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1. Units and Vectors

Units and Vectors

Understanding physical quantities is fundamental in science and engineering. A unit is a

standard quantity used to specify measurements, while a vector is a quantity that has

both magnitude and direction. Although these topics are distinct, they often come

together in problems where both the size of a quantity (its unit) and its direction matter

(as in displacement or force).
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SI Units

The International System of Units (SI) is the modern form of the metric system. It defines

standard units for various physical quantities:

Mass: kilogram (kg)

Time: second (s)

Length: meter (m)

Force: newton (N)

Electric Current: ampere (A)

Temperature: kelvin (K)

SI UNITS: The standardized set of measurements defined by international consensus;

for example, the kilogram is defined using the Planck constant, and the meter is

defined based on the distance traveled by light in a vacuum.

Example Calculation Using SI Units

Consider a car moving at 80 km/h. To calculate the distance it travels in 10 seconds:
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1. Convert speed to m/s:

2. Calculate distance:

Distance = speed × time = 

Defining SI Units

SI units are defined using physical constants and precise measurement techniques:

Mass: Historically defined by the international prototype kilogram, now redefined

using the Planck constant.

Length: Defined as the distance light travels in a vacuum in 1/299,792,458 seconds.

Time: Defined by atomic clocks, particularly using the frequency of radiation from

cesium-133 atoms.

Electric Current: Defined via the elementary charge and other fundamental

constants.

DEFINING SI UNITS: SI units are grounded in invariant physical constants, ensuring

universal reproducibility and precision.

80 km/h = 80 × ​ ≈3600 s
1000 m 22.22 m/s

22.22 m/s × 10 s ≈ 222.2 m
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Scientific Notation and Order of Magnitude

Scientific notation is a compact way to express very large or very small numbers. For

example:

3,000,000 is written as .

Prefixes in SI Notation:

Submultiples:

: milli, : micro, : nano, : pico, : femto

Multiples:

: kilo, : mega, : giga, : tera

SCIENTIFIC NOTATION: A method to express numbers as a product of a coefficient

and a power of ten, which simplifies the comparison of orders of magnitude.

3 × 106

10−3 10−6 10−9 10−12 10−15

103 106 109 1012
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Significant Figures and Uncertainty

Measurements carry uncertainty, and the number of significant figures indicates the

precision of a measurement. For example, "5 meter" and "5.0 meter" are not equivalent in

a measurement context:

5 meter implies one significant figure.

5.0 meter implies two significant figures.

Finding the Number of Significant Figures

Rule 1: Non-zero digits are always significant.

Rule 2: Zeros between non-zero digits are significant.

Rule 3: Leading zeros are not significant.

Rule 4: Trailing zeros are significant only if there is a decimal point.

SIGNIFICANT FIGURES: The digits in a measurement that carry meaning contributing

to its precision.
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Importance of Significant Figures

The precision of a measurement affects how results are reported, especially when

combining measurements:

Addition/Subtraction: The result should be reported with the same number of 

decimal places as the measurement with the fewest decimal places.

Example:

5 is treated as an integer (no decimal places), then the result should be

rounded to 10 (not 9).

Multiplication/Division: The result should have as many significant figures as the

measurement with the fewest significant figures.

Example:

If 50 has only 1 significant figure, then the result should be rounded to 200

(1 significant figure).

UNCERTAINTY: The degree of doubt about a measurement’s exact value, expressed

through significant figures.

Precision and Accuracy

Precision refers to the consistency or repeatability of measurements, while accuracy

indicates how close a measurement is to the true or accepted value.

Precision: High precision means repeated measurements yield similar results.

5 + 4.92 = 9.92

1.2 × 50 × 3 = 180
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Accuracy: High accuracy means the measurement is close to the true value.

Example:

A set of darts hitting the same spot repeatedly (high precision) but far from the

bullseye (low accuracy).

Alternatively, darts that scatter around the bullseye (high accuracy, low precision).

PRECISION: The consistency of repeated measurements.

ACCURACY: How close a measurement is to the true value.

Summary

In this lecture, we covered:

Units and Vectors: Basic concepts of measurements and quantities with direction.

SI Units: Standardized units for mass, time, length, force, current, and temperature,

along with their definitions.

Scientific Notation and Order of Magnitude: Expressing numbers in a compact

form and understanding SI prefixes.

Significant Figures and Uncertainty: How measurement precision is indicated and

how to correctly propagate uncertainty in results.

Precision and Accuracy: Distinguishing between the consistency of measurements

and their closeness to the true value.
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Understanding these concepts is critical in physics and engineering, as they lay the

foundation for accurate measurement, reporting, and further quantitative analysis.

Self Test

Self-Test: Lecture 1

Raw Notes

Raw Notes
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2. Units and Vectors - Extended

Introduction to Vectors and Scalars

In many fields such as physics, engineering, and computer science, it is essential to

distinguish between two fundamental types of quantities: scalars and vectors. A scalar is

a quantity described solely by a magnitude (a numerical value), whereas a vector is

defined by both a magnitude and a direction. For example, temperature (a scalar) only

has a value (e.g., 25°C), while displacement (a vector) has both a length and a direction.
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What is a Vector?

A vector is a mathematical entity that has both a magnitude and a direction. We denote

the magnitude of a vector  as , and its direction is usually indicated by a unit

vector. Two vectors are considered equal if they have the same magnitude and point in

the same direction. When a vector is multiplied by a scalar (a real number), its magnitude

is scaled by that number, while its direction remains unchanged.

VECTOR: A quantity with both magnitude and direction, represented as ,

where  is the unit vector indicating direction.

Unit Vectors and Vector Representation

Unit vectors are used to indicate direction. A unit vector has a magnitude of 1 and is

typically denoted by symbols such as , , and  for the , , and  axes respectively. Any

vector in three-dimensional space can be written as the product of its magnitude and a

unit vector in its direction:

or expressed in component form as:

A ∣A∣

A = ∣A∣Â
Â

i j k x y z

A = ∣A∣  Â

A = A ​i+x A ​j+y A ​k z
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Vector Operations: Addition and Subtraction

Vectors can be added together and subtracted from one another. The rules for vector

addition are:

Commutative Property:

Associative Property:

Subtraction of vectors is essentially the addition of the negative. That is,

where  is a vector with the same magnitude as  but opposite direction.

A+B = B+A

A+ (B+C) = (A+B) +C

A−B = A+ (−B) 

−B B
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Components of a Vector and Vector Notation

Any vector in the plane can be decomposed into its components along the  and  axes.

For a vector :

The magnitude of  is calculated by:

In three dimensions, the formula becomes:

The direction (angle ) with respect to the -axis is given by:

x y

R

R = R ​i+x R ​j y

R

∣R∣ = ​ R ​ + R ​x
2

y
2

∣R∣ = ​ R ​ + R ​ + R ​x
2

y
2

z
2

θ x

θ = arctan ​  (
R ​x

R ​y )
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Example: Computing the Magnitude of a Vector Expression

Consider two vectors in three dimensions:

We wish to compute the magnitude of .

First, calculate:

Then,

The magnitude is:

Scalar and Vector Multiplication

D = 6i+ 3j− k and E = 4i− 5j+ 8k 

2D−E

2D = 2(6i+ 3j− k) = 12i+ 6j− 2k 

2D−E = (12i+ 6j− 2k) − (4i− 5j+ 8k) = (12 − 4)i+ (6 − (−5))j+
(−2 − 8)k = 8i+ 11j− 10k

∣R∣ = ​ =8 + 11 + (−10)2 2 2
​ =64 + 121 + 100 ​ ≈285 16.88 
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Multiplying by a Scalar

Multiplying a vector by a scalar changes its magnitude without altering its direction:

If , the vector stretches; if , it contracts; if , it reverses direction.

Multiplication Rules Summary

Scalar × Scalar: Results in a scalar.

Scalar × Vector: Results in a vector.

Vector × Vector: Can yield either a scalar (dot product) or a vector (cross product),

depending on the operator.

MULTIPLICATION RULES: The type of multiplication (scalar or vector product)

determines whether the result is a scalar or a vector.

