j}_hﬂ} S’ ~40AAe

A

Work-Energy Theorem

WORK-ENERGY THEOREM: The net work done on an object is equal to its change in
kinetic energy.

Wnet = AKE = KEﬁnal - KEinitial-

¢ Sign of Work:

o Positive Work: When the force component is in the direction of displacement.
o Negative Work: When the force opposes the displacement.

o Zero Work: When the force is perpendicular to the displacement.

Springs (Hooke's Law) and Spring Work

HOOKE’S LAW: The restoring force of a spring is proportional to its displacement,
given by
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Fspring = —kz.

e Work Done by a Spring (Variable Force):
The work done by a spring as it is compressed or stretched from x; to x5 is

Wipring — / (—ke)de = Lk (23— 27).

This work is related to the change in the spring’s potential energy.

unstretched
spring
Hooke's Law: It takes twice
F = —kx as much force
spring to stretcha  2X
Spring constant k l spring twice l
as far.

2F |

‘4-;..:-

~

Gravitational Work and Inclined Planes

GRAVITATIONAL WORK on an Incline: When a mass m moves along an inclined
plane with angle 6, the gravitational work depends on the component of weight along
the plane:

W, = mgsin(f) (if motion is parallel to the incline).

e Other Forces Considered:
o Normal Force N: Acts perpendicular to the plane.

o Frictional Force f: Given by f = ulV, where p is the coefficient of friction.
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Additional Concepts

CONSTANT SPEED AND NET WORK: If an object moves at constant speed (a = 0),
the net work done on the system is zero, implying no change in kinetic energy.

e Units:

o Work and energy are measured in Joules (J).

GENERAL CONCEPT: Work represents how energy is added or removed from a
system through the application of forces during motion.

Final Summary & Takeaways

¢ Definition of Work: Work is calculated as either the dot product of force and
displacement (for constant forces) or as an integral for variable forces.

e Work-Energy Theorem: The net work done on an object is equal to its change in
kinetic energy.

e Spring Work: Hooke's law describes the restoring force of a spring, and the work
done by a spring is proportional to the square of the displacement.

e Gravitational Work on Inclines: Calculated based on the component of weight
along the incline, with friction and normal forces playing significant roles.

¢ Practical Examples: Numerical exercises illustrate how to compute work in different
scenarios, reinforcing theoretical concepts with real-world applications.

Raw Notes

#2 Raw Notes
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11. Work, Energy, and Power

Work and Its Definition

WORK (Integral Form): Work is defined as the integral of the force along the path of
displacement,

Wz/F-dl or W:/Fcos(H)dl.

e For a constant force, the work simplifies to:

Constant Force Work:
W =F-d = Fd cos(f)

e Units: Work is measured in Joules (J).
¢ Graphical Interpretation:

The area under a force vs. displacement curve represents the work done by a varying
force.

Work-Energy Theorem
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WORK-ENERGY THEOREM: The net work done on an object is equal to the change in
its kinetic energy,

Wnet = AKE = KEﬁnal - KEinitial-

e Applicability:

This theorem holds whether the force is constant or variable. For variable forces, the
integral form of work is used.

¢ Sign Considerations:
o Positive Work: When the force component is in the direction of displacement.
o Negative Work: When the force opposes the displacement.

o Zero Work: When the force is perpendicular to the displacement.

Potential Energy (U)

Gravitational Potential Energy

GRAVITATIONAL POTENTIAL ENERGY: For an object of mass  at height v,
Uy = mgy,

and a change in potential energy is given by AU = —W done by the conservative
force.

Spring (Elastic) Potential Energy

SPRING POTENTIAL ENERGY: For a spring obeying Hooke's law,
Fspring = —ki:I?,

the work done by the spring when compressed or stretched is

Wpsing = / (—kz) dz = — 3k (23 — 22),

which is equivalent to the change in spring potential energy.
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Conservative vs. Non-Conservative Forces

CONSERVATIVE FORCES: Forces such as gravity and ideal spring forces that have an
associated potential energy. Characteristic: The work done by these forces is path
independent.

NON-CONSERVATIVE FORCES: Forces like friction and air resistance that do not
have a recoverable potential energy component. Effect: They convert mechanical
energy into other forms (e.g., heat), so mechanical energy is not conserved.

¢ Energy Implications:

o With only conservative forces, the total mechanical energy Ernechanical =

K FE + U is conserved.

o The presence of non-conservative forces results in a net change in mechanical
energy.

5. Conservation of Mechanical Energy

CONSERVATION OF MECHANICAL ENERGY: In the absence of non-conservative
forces,

e Applications:
o Determining maximum height in projectile motion.

o Analyzing motion in vertical loops or roller coaster problems.