Dot Product (Scalar Product)

The dot product of two vectors  and  is defined as:

cA = (c ⋅ A ​)i+x (c ⋅ A ​)j+y (c ⋅ A ​)k z

c > 1 0 < c < 1 c < 0

A B
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where  is the smaller angle between the two vectors.

Properties:

Commutative:

Provides a measure of how much one vector extends in the direction of another.

Used to determine the angle between vectors:

Example Calculation:

Given:

Compute the dot product:

Find magnitudes:

Thus,

A ⋅B = A ​B ​ +x x A ​B ​ +y y A ​B ​ =z z ∣A∣ ∣B∣ cos θ 

θ

A ⋅B = B ⋅A

θ = arccos ​  (
∣A∣ ∣B∣
A ⋅B

)

A = 2i+ 3j+ k, B = −4i+ 2j− k

A ⋅B = (2 × −4) + (3 × 2) + (1 × −1) = −8 + 6 − 1 = −3 

∣A∣ = ​ =2 + 3 + 12 2 2
​ =4 + 9 + 1 ​ 14

∣B∣ = ​ =(−4) + 2 + (−1)2 2 2
​ =16 + 4 + 1 ​ 21

cos θ = ​, θ =
​ ​14 21

−3
arccos ​  (

​ ​14 21

−3 )
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Cross Product (Vector Product)

The cross product of two vectors  and  results in a vector  that is perpendicular to

both  and . It is defined as:

with magnitude:

where  is the smaller angle between  and .

Properties:

Anticommutative:

The resulting vector is orthogonal (perpendicular) to both  and .

If the vectors are parallel,  and hence .

A B C
A B

A×B = (A ​B ​ −y z A ​B ​)i+z y (A ​B ​ −z x A ​B ​)j+x z (A B ​ −x y A ​B ​)k y x

∣A×B∣ = ∣A∣ ∣B∣ sin θ 

θ A B

A×B = −(B×A)

A B

sin θ = 0 A×B = 0
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Summary of Vector Operations

Addition/Subtraction: Vectors add component-wise; subtraction is addition of the

negative.

Properties such as commutativity and associativity hold.

A+B = (A ​ +x B ​)i+x (A ​ +y B ​)j+y (A ​ +z B ​)k z
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Scalar Multiplication: Multiplying by a scalar changes the magnitude of the vector.

Dot Product: Yields a scalar, used to determine the angle between vectors.

Cross Product: Yields a vector perpendicular to the plane containing the original

vectors.

Putting It All Together: Example Problem

Problem:

Given:

Find .

Solution:

1. Compute :

2. Subtract :

3. Calculate the Magnitude:

Summary

In this lecture note, we have covered:

The basic definitions of scalars and vectors, emphasizing that vectors have both

magnitude and direction.

cA = (cA ​)i+x (cA ​)j+y (cA ​)k z

D = 6i+ 3j− k and E = 4i− 5j+ 8k 

∣2D−E∣

2D

2D = 2(6i+ 3j− k) = 12i+ 6j− 2k 

E

2D−E = (12i+ 6j− 2k) − (4i− 5j+ 8k)
= (12 − 4)i+ (6 − (−5))j+ (−2 − 8)k

= 8i+ 11j− 10k

∣2D−E∣ = ​ =8 + 11 + (−10)2 2 2
​ =64 + 121 + 100 ​ ≈285 16.88 
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The use of SI units and the importance of standardization in measurement.

The role of unit vectors in representing direction and how vectors can be expressed

in component form.

Fundamental operations such as vector addition, subtraction, and scalar

multiplication.

The methods to compute the magnitude and direction of a vector.

Detailed explanations and examples of the dot product (yielding a scalar) and cross

product (yielding a vector perpendicular to the given vectors).

A comprehensive worked example illustrating these concepts in action.

Understanding these vector operations and properties is crucial for applications in

physics, computer graphics, engineering, and many areas of science.

Self Test

Self-Test: Lecture 2

Raw Notes

Raw Notes
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3. Kinematics in 1D

Motion in One Dimension

Motion in 1D involves understanding how a particle’s position changes over time. The

main quantities are:

POSITION: The location of an object along a line, represented as a vector  (in one

dimension, this is simply a number) with units of meters (m).

DISPLACEMENT: The change in position, defined as the difference between the final

and initial positions, i.e.,

It is also measured in meters (m).

VELOCITY: The rate of change of position with respect to time. It is a vector, whose

magnitude is given in meters per second (m/s), and its direction is the same as that of

the displacement.

Average Velocity

x

Δx = x ​ −2 x ​1
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Average velocity over a time interval is calculated as the displacement divided by the

change in time:

Unit: meters per second (m/s)

Note: The displacement used here is the net change in position, not the total distance

traveled.

Instantaneous Velocity

Instantaneous velocity is the velocity of an object at a specific moment in time. It is

defined as the derivative of the position function  with respect to time:

Interpretation: On an -  graph, the instantaneous velocity at a point is the slope of

the tangent line at that point.

Example: Motion in 1D

Consider the position function:

where  is in seconds and  is in meters.

a) Displacement between  second and  seconds

At :

At :

Average Velocity = ​ =
Δt

Δx
​ 

t ​ − t ​2 1

x ​ − x ​2 1

x(t)

v(t) = ​ ​
=

Δt→0
lim

Δt

Δx
​ 

dt

dx

x t

x(t) = 20 + 5t  2

t x

t = 1 t = 2

t = 1

x(1) = 20 + 5(1) =2 20 + 5 = 25 m 

t = 2

x(2) = 20 + 5(2) =2 20 + 20 = 40 m 
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Displacement:

b) Average Velocity between  and 

c) Instantaneous Velocity at  and 

Find the derivative:

At :

At :

Acceleration

Acceleration is the rate of change of velocity with respect to time.

ACCELERATION: The change in velocity per unit time, calculated as:

Its unit is meters per second squared (m/s²).

Instantaneous Acceleration

Instantaneous acceleration is the derivative of the velocity function with respect to time,

or the second derivative of the position function:

Δx = x(2) − x(1) = 40 − 25 = 15 m 

t = 1 t = 2

Average Velocity = ​ =
Δt

Δx
​ =

2 − 1 s
15 m

15 m/s 

t = 1 t = 2

v(t) = ​ =
dt

dx
​(20 +

dt

d
5t ) =2 10t 

t = 1

v(1) = 10(1) = 10 m/s 

t = 2

v(2) = 10(2) = 20 m/s

a = ​ 
Δt

Δv

2
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Example: Acceleration Calculation

Consider the velocity function:

a) Change in Velocity from  to 

At :

At :

Change in Velocity:

b) Average Acceleration between  and 

c) Instantaneous Acceleration at  and 

Find the derivative of :

At :

a(t) = ​ =
dt

dv
​ 

dt2

d x2

v(t) = 60 + 0.5t  2

t = 1 t = 3

t = 1

v(1) = 60 + 0.5(1) =2 60 + 0.5 = 60.5 m/s 

t = 3

v(3) = 60 + 0.5(3) =2 60 + 4.5 = 64.5 m/s 

Δv = v(3) − v(1) = 64.5 − 60.5 = 4 m/s 

t = 1 t = 3

Average Acceleration = ​ =
Δt

Δv
​ =

3 − 1 s
4 m/s

​ =
2
4

2 m/s  2

t = 1 t = 3

v(t)

a(t) = ​ =
dt

dv
​(60 +

dt

d
0.5t ) =2 t 

t = 1

a(1) = 1 m/s  2
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At :

Summary

Position and Displacement: Position is the location of an object; displacement is

the change in position ( ).

Average Velocity: Calculated as displacement over time, .

Instantaneous Velocity: The derivative of the position function with respect to time,

; graphically, it is the slope of the tangent to the -  curve.

Acceleration: The rate of change of velocity, with average acceleration  and

instantaneous acceleration as .

This material lays the foundation for understanding kinematics in one dimension and

illustrates how calculus is used to derive instantaneous rates from average quantities.

Self Test

Self-Test: Lecture 3

Raw Notes

Raw Notes

t = 3

a(3) = 3 m/s  2

Δx = x ​ −2 x ​1

​Δt
Δx

v(t) = ​

dt
dx x t

​Δt
Δv

a(t) = ​ =dt
dv

​

dt2
d x2
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4. Kinematics in 1D - Extended

Motion Along Straight Line

When an object moves so that its position changes with respect to time along a single axis (often the -axis),

this is called 1D motion.

Reference Frames and Displacement

A reference frame provides the coordinate system and origin used to describe motion.

DISPLACEMENT: If  is the initial position and  is the final position, then

Displacement is a vector quantity in 1D, and it can be positive or negative depending on direction.

Average Velocity

AVERAGE VELOCITY: The overall change in position per unit time,

It represents the constant velocity that would take an object from  to  in the same time interval.

Instantaneous Velocity

INSTANTANEOUS VELOCITY: The velocity at a specific instant, given by the time derivative of position,

x

x ​1 x ​2

Δx = x ​ −2 x ​ 1

v ​ =avg ​ 
Δt

Δx

x ​1 x ​2
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This tells us how fast an object is moving and in which direction at a particular moment.

Speed vs Velocity

Speed: A scalar, the magnitude of velocity (always non-negative).

Velocity: A vector in 1D, can be positive or negative indicating direction.

SPEED: If  is the velocity, speed is .

Average and Instantaneous Acceleration

ACCELERATION: The rate of change of velocity with respect to time,

Average acceleration: 

Instantaneous acceleration: The limit of  as 

Motion with Constant Acceleration

When acceleration  is constant, we can derive the kinematic equations using integrals:

1. Velocity

Integrating both sides from initial velocity  to , and from  to :

2. Position

Hence,

Integrate from  at  to  at time :

v(t) = ​ 
dt

dx(t)

v(t) ∣v(t)∣

a(t) = ​ =
dt

dv(t)
​ 

dt2

d x(t)2

a ​ =avg ​Δt
Δv

a ​avg Δt → 0

a

a = ​ ⟹
dt

dv
dv = a dt 

v ​0 v t = 0 t

​ dv =∫
v ​0

v

​ a dt ⟹∫
0

t

v − v ​ =0 a t ⟹ v(t) = v ​ +0 a t

v(t) = ​ =
dt

dx
v ​ +0 a t 

dx = (v ​ +0 a t) dt 

x ​0 t = 0 x t

t
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3. Velocity-Displacement Relation

Eliminating time  between  and  gives another useful formula:

Example

Problem: An object starts from rest ( ) at , accelerating at . Find its velocity and

position at .

Solution:

1. Since , at :

2. Integrating for position, 

So, after 5 seconds, velocity is  and position is  from the starting point.

Final Summary & Takeaways

Displacement measures change in position along a line.

Velocity is the rate of change of position. Average velocity looks at a time interval, while instantaneous

velocity is the derivative of position.

Acceleration is the rate of change of velocity. Average acceleration uses  over , while

instantaneous acceleration is the derivative of velocity.

Constant acceleration formulas can be derived via integrals:

These equations form the basis of 1D kinematics and are widely used to solve motion problems.

Raw Notes

Raw Notes

dx =∫
x ​0

x

​(v ​ +∫
0

t

0 a τ) dτ ⟹ x − x ​ =0 v ​t +0 ​a t ⟹
2
1 2 x(t) = x ​ +0 v ​t +0 ​a t2

1 2

t v = v ​ +0 a t x = x ​ +0 v ​t +0 a t2
1 2

v =2 v ​ +0
2 2 a (x − x ​) 0

v ​ =0 0 x ​ =0 0 3 m/s2

t = 5 s

v(t) = v ​ +0 a t = 0 + 3t t = 5 s

v(5) = 3 × 5 = 15 m/s 

x(t) = x ​ +0 v ​t +0 ​at =2
1 2 0 + 0 + ​(3)(5 ) =2

1 2
​ ×2

3 25 = 37.5 m
15 m/s 37.5 m

Δv Δt

v(t) = v ​ +0 a t, x(t) = x ​ +0 v ​t +0 ​a t , v =2
1 2 2 v ​ +0

2 2 a (x − x ​) 0
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5. Kinematics in 2D and 3D

From 1D to 2D/3D Motion

In higher dimensions, an object’s position is represented by a vector rather than a single

number. The same basic concepts apply as in 1D, but each coordinate is now a function

of time.

POSITION VECTOR: A vector that describes the location of an object in space. In 2D,

it is written as:

and in 3D as:

Units: meters (m).

r(t) = x(t) +î y(t) ​ ĵ

r(t) = x(t) +î y(t) ​ +ĵ z(t)  k̂
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Displacement in 2D and 3D

Displacement is the change in the position vector over a time interval:

Note: Displacement is a vector and accounts for both magnitude and direction.

Velocity

Average Velocity

Δr = r(t ​) −2 r(t ​) 1
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Average velocity over a time interval  is defined as:

Units: meters per second (m/s).

Instantaneous Velocity

Instantaneous velocity is the derivative of the position vector with respect to time:

Graphically, it is the slope of the tangent line to the -  (or - ) curve.

Acceleration

Acceleration is the rate of change of velocity with respect to time.

Average Acceleration

Instantaneous Acceleration

Units: meters per second squared (m/s²).

Projectile Motion (2D Motion Example)

When an object is launched with an initial speed  at an angle  (relative to the

horizontal), under uniform gravity  and no air resistance, we have:

No acceleration in the -direction ( )

A constant acceleration  in the -direction

[t ​, t ​]1 2

v ​ =avg ​ 
t ​ − t ​2 1

r(t ​) − r(t ​)2 1

v(t) = ​ =
dt

dr(t)
​ +(

dt

dx) î ​ ​ (+  ​  in 3D) (
dt

dy) ĵ (
dt

dz) k̂

x t r t

a ​ =avg ​ 
t ​ − t ​2 1

v(t ​) − v(t ​)2 1

a(t) = ​ =
dt

dv(t)
​ =

dt2

d r(t)2

​ +(
dt2

d x2

) î ​ ​ (+  ​  in 3D) (
dt2

d y2

) ĵ (
dt2

d z2

) k̂

v ​0 θ

g

x a ​ =x 0

−g y
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Equations of Motion

INITIAL VELOCITIES:

POSITION:

VELOCITY:

The velocity vector remains tangent to the parabolic trajectory.

Projectile motion is a common example in two dimensions. When an object is projected,

its motion can be decomposed into horizontal and vertical components.

Key Quantities:

Time of flight determined by the vertical motion.

Horizontal range calculated from  at the time of landing.

v ​ =0x v ​ cos θ, v ​ =0 0y v ​ sin θ0

​ ​

x(t)

y(t)

= v ​ t = v ​ cos θ ⋅ t,0x 0

= v ​ t − ​g t = v ​ sin θ ⋅ t − ​g t0y 2
1 2

0 2
1 2

v(t) = ⟨v ​, v ​ −0x 0y g t⟩ = ⟨v ​ cos θ,  v ​ sin θ −0 0 g t⟩

x(t)
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Relative Velocity

Relative velocity describes the velocity of an object as observed from different frames of

reference:

 is the velocity of particle  relative to observer .

 is the velocity of  relative to .

 is the velocity of  relative to .

v ​ =P/A v ​ +P/B v ​B/A

v ​P/A P A

v ​P/B P B

v ​B/A B A
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Example: Projectile from a Cliff

Consider a projectile launched horizontally from a cliff:

Initial Conditions:

Initial position: 

Initial velocity: 

Equations of Motion:

Analysis:

Time of flight is determined by when  (assuming the ground is at 

).

The horizontal range is then  at that time.