Power

POWER: Power is defined as the rate at which work is done or energy is transferred,

In cases where force and velocity are constant in direction,

P=F-%.

e Units: Power is measured in Watts (W), where 1 W = 1J /s.
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Final Summary & Takeaways

Work is calculated as the dot product of force and displacement or, for variable
forces, via integration.

The work-energy theorem states that the net work done on an object equals its
change in kinetic energy.

Potential energy can be stored as gravitational or spring (elastic) potential energy,
with the work done by conservative forces being recoverable.

Conservative forces conserve mechanical energy, whereas non-conservative
forces (like friction) convert mechanical energy into other forms.

Conservation of mechanical energy is used to analyze systems where only
conservative forces are acting.

Power quantifies how quickly work is done or energy is transferred.

Raw Notes

#2 Raw Notes
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12. Review: Work, Energy, and
Power

Work & Energy Review Note

Key Concepts Recap

WORK: Defined as the integral of force along the displacement, W = f F-dlor
simplified for constant force to W = F'd cos(0).
Units: Joules (J).

WORK-ENERGY THEOREM: The net work done on an object equals its change in
kinetic energy, Wphet = AKE.

Energy Forms
¢ Gravitational Potential Energy:
U, = mgy with changes linked to work done by conservative forces.

e Spring (Elastic) Potential Energy:
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Derived from Hooke's law with Fpine = —k leading to work Wipring =
—%k (32 — z2).
Forces & Energy Conservation

CONSERVATIVE FORCES: Path-independent forces (e.g., gravity, ideal springs) that
have recoverable potential energy.

NON-CONSERVATIVE FORCES: Forces (e.g., friction, air resistance) that convert
mechanical energy to other forms, breaking energy conservation.

e Conservation of Mechanical Energy:
When only conservative forces are present, K ¥ + U remains constant.

Power

POWER: The rate at which work is done, expressed as P = F-%
Units: Watts (W), where I W = 1J/s.

Final Takeaways
e Work is computed via dot product or integration for variable forces.
e The work-energy theorem links net work to kinetic energy changes.
e Potential energy comes in gravitational and elastic forms.

e Conservative forces conserve mechanical energy, while non-conservative ones
dissipate it.

e Power measures the rate of energy transfer.

Raw Notes

#2 Raw Notes
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13. Energy Concepts Overview
and Energy Diagram

Brief Overview of Key Energy Concepts
Kinetic Energy: The energy an object possesses due to its motion. It is given by

1
KFE = Eva’

where  is mass and v is velocity.

Work-Energy Theorem: States that the net work performed on an object is equal to
its change in kinetic energy:

Wnet — AKE.

Spring Work:

For a spring obeying Hooke's Law, the work done when compressing or stretching the
spring is

1
Wspring = _ik(wg - 33%),
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where k is the spring constant and &1 and a9 are the initial and final displacements
respectively.

Conservative Forces vs. Non-conservative Forces:

e Conservative Forces:
These forces (e.g., gravity, ideal spring forces) have potential energy associated
with them. The work done is independent of the path and is fully recoverable.

¢ Non-conservative Forces:
Examples include friction and air resistance. Their work depends on the path and
typically dissipates energy as heat or sound.

Potential Energy (U ) and Total Energy Work (TV;):

Potential energy is energy stored by an object due to its position or configuration. In
conservative cases, the work done by or against conservative forces is stored as
potential energy. In scenarios involving non-conservative forces, there is an additional
loss or change in total mechanical energy.

Mechanical Energy: Defined as the sum of kinetic and potential energies:
Eechanicas = KE + U.

In systems with only conservative forces, mechanical energy is conserved; when non-
conservative forces act, mechanical energy changes accordingly.

Energy Diagrams
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Raw Notes

#2 Raw Notes


Guest
Rectangle


14. Work & Kinetic Energy,
Potential Energy & Energy
Conservation

Work

e Constant force
W=F-A7=Fd cosf

e Variable force
Tf .
W = / F.-dr
T

Kinetic Energy & Work-Energy Theorem

e Kinetic energy

e Work-Energy Theorem
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Whet = AK = K — K;

Conservative Forces & U

e Aforce F. is conservative if W45 = — [ U(B) — U(A)].

e Gravity (near Earth)

Ug(y) =mgy

e Spring

Mechanical Energy Conservation

e Define
Epeen = K+ U.
¢ If only conservative forces act
Ernehi = Emecny =— K;+U; =K+ Uy.
¢ If non-conservative work W,,. occurs

Wnc - A-Emech .
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15. Linear Momentum & Impulse

Momentum & Impulse

e Linear momentum

e Impulse

Momentum Conservation

¢ Inanisolated system (no net external impulse):

E ﬁbefore - E ﬁafter-

Collisions
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Collision type Momentum KE

Elastic N4 N4
Inelastic v X
P |
: erfecf y ¥ X
inelastic

1D Two-Body Formulas

e Perfectly inelastic

Notes

Objects "bounce”; no loss of kinetic
energy.