(x ​, y ​)0 0

v ​ =0 (v ​, 0)0x

x(t) = x ​ +0 v ​t 0x

y(t) = y ​ −0 ​gt  
2
1 2

y(t) = 0 y = 0

x(t)
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Deriving Maximum Height and Horizontal Range

Assume the projectile is launched from . We use the integral or derivative

approaches as follows:

1. Maximum Height, 

This occurs when vertical velocity becomes zero. From :

Substituting  into :

Simplify:

y = 0

h ​max

v ​(t) =y v ​ sin θ −0 g t

0 = v ​ sin θ −0 g t ​ ⟹h t ​ =h ​

g

v ​ sin θ0

t ​h y(t)

h ​ =max y(t ​) =h v ​ sin θ ​ −0 (
g

v ​ sin θ0 ) ​g ​

2
1 (

g

v ​ sin θ0 )
2

2 2 2
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If the projectile is not launched vertically ( ), the formula remains valid; the

maximum height just depends on the  factor.

2. Horizontal Range, 

The range is the horizontal distance when the projectile returns to . Solve 

 for :

The non-zero solution is

Plug into  to get

Using the identity :

Constant Acceleration (Kinematics) Cheat Sheet

Velocity as a Function of Time:

Position as a Function of Time:

Velocity as a Function of Position (Time Eliminated):

h ​ =max ​ −
g

v ​ sin θ0
2 2

​ =
2g

v sin θ0
2 2

​

2g
v ​ sin θ0

2 2

θ = ​2
π

sin θ2

R ​max

y = 0
y(t) = 0 t = 0

0 = v ​ sin θ t −0 ​g t ⟹2
1 2 t(v ​ sin θ −0 ​g t) =2

1 0

t ​ =f ​ 
g

2v ​ sin θ0

x(t)

R ​ =max x(t ​) =f v ​ cos θ ⋅0 ​ =(
g

2v ​ sin θ0 ) ​

g

2v ​ sin θ cos θ0
2

sin(2θ) = 2 sin θ cos θ

R ​ =max ​

g

v ​ sin(2θ)0
2

v = v ​ +0 a t 

x = x ​ +0 v ​ t +0 ​ a t  2
1 2

2 2
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Displacement Using Average Velocity:

The average velocity under constant acceleration is

so that the displacement is given by

Summary

Position and Displacement: In 2D/3D, position is described by a vector , and

displacement is the difference between two position vectors.

Velocity: Average velocity is the displacement divided by the time interval, while

instantaneous velocity is the derivative .

Acceleration: Defined as the derivative of velocity, , with both average

and instantaneous forms.

Projectile Motion: Motion in two dimensions where horizontal and vertical motions

are treated independently.

Relative Velocity: How velocities transform between different reference frames.

Understanding these vector-based kinematic concepts is crucial for analyzing complex

motions in both two and three dimensions.

Self Test

Self-Test: Lecture 5

Raw Notes

Raw Notes

v =2 v ​ +0
2 2 a (x − x ​) 0

=v̄ ​ 2
v+v ​0

x − x ​ =0 t =v̄ ​(v +2
1 v ​) t0

r(t)

v(t) = ​

dt
dr

a(t) = ​

dt
dv
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6. Kinematics in 2D and 3D -
Circular Motion, Forces, and
Newton's Laws

Circular Motion
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Uniform Circular Motion (UCM)

Position Function:

The position vector for an object moving in a circle of radius  is given by:

Tangential Displacement and Velocity:

Displacement:

In circular motion, the small displacement  along the circle is tangential to the

path. For a small angle  (in radians), the arc length is:

Velocity:

The velocity vector is the time derivative of the position vector and is always

tangent to the circular path:

R

r(t) = R cos(θ(t)) i + R sin(θ(t)) j

Δs

θ

Δs = Rθ

v(t) = ​ (tangent to the circle)
dt

dr
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Even though the speed (magnitude of velocity) might be constant in UCM, the

direction changes continuously.

Acceleration (Radial/Normal Component):

For uniform circular motion, the radial (centripetal) acceleration, which is directed

inward, is:

Using a small-angle approximation ( ), one can relate the changes in

displacement and velocity:

Taking the limit as  leads to the acceleration formula.

Non-Uniform Circular Motion

Characteristics:

In non-uniform circular motion, the speed is not constant ( ).

a ​ =rad ​

R

v2

sin θ ≈ θ

Δs = vΔt and Δv = vθ

Δt → 0

∣v ​∣ =1  ∣v ​∣2
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Tangential Acceleration:

There is an additional component of acceleration along the tangent to the circle due

to the change in speed:

Total Acceleration:

The total acceleration is the vector sum of the radial (centripetal) and tangential

accelerations:

with the radial acceleration still given by:

and directed inward.

a ​ =tan ​

dt

dv

a = a ​ +rad a ​tan

a ​ =rad ​

R

v2
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Period and Frequency

Period (T):

The time required for one complete cycle (full circle). For uniform circular motion:

Frequency (f):

The number of cycles per unit time:

Radial Acceleration in Terms of Period:

Expressing  using the period:

Angular vs. Linear Displacement and Velocity

T = ​
(seconds)

v

2πR

f = ​ (Hz)
T

1

a ​rad

a ​ =rad ​

T 2

4π R2
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Angular Displacement ( ):

Measured in radians, it represents the angle through which an object has rotated.

Linear Displacement (s):

The arc length on the circle corresponding to the angular displacement:

Angular Velocity ( ):

The rate of change of angular displacement:

θ

s = Rθ

ω

ω = ​

dt

dθ
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Linear Velocity (v):

Related to angular velocity by:

This shows the direct relation between the angular motion and the linear speed along

the circular path.

Forces

Overview of Fundamental Forces

Gravitational Force:

The attractive force between two masses, described by Newton's law of universal

gravitation.

Electromagnetic Force:

The force between charged particles, responsible for electricity, magnetism, and

light.

Strong Nuclear Force:

The force that holds the protons and neutrons together in the nucleus.

Weak Nuclear Force:

Responsible for certain types of radioactive decay.

v = ωR
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Fifth Force (Hypothetical):

Some theories suggest the existence of an additional force beyond the four known

fundamental forces. Experiments such as the Eötvös experiment have investigated

potential anomalies.

Force as a Vector

Definition:

Force is a vector quantity, meaning it has both magnitude and direction.

Components:

Any force vector can be broken down into components (e.g., horizontal and vertical).

Vector Addition:

The net force acting on an object is the vector sum of all individual forces acting on

it:

Newton's Laws of Motion

Newton's First Law (Law of Inertia)

Statement:

An object at rest remains at rest, and an object in motion continues in motion with a

constant velocity unless acted upon by a net external force.

Inertial Frame of Reference:

Newton's laws are valid in inertial frames—reference frames that are not accelerating.

In a non-inertial frame, additional fictitious forces (like the centrifugal force) appear.

Examples:

A hockey puck sliding on ice eventually slows due to friction (an external force).

In space (an inertial environment), an astronaut will float indefinitely if no forces

act.

Newton's Second Law (Law of Acceleration)

F ​ =net F ​∑ i
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Statement:

The net force acting on an object is equal to the mass of the object multiplied by its

acceleration:

Explanation:

This law quantitatively relates the change in an object's motion to the applied force.

Examples:

Pushing a shopping cart: A greater force produces a higher acceleration.

Circular motion: The centripetal force required to maintain circular motion is

given by .

Newton's Third Law (Action-Reaction Law)

Statement:

For every action, there is an equal and opposite reaction. If object A exerts a force on

object B, then object B exerts a force of equal magnitude but opposite direction on

object A.

Examples:

Rocket propulsion: Expelling gas out of the rocket’s engine produces a thrust in

the opposite direction.

Walking: The foot pushes backward against the ground, and the ground pushes

the foot forward.

F = ma

F = m ​R
v2
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Mass vs. Weight

Mass:

A scalar quantity that measures the amount of matter in an object (measured in

kilograms).

Weight:

A vector quantity that represents the gravitational force acting on an object:

where  is the acceleration due to gravity (approximately  on Earth).

Key Difference:

Mass is constant regardless of location, while weight varies with the local

gravitational field.

Final Summary & Key Takeaways

Circular Motion:

Weight = m ⋅ g

g 9.8 m/s2
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In uniform circular motion, displacement and velocity are tangential, with

constant speed but continuously changing direction.

Non-uniform circular motion introduces tangential acceleration in addition to

centripetal (radial) acceleration.

The relationship between angular and linear quantities (  vs. ,  vs. ) is crucial

in analyzing circular motion.

Forces:

Fundamental forces (gravitational, electromagnetic, strong, weak, and possibly a

fifth force) govern the interactions between objects.

Force is a vector and is the basis for understanding motion through vector

addition.

Newton's Laws:

Newton's First Law emphasizes inertia and the importance of inertial frames.

The Second Law quantifies the relation between force, mass, and acceleration.

The Third Law establishes the concept of action-reaction pairs.

The distinction between mass and weight is fundamental in physics.

This note integrates the provided details with additional context and explanations to

create a clear, comprehensive resource on circular motion, forces, and Newton's laws.

Raw Notes

Raw Notes

θ s ω v
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7. Newton's Laws - Force Analysis

Gravitational Force

GRAVITATIONAL FORCE: Gravitational force, or weight, is the force exerted by the Earth to pull

objects toward its center.

Formula:

: Mass of the object

: Acceleration due to gravity (approximately ).

Key Points:

Acts vertically downward.

Independent of the object’s orientation.

F ​ =g m× g

m

g 9.8 m/s2
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Normal Force

NORMAL FORCE: The normal force is the support force provided by a surface, acting

perpendicular to that surface.

Characteristics:

On a flat surface, the normal force equals the gravitational force in magnitude.

On an inclined surface, the normal force is reduced and calculated as:

where  is the angle of the incline.

Usage:

Adjusts to balance forces perpendicular to the contact surface.

F ​ =N m× g × cos(θ) 

θ
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Force Analysis & Free Body Diagram (FBD)

A Free Body Diagram is an essential tool to visualize all external forces acting on an object. When

drawing an FBD:

Steps:

Isolate the Object: Represent it as a simple shape or a dot.

Identify All Forces:

Gravitational Force Drawn as an arrow pointing straight down.

Normal Force Drawn perpendicular to the contact surface.

Applied or Other Forces:

If a force is neither horizontal nor vertical, show its angle relative to a reference axis

(horizontal or vertical).

Clearly label the force and its angle.

Remark: Accurate angle representation is crucial when forces act at an angle to ensure proper

component resolution.

(F ​) :g

(F ​) :N
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Applying Newton’s Laws

Newton’s laws are the foundation of force analysis and motion prediction.

Newton’s First Law (Law of Inertia)

Statement: An object remains at rest or moves with a constant velocity unless acted upon by a

net external force.

Formula:

Application:

If all forces balance (net force equals zero), the object remains in equilibrium.

Newton’s Second Law (Law of Acceleration)

Statement: The net force acting on an object equals its mass multiplied by its acceleration.

F =∑ 0 ⇒ a = 0
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Formula:

Application Examples:

Flat Surface:

Inclined Plane:

Resolve forces into components parallel and perpendicular to the incline to determine the

net force and acceleration.

Newton’s Third Law (Action-Reaction)

Statement: For every action, there is an equal and opposite reaction.

Formula:

Example:

The normal force exerted on an object by a surface is met by an equal force exerted by the

object on that surface.

Conclusion

Understanding how to analyze forces and apply Newton’s laws is crucial for solving problems in

mechanics. By:

Identifying gravitational and normal forces,

Constructing a clear Free Body Diagram with proper force directions (including angles for non-

vertical/horizontal forces),

And applying Newton's laws, you can accurately predict and analyze an object's motion in

various physical scenarios.

Raw Notes

Raw Notes

F =∑ m× a 

F ​ −N F ​ =g 0 ⇒ F ​ =N m× g 

F ​ =A→B −F ​B→A
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8. Friction and Its Role in Multi-
Body Systems

This note explains friction, its types, and how friction forces interact between objects in

contact. It also covers the role of friction in uniform circular motion where there is no

tangential acceleration.

Friction

FRICTION: Friction is the force that acts parallel to the contact area between two

surfaces. Its direction is opposite to the relative motion between the surfaces. When

one object is on top of another, friction can either prevent slipping or allow the

objects to move together if the frictional force is sufficient.

Friction always acts along the interface between surfaces.

According to Newton's Third Law, the friction force acting on one object has an

equal and opposite counterpart on the other.

Friction exists even in the absence of motion (static friction).
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Kinetic Friction

KINETIC FRICTION: Kinetic friction occurs when two surfaces slide relative to each

other. It is calculated by: 

where  is the coefficient of kinetic friction and  is the normal force.

Kinetic friction opposes the relative sliding motion between surfaces.

f ​ =k μ ​ ×k N

μ ​k N
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Static Friction

STATIC FRICTION: Static friction acts when there is no relative motion between two

contacting surfaces. Its maximum value is: 

where  is the coefficient of static friction (typically greater than ) and  is the

normal force.

Static friction adjusts to balance an applied force up to its maximum limit.

When the applied force  is less than or equal to this maximum, the objects remain

stationary.

If  exceeds the maximum static friction, motion begins and kinetic friction takes

over.

f ​ ≤s μ ​ ×s N

μ ​s μ ​k N

F

F
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Friction in Multi-Body Systems

When one object is placed on top of another, friction determines whether the

objects move together or slip relative to each other.

In a system where  is on top of  and :

The static friction between the two objects can allow them to move as a single

unit if it is strong enough.

By Newton's Third Law, the friction force exerted on  by  is equal in

magnitude and opposite in direction to the friction force exerted on  by .

m ​2 m ​1 m ​ =1 2m ​2

m ​2 m ​1

m ​1 m ​2
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Friction in Uniform Circular Motion

In uniform circular motion, there is no tangential acceleration ( ); the net

force is entirely radial (centripetal).

The net force needed to maintain circular motion is:

Friction (or another force) may act as the centripetal force, directing the object

towards the center of the circle.

a ​ =tan 0

F ​ =net m × a ​rad
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Conclusion

Understanding friction is essential in analyzing the dynamics of multi-body systems.

Friction, acting parallel to surfaces, can either prevent or facilitate relative motion. In

systems with objects in contact, such as when one object rests on another, friction may

allow them to accelerate together if it is sufficient. Additionally, in uniform circular

motion, friction can provide the necessary centripetal force even when no tangential

acceleration is present.
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10. Fundamentals of Work and
Energy

Work and Its Definition

WORK (Integral Form): Work is defined as the integral of the force along the path of

displacement,

For a constant force, work simplifies to the dot product:

Constant Force Work: 

For a variable force, the work is computed by integrating the force over the

displacement:

Variable Force Work: 

W ​ =f F ⋅∫ dl or W = F cos(α) dl. ∫

W = F ⋅ d. 
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Work–Energy Theorem

WORK–ENERGY THEOREM: The net work done on an object is equal to its change in

kinetic energy.

Sign of Work:

Positive Work: When the force component is in the direction of displacement.

Negative Work: When the force opposes the displacement.

Zero Work: When the force is perpendicular to the displacement.

Springs (Hooke’s Law) and Spring Work

HOOKE’S LAW: The restoring force of a spring is proportional to its displacement,

given by

W = F(x) dx.∫

W ​ =net ΔKE = KE ​ −final KE ​.initial
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Work Done by a Spring (Variable Force):

The work done by a spring as it is compressed or stretched from  to  is

This work is related to the change in the spring’s potential energy.

Gravitational Work and Inclined Planes

GRAVITATIONAL WORK on an Incline: When a mass  moves along an inclined

plane with angle , the gravitational work depends on the component of weight along

the plane:

Other Forces Considered:

Normal Force : Acts perpendicular to the plane.

Frictional Force : Given by , where  is the coefficient of friction.

F ​ =spring −k x.

x ​1 x ​2

W ​ =spring ​
(−kx) dx =∫

x ​1

x ​2

− ​k x ​ − x ​ . 2
1 ( 2

2
1
2)

m

θ

W ​ =g mg sin(θ) (if motion is parallel to the incline). 

N

f f = μN μ
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Additional Concepts

CONSTANT SPEED AND NET WORK: If an object moves at constant speed ( ),

the net work done on the system is zero, implying no change in kinetic energy.

Units:

Work and energy are measured in Joules (J).