Some KE — internal energy (heat,
deformation).

Bodies stick together; maximal KE
loss.

miv1; + Mavy;

’Uf =
my + Mo
¢ Elastic
mq1 — My X 2 me
Vif = ———— V1 V2
1f my + my 1q my + Mo 21
2my n myo —Mmy
Vof = ————— Vy; V9;
2f mi + mo L mi + My 2
Coefficient of Restitution
_ relative speed after  wvoy — vyy
 relative speed before  wvy; — vy

e e = 1: perfectly elastic
e 0 < e < I:partially inelastic

e ¢ = (: perfectly inelastic
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16. Rotation & Rigid Bodies

Rotational Kinematics

o d
dt’ dt

w =

e Equations (constant @):

w=wy+ at,
0 =6 +wyt+ at’
w?=wl+2a(f—6)).

Moment of Inertia

I:Zmir? or I=/r2dm.

e Parallel-axis theorem:

I=1Icy+ Md?
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Torque & Newton’s 2nd Law (Rotation)

e Torque:
F=FxF.
¢ Rotation analogue:

E Text = 1 Q.

Rotational Work & Energy

e Work:
W=/Td0.

1 2
Krotzilw .

¢ Rotational KE:

¢ Rolling (no slipping):

1,2 1 2
K=smuvy + 5 Imw”, vem =wR.

Angular Momentum

e Definition:
L=1I&.

e Conservation: if > 7., = 0, then L is constant.

When Is What Conserved?
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Quantity

Linear
momentum

Mechanical
energy

Kinetic energy

Angular
momentum

Conserved if...

> ﬁ’ext = 0 (isolated system)

No net non-conservative work (W,,. = 0)

Only in elastic collisions or no NC forces

Z Text = 0
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17. Rotational Kinematics and
Dynamics

Objective & Scope

This note aims to cover the fundamental concepts of rotational motion in rigid bodies,
specifically focusing on rotational kinematics and rotational dynamics.

Rotational Kinematics

Definitions

RIGID BODY: An object whose particles maintain constant distances from one
another under the action of external forces.

ANGULAR DISPLACEMENT (6): The angle through which a rigid body rotates about a
fixed axis.

ANGULAR VELOCITY (w): The rate of change of angular displacement, defined as:

_ o
T dt

w
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ANGULAR ACCELERATION (a): The rate of change of angular velocity:

_ dw
Cdt

(04

Formulas for Rotational Kinematics

These equations describe rotational motion under constant angular acceleration:

e Angular velocity:
w=wy+ at
e Angular displacement:
L o

9:90—1—w0t—|— Eat

e Relationship between angular displacement and velocities:
2 _ 2
w” = wy + 2a(0 — 6y)

e Relation between linear and angular quantities:

V=Tw, a=Tra, Q= — =T7TW
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el

®
o
o l
(a) Rotation rate (b) Rotation rate
counterclockwise counterclockwise
and increasing and decreasing

Rotational Dynamics

Definitions

TORQUE (7): A measure of the rotational effect of a force, defined as:
T=rFsin¢

where:
e 7 isthe distance from the axis of rotation,
e [F'is the magnitude of the force,

e ¢ is the angle between the force vector and the lever arm.

Newton's Second Law for Rotation

Analogous to linear motion (F' = ma), rotational motion obeys:
Tnet - IOé

® Thet = Net torque acting on the rigid body
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e | = moment of inertia

e « = angular acceleration

Moment of Inertia (/)

MOMENT OF INERTIA: A quantity expressing a rigid body's tendency to resist
angular acceleration, calculated as:

I = Zmi’r?

Common Moments of Inertia:
e Solid sphere: I = %MR2

Solid cylinder (disk): I = § M R?

Hollow cylinder: I = M R?

Thin rod about center: I = %ML2

Thin rod about end: I = %ML2

Har.rp

/ Selid cylinder about Thin spherical
or disc . . Solid sh.:a!i
S)nnm&)fnoal : G Sﬂ?ﬁmﬁu /sphsrs
axis [
/ ;
I=-MR? I= MR? I= —ME" Z M
Solid cylinder, bout Slab about
| central diameter - S;‘:f;ﬂ,, R fﬁ?ﬂgﬂlz:ﬁ; ?xrs
ou

yawr<e

) | 2 T 2 =_- 2 = —M].2
I:_LL_MEz + EMLL I 2 ME I 12 ML I 3 ML
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Example: Torque and Angular Acceleration
Example:

A force of 10 N is applied tangentially at the rim of a solid disk (M = 4kg, R = 0.5m