GENERAL CONCEPT: Work represents how energy is added or removed from a

system through the application of forces during motion.

Final Summary & Takeaways

Definition of Work: Work is calculated as either the dot product of force and

displacement (for constant forces) or as an integral for variable forces.

Work–Energy Theorem: The net work done on an object is equal to its change in

kinetic energy.

Spring Work: Hooke’s law describes the restoring force of a spring, and the work

done by a spring is proportional to the square of the displacement.

Gravitational Work on Inclines: Calculated based on the component of weight

along the incline, with friction and normal forces playing significant roles.

Practical Examples: Numerical exercises illustrate how to compute work in different

scenarios, reinforcing theoretical concepts with real-world applications.

Raw Notes

Raw Notes

a = 0
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11. Work, Energy, and Power

Work and Its Definition

WORK (Integral Form): Work is defined as the integral of the force along the path of

displacement,

For a constant force, the work simplifies to:

Constant Force Work:

Units: Work is measured in Joules (J).

Graphical Interpretation:

The area under a force vs. displacement curve represents the work done by a varying

force.

Work–Energy Theorem

W = F ⋅∫ dl or W = F cos(θ) dl.∫

W = F ⋅ d = F d cos(θ)
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WORK–ENERGY THEOREM: The net work done on an object is equal to the change in

its kinetic energy,

Applicability:

This theorem holds whether the force is constant or variable. For variable forces, the

integral form of work is used.

Sign Considerations:

Positive Work: When the force component is in the direction of displacement.

Negative Work: When the force opposes the displacement.

Zero Work: When the force is perpendicular to the displacement.

Potential Energy (U)

Gravitational Potential Energy

GRAVITATIONAL POTENTIAL ENERGY: For an object of mass  at height ,

and a change in potential energy is given by  done by the conservative

force.

Spring (Elastic) Potential Energy

SPRING POTENTIAL ENERGY: For a spring obeying Hooke’s law,

the work done by the spring when compressed or stretched is

which is equivalent to the change in spring potential energy.

W ​ =net ΔKE = KE ​ −final KE ​.initial

m y

U ​ =g mgy,

ΔU = −W

F ​ =spring −kx,

W ​ =spring (−kx) dx =∫ − ​k (x ​ −2
1

2
2 x ​),1

2
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Conservative vs. Non-Conservative Forces

CONSERVATIVE FORCES: Forces such as gravity and ideal spring forces that have an

associated potential energy. Characteristic: The work done by these forces is path

independent.

NON-CONSERVATIVE FORCES: Forces like friction and air resistance that do not

have a recoverable potential energy component. Effect: They convert mechanical

energy into other forms (e.g., heat), so mechanical energy is not conserved.

Energy Implications:

With only conservative forces, the total mechanical energy 

 is conserved.

The presence of non-conservative forces results in a net change in mechanical

energy.

5. Conservation of Mechanical Energy

CONSERVATION OF MECHANICAL ENERGY: In the absence of non-conservative

forces, 

Applications:

Determining maximum height in projectile motion.

Analyzing motion in vertical loops or roller coaster problems.

Power

POWER: Power is defined as the rate at which work is done or energy is transferred,

In cases where force and velocity are constant in direction, 

Units: Power is measured in Watts (W), where .

E ​ =mechanical

KE + U

KE ​ +i U ​ =i KE ​ +f U ​. f

P = ⋅F .v

1 W = 1 J/s
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Final Summary & Takeaways

Work is calculated as the dot product of force and displacement or, for variable

forces, via integration.

The work–energy theorem states that the net work done on an object equals its

change in kinetic energy.

Potential energy can be stored as gravitational or spring (elastic) potential energy,

with the work done by conservative forces being recoverable.

Conservative forces conserve mechanical energy, whereas non-conservative

forces (like friction) convert mechanical energy into other forms.

Conservation of mechanical energy is used to analyze systems where only

conservative forces are acting.

Power quantifies how quickly work is done or energy is transferred.
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12. Review: Work, Energy, and
Power

Work & Energy Review Note

Key Concepts Recap

WORK: Defined as the integral of force along the displacement, , or

simplified for constant force to .

Units: Joules (J).

WORK–ENERGY THEOREM: The net work done on an object equals its change in

kinetic energy, .

Energy Forms

Gravitational Potential Energy:

 with changes linked to work done by conservative forces.

Spring (Elastic) Potential Energy:

W = F ⋅∫ dl
W = F d cos(θ)

W ​ =net ΔKE

U ​ =g mgy
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Derived from Hooke’s law with  leading to work 

.

Forces & Energy Conservation

CONSERVATIVE FORCES: Path-independent forces (e.g., gravity, ideal springs) that

have recoverable potential energy.

NON-CONSERVATIVE FORCES: Forces (e.g., friction, air resistance) that convert

mechanical energy to other forms, breaking energy conservation.

Conservation of Mechanical Energy:

When only conservative forces are present,  remains constant.

Power

POWER: The rate at which work is done, expressed as .

Units: Watts (W), where .

Final Takeaways

Work is computed via dot product or integration for variable forces.

The work–energy theorem links net work to kinetic energy changes.

Potential energy comes in gravitational and elastic forms.

Conservative forces conserve mechanical energy, while non-conservative ones

dissipate it.

Power measures the rate of energy transfer.

Raw Notes

Raw Notes

F ​ =spring −kx W ​ =spring

− ​k (x ​ −2
1

2
2 x ​)1

2

KE + U

P = ⋅F v

1 W = 1 J/s
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13. Energy Concepts Overview
and Energy Diagram

Brief Overview of Key Energy Concepts

Kinetic Energy: The energy an object possesses due to its motion. It is given by

where  is mass and  is velocity.

Work-Energy Theorem: States that the net work performed on an object is equal to

its change in kinetic energy:

Spring Work:

For a spring obeying Hooke's Law, the work done when compressing or stretching the

spring is

KE = ​mv ,
2
1 2

m v

W ​ =net ΔKE.

W ​ =spring − ​k(x ​ −
2
1

2
2 x ​),1

2
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where  is the spring constant and  and  are the initial and final displacements

respectively.

Conservative Forces vs. Non-conservative Forces:

Conservative Forces:

These forces (e.g., gravity, ideal spring forces) have potential energy associated

with them. The work done is independent of the path and is fully recoverable.

Non-conservative Forces:

Examples include friction and air resistance. Their work depends on the path and

typically dissipates energy as heat or sound.

Potential Energy  and Total Energy Work :

Potential energy is energy stored by an object due to its position or configuration. In

conservative cases, the work done by or against conservative forces is stored as

potential energy. In scenarios involving non-conservative forces, there is an additional

loss or change in total mechanical energy.

Mechanical Energy: Defined as the sum of kinetic and potential energies:

In systems with only conservative forces, mechanical energy is conserved; when non-

conservative forces act, mechanical energy changes accordingly.

Energy Diagrams

k x ​1 x ​2

(U) (W ​)t

E ​ =mechanical KE + U .
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14. Work & Kinetic Energy,
Potential Energy & Energy
Conservation

Work

Constant force

Variable force

Kinetic Energy & Work–Energy Theorem

Kinetic energy

Work–Energy Theorem

W = ⋅F Δ =r F d cos θ

W = ​ ⋅∫
​ri

​rf

F dr

K = ​ mv2
1 2
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Conservative Forces & 

A force  is conservative if .

Gravity (near Earth)

Spring

Mechanical Energy Conservation

Define

If only conservative forces act

If non‐conservative work  occurs

W ​ =net ΔK = K ​ −f K ​i

U

​Fc W ​ =A→B −[U(B) − U(A)]

U ​(y) =g mg y

U (x) =s ​ k x2
1 2

E ​ =mech K + U .

E ​ =mech,i E ​ ⟹mech,f K ​ +i U ​ =i K ​ +f U ​.f

W ​nc

W ​ =nc ΔE ​.mech
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15. Linear Momentum & Impulse

Momentum & Impulse

Linear momentum

Impulse

Momentum Conservation

In an isolated system (no net external impulse):

Collisions

​ =p mv

=J ​ dt =∫
t ​i

t ​f

F Δ ​p

​ ​ =∑ pbefore ​ ​.∑ pafter
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Collision type Momentum KE Notes

Elastic ✓ ✓
Objects “bounce”; no loss of kinetic

energy.

Inelastic ✓ ✗
Some KE → internal energy (heat,

deformation).

Perfectly

inelastic
✓ ✗

Bodies stick together; maximal KE

loss.

1D Two‐Body Formulas

Perfectly inelastic

Elastic

Coefficient of Restitution

: perfectly elastic

: partially inelastic

: perfectly inelastic

v ​ =f ​

m ​ + m ​1 2

m ​v ​ + m ​v ​1 1i 2 2i

​ ​

v ​1f

v ​2f

= ​ v + ​ v ​,
m ​ + m ​1 2

m ​ − m ​1 2
1i

m ​ + m ​1 2

2m ​2
2i

= ​ v + ​ v ​.
m ​ + m ​1 2

2m ​1
1i

m ​ + m ​1 2

m ​ − m ​2 1
2i

e = ​ =
relative speed before
relative speed after

​.
v ​ − v ​1i 2i

v ​ − v ​2f 1f

e = 1

0 < e < 1

e = 0
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16. Rotation & Rigid Bodies

Rotational Kinematics

Equations (constant ):

Moment of Inertia

Parallel‐axis theorem:

ω = ​, α =
dt

dθ
​

dt

dω

α

​ ​

ω

θ

ω2

= ω ​ + α t,0

= θ ​ + ω ​ t + ​α t ,0 0 2
1 2

= ω ​ + 2α (θ − θ ​).0
2

0

I = m r ​   or   I =∑ i i
2 r dm.∫ 2

I = I ​ +CM M d2
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Torque & Newton’s 2nd Law (Rotation)

Torque: 

Rotation analogue:

Rotational Work & Energy

Work:

Rotational KE:

Rolling (no slipping):

Angular Momentum

Definition: 

Conservation: if , then  is constant.

When Is What Conserved?

=τ ×r .F

τ ​ =∑ ext I α. 

W = τ dθ.∫

K ​ =rot ​ I ω .2
1 2

K = ​ mv ​ +2
1

cm
2 I ​ω , v ​ =2

1
cm

2
cm ωR.

=L I .ω

τ ​ =∑ ext 0 L
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Quantity Conserved if…

Linear

momentum
 (isolated system)

Mechanical

energy
No net non‐conservative work )

Kinetic energy Only in elastic collisions or no NC forces

Angular

momentum

​ =∑Fext 0

(W ​ =nc 0

τ ​ =∑ ext 0
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17. Rotational Kinematics and
Dynamics

Objective & Scope

This note aims to cover the fundamental concepts of rotational motion in rigid bodies,

specifically focusing on rotational kinematics and rotational dynamics.

Rotational Kinematics

Definitions

RIGID BODY: An object whose particles maintain constant distances from one

another under the action of external forces.

ANGULAR DISPLACEMENT ( ): The angle through which a rigid body rotates about a

fixed axis.

ANGULAR VELOCITY ( ): The rate of change of angular displacement, defined as:

θ

ω

ω = ​

dt

dθ

10/1/25, 3:09 PM 17. Rotational Kinematics and Dynamics

file:///C:/Users/Aykhan/Downloads/PHYS101/PHYS101%2019d34575a838807cabc3c5e797dccedd/17%20Rotational%20Kinematics%20and%20Dyn… 1/6

Guest
Rectangle



ANGULAR ACCELERATION ( ): The rate of change of angular velocity:

Formulas for Rotational Kinematics

These equations describe rotational motion under constant angular acceleration:

Angular velocity:

Angular displacement:

Relationship between angular displacement and velocities:

Relation between linear and angular quantities:

α

α = ​

dt

dω

ω = ω +0 αt

θ = θ ​ +0 ω ​t +0 ​αt
2
1 2

ω =2 ω ​ +0
2 2α(θ − θ ​)0

v = rω, a ​ =t rα, a ​ =c ​ =
r

v2

rω2
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Rotational Dynamics

Definitions

TORQUE ( ): A measure of the rotational effect of a force, defined as:

where:

 is the distance from the axis of rotation,

 is the magnitude of the force,

 is the angle between the force vector and the lever arm.

Newton's Second Law for Rotation

Analogous to linear motion ( ), rotational motion obeys:

 = net torque acting on the rigid body

τ

τ = rF sinϕ

r

F

ϕ

F = ma

τ ​ =net Iα

τ ​net
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 = moment of inertia

 = angular acceleration

Moment of Inertia ( )

MOMENT OF INERTIA: A quantity expressing a rigid body's tendency to resist

angular acceleration, calculated as: 

Common Moments of Inertia:

Solid sphere: 

Solid cylinder (disk): 

Hollow cylinder: 

Thin rod about center: 

Thin rod about end: 

I

α

I

I = m ​r ​∑ i i
2

I = ​MR5
2 2

I = ​MR2
1 2

I = MR2

I = ​ML12
1 2

I = ​ML3
1 2
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Example: Torque and Angular Acceleration

Example:

A force of  is applied tangentially at the rim of a solid disk (

). Determine the angular acceleration.

Solution:

Calculate torque:

Moment of inertia for solid disk:

Angular acceleration:

Parallel Axis Theorem

PARALLEL AXIS THEOREM: The moment of inertia  about any axis parallel to and a

distance  away from an axis passing through the center of mass is given by:

 is the moment of inertia about the axis through the center of mass.

 is the total mass of the rigid body.

 is the perpendicular distance between the two parallel axes.

10 N M = 4 kg,R = 0.5 m

τ = rF = (0.5 m)(10 N) = 5 N ⋅m

I = ​MR =
2
1 2

​(4 kg)(0.5 m) =
2
1 2 0.5 kg⋅m2

α = ​ =
I

τ
​ =

0.5
5

10 rad/s2

I

d

I = I ​ +CM Md2

I ​CM

M

d
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Final Summary & Key Takeaways

Understand clearly the difference between angular displacement, velocity, and

acceleration.

Rotational kinematic equations parallel those of linear motion.

Torque is essential in rotational dynamics and is analogous to force in linear motion.

Moment of inertia is critical to analyzing rotational motion and depends on mass

distribution.
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18.  Rotational Energy, Angular
Momentum, and Equilibrium

Objective & Scope

This note expands upon rotation and rigid body concepts, covering rotational kinetic

energy, angular momentum, conservation laws, and rotational equilibrium. 

Rotational Energy

Rotational Kinetic Energy

ROTATIONAL KINETIC ENERGY: Energy due to rotation, given by:

Work-Energy Principle in Rotational Motion

The work-energy theorem for rotation is given as:

K ​ =rot ​Iω
2
1 2

W ​ =net ΔK ​ =rot ​I(ω ​ −
2
1

f
2 ω ​)i

2
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Angular Momentum

Definition

ANGULAR MOMENTUM ( ): A measure of rotational inertia in motion, defined as:

For a particle or object in linear motion relative to a point:

Conservation of Angular Momentum

CONSERVATION OF ANGULAR MOMENTUM: If no external torque acts on a system,

the total angular momentum remains constant:

Example: Conservation of Angular Momentum

Example:

An ice skater spins with angular velocity  and moment of inertia . If she

reduces her moment of inertia to , what is her new angular velocity?

Solution:

Using conservation of angular momentum:

Substitute values:

Solve for :

L

L = Iω

L = r × p = rmv sinϕ

L ​ =i L ​ (if τ ​ =f net 0)

2 rad/s 3 kg*m2

1.5 kg*m2

I ω ​ =i i I ​ω ​f f

(3)(2) = (1.5)ω ​f

ω ​f

ω ​ =f ​ =
1.5
6

4 rad/s
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Rotational Equilibrium and Stability

Conditions for Equilibrium

A rigid body is in rotational equilibrium if:

Net external torque is zero:

Types of Equilibrium

Stable equilibrium: Displacement increases potential energy (returns to original

position).

Unstable equilibrium: Displacement decreases potential energy (moves away).