). Determine the angular acceleration.
Solution:

e Calculate torque:
T7=rF =(0.5m)(10N)=5N-m

e Moment of inertia for solid disk:

1 1
I= 5MR2 — 5(41<g)(0.5m)2 = 0.5 kg-m”

e Angular acceleration:

T 5 )
a=—-=— =10rad/s
I 0.5 /

Parallel Axis Theorem

PARALLEL AXIS THEOREM: The moment of inertia I about any axis parallel to and a
distance d away from an axis passing through the center of mass is given by:

I =Ioy + Md®
e Iy is the moment of inertia about the axis through the center of mass.

e M is the total mass of the rigid body.

e disthe perpendicular distance between the two parallel axes.
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~

1.
-

10=Ic+md2
7 1 NG

Moment of Moment of Added Moment of
Inertia of Inertia of Inertia due to
shapeabout  Shapeabout distance between O
point O Centroid (C) and C

Final Summary & Key Takeaways

e Understand clearly the difference between angular displacement, velocity, and
acceleration.

e Rotational kinematic equations parallel those of linear motion.
e Torque is essential in rotational dynamics and is analogous to force in linear motion.

e Moment of inertia is critical to analyzing rotational motion and depends on mass
distribution.
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18. Rotational Energy, Angular
Momentum, and Equilibrium

Objective & Scope

This note expands upon rotation and rigid body concepts, covering rotational kinetic
energy, angular momentum, conservation laws, and rotational equilibrium.

Rotational Energy

Rotational Kinetic Energy
ROTATIONAL KINETIC ENERGY: Energy due to rotation, given by:

1
K, = 51&

Work-Energy Principle in Rotational Motion

The work-energy theorem for rotation is given as:

1
Whet = AI{rot = EI(WJ% - wiz
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Angular Momentum
Definition
ANGULAR MOMENTUM (L): A measure of rotational inertia in motion, defined as:
L=1w
For a particle or object in linear motion relative to a point:
L=rXp=rmuvsin¢

Conservation of Angular Momentum

CONSERVATION OF ANGULAR MOMENTUM: If no external torque acts on a system,
the total angular momentum remains constant:

Li=L; (if mhet =0)

Example: Conservation of Angular Momentum

Example:

. . . . N 2
An ice skater spins with angular velocity 2 rad /s and moment of inertia 3 kg*m”. If she
reduces her moment of inertiato 1.5 kg*m2, what is her new angular velocity?

Solution:

Using conservation of angular momentum:
Iiwi = Ifwf
e Substitute values:

(3)(2) = (1.5)wy
e Solve for wy:

6

TE = 4rad/s

Wf:
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Rotational Equilibrium and Stability

Conditions for Equilibrium

Arigid body is in rotational equilibrium if:

¢ Net external torque is zero:

Thnet =— 0

Types of Equilibrium

e Stable equilibrium: Displacement increases potential energy (returns to original

position).
Unstable equilibrium: Displacement decreases potential energy (moves away).

Neutral equilibrium: Displacement neither increases nor decreases potential
energy.

Rolling Without Slipping

ROLLING WITHOUT SLIPPING: A condition where a rolling object's linear velocity v
is directly related to its angular velocity w by:

V=Trw

v is the linear (translational) velocity of the center of mass.
T is the radius of the rolling object.

w is the angular velocity.

Final Summary & Key Takeaways

Rotational kinetic energy and angular momentum are crucial concepts analogous to
their linear counterparts.

Angular momentum is conserved when no external torque acts on a system.

Understanding conditions for rotational equilibrium helps solve practical engineering
and physical problems.
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19. Rotational Kinematics &
Dynamics

Rotational Kinematics

Angular Quantities

Angular Displacement 6: Angle through which a body rotates about a fixed axis.
do
Angular Velocity w: Rate of change of angular displacement, w = e
. . dw
Angular Acceleration a: Rate of change of angular velocity, a = T

Kinematic Relations (constant &)

Relation:
w=wy+at

0 =00 +wot+ %at2
w® = wi + 2a(6 — 6y)

Linear-Angular Link:
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V=Trw,
Otangential = T &,

_ 2
Qcentripetal = T W™

Rotational Dynamics

Torque & Newton's Second Law

Torque 7: Tendency of a force F to rotate an object about an axis,
T =rF sin g,

where 7 is lever arm and ¢ is angle between F' and lever arm.

Rotational Law:

E Text — IO(,

analog of Fl,e; = ma.

Moment of Inertia

Definition: [ = /r2 dm, quantifying resistance to angular acceleration.

Parallel-Axis Theorem: If I\ is about a centroidal axis, then about a parallel axis a

distance d away,

I:ICM—I—MCZ2.

Common Forms:

« Solid disk about center: I = %MR2
» Solid sphere about center: I = %MR2

« Thin rod about center: I = 1—12ML2

Example:

A solid disk of mass 4 kg and radius 0.5 m has a tangential force ' = 10 N applied at
its rim.
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Torque:T = RF =05%x10=5N" -m
(4)(0.5)% = 0.5kg - m?
Angular Acceleration: « = 7/I = 5/0.5 = 10rad/s?

Moment of Inertia: I =

N[

Rotational Work & Energy

Work-Energy Principle

Rotational Work: dW = 7 d#.
Rotational Kinetic Energy:
Kot = 5 Tw?.

Work-Energy Theorem:

Whet = AK ot

Angular Momentum & Conservation

Angular Momentum L: For a rigid body about a fixed axis,
L=1w.

Conservation: If Z Text = 0, then L is constant.

Example:

An ice skater spins at w; = 2rad/s with I; = 3kg - m?. She pulls in her arms, reducing
Ifto1.5kg - m?.

New angular speed:

Liw, 3x2
Lw =Iwy = wy= Wi _ 20X = 4rad/s.
I; 15

Equilibrium & Rolling
Rotational Equilibrium: Net external torque zero, Z Text = 0.
Rolling Without Slipping:

Relationship between translational velocity v and angular velocity w:
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| V=Tuw.

Final Summary & Takeaways
e Rotational kinematics mirror linear motion with 6, w, a.
e Torque and moment of inertia govern rotational acceleration: > . 7 = I a.
e Energy methods use K.t = %Iw2 and work-energy.
e Angular momentum conservation applies when no external torque acts.
e Rolling without slipping links v and w.

e Common Mistakes: Omitting sin ¢ in torque, forgetting I dependence on axis, or

neglecting 7 in rolling condition.
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20. Rotation & Dynamics of Rigid
Bodies

Rotation of Rigid Bodies
Rigid Body: An object whose internal distances remain constant during motion.

Axis of Rotation: The fixed line about which all points in the body move in circular
paths.

Angular Displacement 6 :The angle of rotation measured from a reference line.

Angular Velocity w :

do
w=—.
dt
Angular Acceleration o:
dw
o= —.
dt

Linear-Angular Relationship: For a point at distance 7 from the axis:
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2
I V=Trw, Otangential =— T &, Qcentripetal — T"W .

Dynamics of Rotational Motion

Torque T: The rotational analogue of force,
T =r F sin ¢,

where ¢ is the angle between where ¢ is the angle between F' and the lever arm. F
and the lever arm.

Moment of Inertia [ : The rotational analogue of mass:

I:/r2dm,

quantifying a body's resistance to angular acceleration.

Rotational Form of Newton’s Second Law:

ZTeXt =1Ia.

Rotational Kinetic Energy:

17102

Krot - D)

Angular Momentum:

L=1w,

conserved when Y Texy = 0.

Examples

Solid Disk under Constant Torque
A solid disk (mass M, radius R, [ = %MRz) experiences torque T.

« Angular acceleration: a = 7/1.
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« Aftertimet:w = (7/1)t.

Ice Skater Pulling In Arms

Initial I;, w;; final Iy smaller when arms in.

Conservation: I; w; = I wy =— wy = IL;wZ

Final Summary & Takeaways

Rigid bodies rotate about fixed axes with w and a.

Torque and moment of inertia govern rotational acceleration: 7 = Ia.
e Energy methods use K.t = %Iw?
e Angular momentum L = Iw is conserved in absence of net torque.

e Common Mistakes: Confusing torque direction, omitting the sin ¢ factor, or
miscomputing I for composite bodies.
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21. Angular Momentum

Definition for a Particle

Angular Momentum (L) of a particle of mass m with position r and momentum

P = mV about a chosen origin:
L=rxp.

Angular Momentum of a Rigid Body

Total Angular Momentum: For a rigid body rotating about a fixed axis with angular
velocity w and moment of inertia I :

L=Jw.

More generally, L = Z r; X (m;v;)or L = Iw in tensor form.
i

Relation to Torque

Torque-Angular Momentum Theorem:
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ZText = %a

where 7 = r X F'. A net external torque changes the system’s angular momentum.

Conservation of Angular Momentum

Conservation Law: If Y 7.y = 0, then
L = constant.

Applies to isolated systems, underpinning phenomena from planetary motion to figure

skating.

Examples
Example (Particle in Central Force):
A particle moves under a central force F = f(r) 7.

r X F = 0= L constant = motion confined to a plane and equal areas in equal

times.

Example (Ice Skater):

An ice skater with moment of inertia I; and angular speed w; pulls in her arms to reduce
to If.

| Liw, =Ilw; — wfzir—;w,-.

Final Summary & Takeaways
e L =r X pforparticles; L = I w for rigid bodies.
e Y 7 = dL/dt links torque to change in angular momentum.

e Conservation holds when external torques vanish, explaining fixed-plane motion
and speed-up in contracting systems.

e Common Mistake: Neglecting sign or direction in the cross product; forgetting that
only external torques break conservation.
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22. Periodic Motion

Definitions & Key Concepts

Periodic Motion: Motion that repeats itself in equal intervals of time.

Period (1'): The time required for one complete cycle of motion.

Frequency (f): Number of cycles per unit time, f = 1/T.

Angular Frequency (w): Rate of phase change, w = 27 f = 27 /T.

Simple Harmonic Motion (SHM)

Governing Equation

SHM: A restoring force proportional to displacement:

F=—-kz.
From Newton's second law,

mi+kr=0 — i+w’z=0,

wherew = /k/m.
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General Solution
z(t) = Acos(wt + @),

with amplitude A and phase constant ¢.

Period & Frequency
T — 2_7T, f=
w 27
Energy in SHM
Kinetic Energy:
_ 1 2
K =3smz
Potential Energy:
_17...2
Total Energy: Constant,
E=K+U = 3kA°

Examples
Example: Mass-Spring System

A block of mass m on a spring of constant k:

Ifm = 0.5kg, k = 200N /m, then

2T
w=20rad/s, T = 355~ 0.314s.

Example: Simple Pendulum (Small Angle)
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Length L, gravity g:

. g L
0+Z0=0 =— T =2m4=.
L g

ForL =1m,g = 9.8m/s?

Final Summary & Takeaways

Periodic motion repeats in time with well-defined T', f, and w.
SHM arises when a linear restoring force acts; governed by & + w?z = 0.
Energy oscillates between kinetic and potential forms, with constant total E.

Mass-spring and pendulum illustrate how system parameters set the oscillation
period.

Common Mistake: Applying SHM formulas beyond their small-angle or linear-force
approximations.
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23. Damped and Driven
Harmonic Motion

1. Damped Harmonic Motion

1.1 Equation of Motion

The motion of a mass—spring system with linear damping is governed by
mi+cr+kx=0
e m: mass (kg)
e ¢ damping coefficient (kg/s)

e k: spring constant (N/m)

Divide by m:

&+ 2(wod +wiec =0, where wy= \/n%, (= an—k.

1.2 Damping Regimes
Define the damping ratio (:
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e Underdamped (( < 1)
e Critically damped (( = 1)
e Overdamped (( > 1)

1.2.1 Underdamped (( < 1)

Solution:

z(t) = Ae cos(wdt - ¢), wg = woy/ 1 — (2.
e Damped period: Ty = 27 /wq

o Envelope: T,y (t) = Ae w0t

1.2.2 Critically Damped (( = 1)

Solution:
z(t) = (A+ Bt)e "

1.2.3 Overdamped (( > 1)

Solution:
.’I?(t) _ Ce—wo((—l—«/@—l)t 4+ D e ¢~y C2—1)t.

1.3 Energy Dissipation

¢ Total energy decays exponentially:
E(t) = 1k A% e 20wt

e Timeconstant: 7 = 1/((wy).

After t = T, energy has dropped to e 2 ~ 14% of initial,

2.1 Equation of Motion
Add a sinusoidal driving force F'(t) = Fy cos(wt):
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mi + cx + kx = Fycos(wt).

2.2 Steady-State Solution

Assume particular solution:

e Amplitude:
Alw) = Fo/m .
V(wf — w?)? + (2{wow)?
¢ Phase lag:
2¢wow
t = .
an qb(w) wg 2

2.3 Resonance & Quality Factor

¢ Resonant frequency (underdamped):

wy = woy/1—2¢2 (¢ <1/V2).

e Max amplitude at resonance:

F
Amax ~ 0
2mw0C
¢ Quality factor:
1 wo
@ 2 Aw’

where Aw is the half-power bandwidth.

3. Phase Relationships & Power

e Loww (w < wy): x nearly in phase with F'.
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e At resonance: phase lag ¢ = 90°.
e Highw (w > wy): x lags by ¢ — 180°.

e Average power absorbed:

(P) = 3 cw® A*(w).

4. Key Takeaways

e Damping reduces amplitude and energy (E o< e~ 26%0ot).
e Critical damping yields fastest return without oscillation.
e Resonance maximizes steady-state amplitude; high (Q systems are sharply tuned.

¢ Phase lag transitions from 0° to 180° as driving frequency increases.
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24. Gravitation

1. Introduction to Gravitation

Gravitation is a fundamental interaction that causes every particle of matter in the universe to attract every other particle. It governs
the motion of planets, stars, galaxies, and governs phenomena on Earth such as falling objects, tides, and the behavior of satellites.

e Historically, Isaac Newton formulated a quantitative law of universal gravitation in the 17th century.
e Later, Johannes Kepler, based on Tycho Brahe's observational data, formulated his three empirical laws of planetary motion.

e Inthe early 20th century, Einstein’s General Theory of Relativity provided a deeper understanding of gravitation as curvature of
spacetime; however, for PHYS101, we focus on Newtonian gravity and Kepler's laws.

2. Newton's Law of Universal Gravitation

Statement: Every point mass attracts every other point mass in the universe with a force that is:
1. Directly proportional to the product of their masses.
2. Inversely proportional to the square of the distance between their centers.

Mathematically,

where:
e F'is the magnitude of the gravitational force between two masses (in newtons, N).
® My, Mo are the masses of the two objects (in kilograms, kg).
e 7 isthe distance between the centers of the two masses (in meters, m).

e (G is the universal gravitational constant.

2.1 Gravitational Constant (G)

e The gravitational constant G has an experimentally determined value:
G =6.67430 x 10 ' m® kg 's2

e All gravitational interactions in classical mechanics use this same constant.
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2.2 Weight vs. Mass

e Mass (m)
o Scalar quantity.
o Measure of the amount of matter in an object (in kg).
o Invariant (does not change with position).

e Weight (W)
o Vector quantity.
o The gravitational force exerted on an object by a massive body (e.g., Earth).
o At Earth’s surface, W = m g where g ~ 9.81 m/s2.

o Weight varies with local gravitational acceleration; mass remains constant.

3. Gravitational Field and Potential

3.1 Gravitational Field Strength (g)

o Definition: The gravitational field strength at a point in space is the gravitational force per unit mass experienced by a small test
mass placed at that point.

F
g(r) = J units: N/kg or m/s’
Mtest

e For a point mass M located at the origin, the gravitational field at a distance 7 is radial and given by:

F M
G 2
Mest r
directed toward the mass M.

o Near the Earth’s surface (r = Rg), g ~ 9.81 m/s2.

3.2 Gravitational Potential (V)

e Gravitational potential V' (r) at a point is defined as the gravitational potential energy per unit mass at that point (with reference
at infinity taken to be zero).

gM

r

V(r) =

e The negative sign indicates that work must be done (by an external agent) to bring a test mass from infinity to a distance 7.

e Relationship between field and potential:
g(r) = -VV(r)
In spherical symmetry,

av

M
g(r)=-4-= G5

3.3 Gravitational Potential Energy (U)
e For two point masses m and M separated by distance r, the gravitational potential energy is:

Mm
r

U(r)=-G


Guest
Rectangle


e If two masses are infinitely far apart (r — 00), U(00) = 0. As they come together, U () becomes more negative.

e In the context of a single mass m in the gravitational field of a much larger mass M:

Mm
r

U(r)=mV(r) = -G

4. Motion Under Gravity Near Earth’s Surface

4.1 Uniform Gravitational Field Approximation

For motions close to Earth’s surface where r & Ryg, , gravitational acceleration g can be treated as uniform:
2
g~9.8lm/s” (constant)

4.2 Equations of Motion
For an object thrown or dropped in a uniform gravitational field (vertical motion):

e Displacement:
1

y(t) =y +voyt — gt

e Velocity (vertical component):
vy(t) = voy — gt
e Kinematic equation (no explicit time):
2 2

vy = v, — 29 (¥ — %)
(Here, upward is taken as positive; if downward is chosen positive, sign of g changes accordingly.)

4.3 Escape Velocity

e Definition: The minimum initial speed needed for a mass m to "escape” from the gravitational pull of a mass M (i.e., reach infinity
with zero kinetic energy).

e Starting at radius 7 = R with speed Vs, €nergy conservation gives:

M [12G M
%mvgsc - GTm =0 = V= GT

Vesc, Barth = /2 g R ~ 11.2 x 10°m/s

e ForEarth (M = Mg, R = Rg):

4.4 Circular Orbit Velocity

e For a small mass m in a circular orbit of radius 7 around a larger mass M:

1. Centripetal force requirement:

muv? Mm
= G 5
r T
2. Solve for orbital speed v:
GM
Vorbit =

r
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e The corresponding orbital period 7' is:

27 [ r
T= Vorbit = GM
5. Kepler’'s Laws of Planetary Motion
Johannes Kepler (1609-1619) empirically determined three laws describing planetary motion about the Sun. These can be derived from
Newton's law of gravitation and laws of motion.
5.1 First Law (Law of Ellipses)
e Statement: The orbit of every planet is an ellipse, with the Sun at one of the two foci.
o Elliptical Geometry:
o Semi-major axis: a
o Semi-minor axis: b
o Distance between center and each focus: ¢, where ¢? = a? — b®.

o Foran ellipse, any point P on the ellipse satisfies:
PF, + PFy = 2a

o Eccentricity:

ISHI e

e , 0<ex1

5.2 Second Law (Law of Equal Areas)
e Statement: A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
e Mathematical Formulation:

o Areal velocity % is constant:

A _ L

dt 2m
where L is the angular momentum of the planet (constant).

o Equivalently, for a small time At, the area swept A A is constant for all equal At.

5.3 Third Law (Harmonic Law)

e Statement: The square of the orbital period I" of a planet is proportional to the cube of the semi-major axis a of its orbit:
T? x d

More precisely, for a small body orbiting the Sun (mass M):

where:
o T orbital period (in seconds).
o a:semi-major axis of orbit (in meters).

o Mg: mass of the Sun.
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5.4 Derivation of the Third Law from Newtonian Gravitation

Assumptions:

e Asmall mass m (m < M) orbits a much larger mass M (e.g., a planet around the Sun) in a nearly elliptical—or for simplicity,
circular—orbit of radius 7 ~ a.

1. Centripetal force provided by gravity:

2. Orbital period 1" for a circular orbit:

3. Square both sides:

For elliptical orbits, replace 7 with the semi-major axis a:

2
4me 4

2 _
T —GMa.

6. Orbital Mechanics: Circular and Elliptical Orbits

6.1 Circular Orbits
e Orbital Speed (repeated from Section 4.4):

GM
Vcire =
r
o Orbital Period (also repeated):
3
r
T =2
GM

¢ Total Mechanical Energy of a circular orbiting mass m:

1, GMm
Fiotal = K +U = Emvcirc — .

r

2 _ GM,

circ — r -

Substitute v

1 GM GMm 1GMm
Etml:im rr 2 r

o Negative total energy indicates a bound orbit.

6.2 Elliptical Orbits

e For an ellipse with semi-major axis @ and semi-minor axis b:

o Distance from focus (Sun) to a point at true anomaly 6

r(o) = 2=

" 1+ecosf
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where e is the eccentricity.

¢ Orbital Speed at any point 7 in an elliptical orbit (vis-viva equation):

o(r) = GM(EE)

o At perihelion (r = a(1 — ¢)), speed is maximum.
o Ataphelion (r = a(1 + €)), speed is minimum.

e Specific Orbital Energy (energy per unit mass) for an elliptical orbit:

> GM _ GM

v
€= ——
2

r 2a

Thus, for any 7 on the ellipse, € remains constant.

7. Applications and Examples

7.1 Satellite Period Calculation
Problem: Calculate the orbital period of a satellite in a circular orbit at 300 km above Earth’s surface.
1. Given Data:
e Earth'sradius Rg = 6.371 x 106 m.
e Satellite altitude above surface: b = 300 x 103 m.
e Earth's mass Mg, = 5.972 x 10%* kg,
e Gravitational constant G = 6.67430 x 10 " m®kg s~ 2.

2. Orbit Radius:
= Rg +h =6.371 x 10° + 3.00 x 10° = 6.671 x 10°m.

3. Orbital Period T":

e Compute r3;
= (6.671 x 10°)% ~ 2.970 x 10% m?®.

e Then:

2.970 x 1020 2.970 x 10%
T:2\/ oy 22O X o /7455 x 105 ~ 2 4.0 ~ 5,428+
™\ 6.67430 x 1011 % 5.972 x 105 2"V 3085 x 1018 27 V 7495 x 107~ 2m x 864.0 ~ 5,428

e Convert to minutes:

T ~ 5’4& ~ 90.5 minutes.

60

7.2 Escape Velocity from Earth

Problem: Determine the escape velocity from Earth'’s surface.

1. Given Data:
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e Earth mass: Mg = 5.972 x 10** kg,
e Earthradius: Ry = 6.371 x 105 m.
e G =6.67430 x 107" m¥kg ‘s 2.

2. Formula:

2G M,

Vesc =

3. Calculation:

o Numerator:
2G Mg = 2 x 6.67430 x 107 x 5.972 x 10* ~ 7.973 x 10™.
¢ Divide by Rg:

7.973 x 101

R TR 1.252 x 108.

e Take square root:

Vese = V/ 1.252 x 108 ~ 1.119 x 10*m/s = 11.19km/s.

8. Summary of Key Equations

1. Newton’s Law of Universal Gravitation:

mim
F=G %
T
2. Gravitational Field Strength:
M
9(r) =G —
r
3. Gravitational Potential:
M
V(ir)=—-G—
r
4. Gravitational Potential Energy:
Mm
U(r)=-G
r
5. Escape Velocity:
2GM
Vesc — T
6. Circular Orbit Velocity:
GM
Vcire =
r

7. Orbital Period (Circular Orbit):
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8. Kepler’'s Third Law (Harmonic Law):

9. Vis-Viva Equation (General Orbital Speed):

P
=2
T s Gl
47
2 3
T 7GMa
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