Neutral equilibrium: Displacement neither increases nor decreases potential

energy.

Rolling Without Slipping

ROLLING WITHOUT SLIPPING: A condition where a rolling object's linear velocity 

is directly related to its angular velocity  by: 

 is the linear (translational) velocity of the center of mass.

 is the radius of the rolling object.

 is the angular velocity.

Final Summary & Key Takeaways

Rotational kinetic energy and angular momentum are crucial concepts analogous to

their linear counterparts.

Angular momentum is conserved when no external torque acts on a system.

Understanding conditions for rotational equilibrium helps solve practical engineering

and physical problems.

τ ​ =net 0

v

ω

v = rω

v

r

ω
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19. Rotational Kinematics &
Dynamics

Rotational Kinematics

Angular Quantities

Angular Displacement : Angle through which a body rotates about a fixed axis.

Angular Velocity : Rate of change of angular displacement, .

Angular Acceleration : Rate of change of angular velocity, .

Kinematic Relations (constant )

Relation:

Linear–Angular Link:

θ

ω ω = ​

dt

dθ

α α = ​

dt

dω

α

ω = ω ​ +0 α t

θ = θ ​ +0 ω ​ t +0 ​α t2
1 2

ω =2 ω ​ +0
2 2α(θ − θ ​)0
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,

 ,

.

Rotational Dynamics

Torque & Newton’s Second Law

Torque : Tendency of a force  to rotate an object about an axis,

,

where  is lever arm and  is angle between  and lever arm.

Rotational Law:

,

analog of .

Moment of Inertia

Definition: , quantifying resistance to angular acceleration.

Parallel–Axis Theorem: If  is about a centroidal axis, then about a parallel axis a

distance  away,

.

Common Forms:

• Solid disk about center: 

• Solid sphere about center: 

• Thin rod about center: 

Example:

A solid disk of mass  and radius  has a tangential force  applied at

its rim.

v = r ω

a ​ =tangential r α

a ​ =centripetal r ω2

τ F

τ = r F sinϕ

r ϕ F

τ ​ =∑ ext I α

F ​ =net ma

I = r dm∫ 2

I ​CM

d

I = I ​ +CM M d2

I = ​MR2
1 2

I = ​MR5
2 2

I = ​ML12
1 2

4 kg 0.5 m F = 10 N
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Torque: 

Moment of Inertia:

Angular Acceleration:

Rotational Work & Energy

Work–Energy Principle

Rotational Work: .

Rotational Kinetic Energy:

.

Work–Energy Theorem:

.

Angular Momentum & Conservation

Angular Momentum : For a rigid body about a fixed axis,

.

Conservation: If , then  is constant.

Example:

An ice skater spins at  with . She pulls in her arms, reducing

 to .

New angular speed:

.

Equilibrium & Rolling

Rotational Equilibrium: Net external torque zero, .

Rolling Without Slipping:

Relationship between translational velocity  and angular velocity :

τ = RF = 0.5 × 10 = 5 N ⋅ m

I = ​(4)(0.5) =2
1 2 0.5 kg ⋅ m2

α = τ/I = 5/0.5 = 10 rad/s2

dW = τ dθ

K ​ =rot ​ I ω2
1 2

W ​ =net ΔK ​rot

L

L = I ω

τ ​ =∑ ext 0 L

ω ​ =i 2 rad/s I ​ =i 3 kg ⋅ m2

I ​f 1.5 kg ⋅ m2

I ​ω ​ =i i I ​ω ​ ⟹f f ω ​ =f ​ =
I ​f

I ​ω ​i i
​ =

1.5
3 × 2

4 rad/s

τ ​ =∑ ext 0

v ω
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.

Final Summary & Takeaways

Rotational kinematics mirror linear motion with .

Torque and moment of inertia govern rotational acceleration: .

Energy methods use  and work–energy.

Angular momentum conservation applies when no external torque acts.

Rolling without slipping links  and .

Common Mistakes: Omitting  in torque, forgetting  dependence on axis, or

neglecting  in rolling condition.

v = r ω

θ,ω,α

τ =∑ I α

K ​ =rot ​Iω2
1 2

v ω

sinϕ I

r
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20. Rotation & Dynamics of Rigid
Bodies

Rotation of Rigid Bodies

Rigid Body: An object whose internal distances remain constant during motion.

Axis of Rotation: The fixed line about which all points in the body move in circular

paths.

Angular Displacement The angle of rotation measured from a reference line.

Angular Velocity 

Angular Acceleration :

Linear–Angular Relationship: For a point at distance   from the axis:

θ :

ω :

ω = ​.
dt

dθ

α

α = ​.
dt

dω

r

2
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Dynamics of Rotational Motion

Torque : The rotational analogue of force,

where  is the angle between where  is the angle between  and the lever arm. 

and the lever arm.

Moment of Inertia  : The rotational analogue of mass:

quantifying a body’s resistance to angular acceleration.

Rotational Form of Newton’s Second Law:

Rotational Kinetic Energy:

Angular Momentum:

conserved when 

Examples

Solid Disk under Constant Torque

A solid disk (mass  , radius , ) experiences torque .

• Angular acceleration: .

v = r ω, a ​ =tangential r α, a ​ =centripetal r ω .2

τ

τ = r F sinϕ,

ϕ ϕ F F

I

I = r dm,∫ 2

τ ​ =∑ ext I α.

K ​ =rot I ω .2
1 2

L = I ω,

τ ​ =∑ ext 0.

M R I = ​MR2
1 2 τ

α = τ/I
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• After time  : .

Ice Skater Pulling In Arms

Initial , ; final  smaller when arms in.

Conservation: .

Final Summary & Takeaways

Rigid bodies rotate about fixed axes with  and .

Torque and moment of inertia govern rotational acceleration: .

Energy methods use .

Angular momentum  is conserved in absence of net torque.

Common Mistakes: Confusing torque direction, omitting the  factor, or

miscomputing  for composite bodies.

t ω = (τ/I) t

I ​i ω ​i I ​f

I ​ ω ​ =i i I ​ ω ​ ⟹f f ω ​ =f ​ ω ​

I ​f

I ​i
i

ω α

τ = Iα

K ​ =rot ​Iω2
1 2

L = Iω

sinϕ
I
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21. Angular Momentum

Definition for a Particle

Angular Momentum (  ) of a particle of mass  with position  and momentum 

 about a chosen origin: 

Angular Momentum of a Rigid Body

Total Angular Momentum: For a rigid body rotating about a fixed axis with angular

velocity  and moment of inertia  :

More generally,  or  in tensor form.

Relation to Torque

Torque–Angular Momentum Theorem:

L m r
p = mv

L = r × p. 

ω I

L = I ω. 

L = ​r ​ ×
i

∑ i (m ​v ​)i i L = Iω

dL
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where . A net external torque changes the system’s angular momentum.

Conservation of Angular Momentum

Conservation Law: If , then

Applies to isolated systems, underpinning phenomena from planetary motion to figure

skating.

Examples

Example (Particle in Central Force):

A particle moves under a central force .

 ⇒  constant ⇒ motion confined to a plane and equal areas in equal

times.

Example (Ice Skater):

An ice skater with moment of inertia  and angular speed  pulls in her arms to reduce

to .

Final Summary & Takeaways

 for particles;  for rigid bodies.

 links torque to change in angular momentum.

Conservation holds when external torques vanish, explaining fixed-plane motion

and speed-up in contracting systems.

Common Mistake: Neglecting sign or direction in the cross product; forgetting that

only external torques break conservation.

τ ​ =∑ ext ​,  
dt

dL

τ = r × F

τ ​ =∑ ext 0

L = constant.

F = f(r) r̂

r × F = 0 L

I ​i ω ​i

I ​f

I ​ ω ​ =i i I ​ ω ​ ⟹f f ω ​ =f ​ ω ​.
I ​f

I ​i
i

L = r × p L = I ω

τ =∑ dL/dt
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22.  Periodic Motion

Definitions & Key Concepts

Periodic Motion: Motion that repeats itself in equal intervals of time.

Period ( ): The time required for one complete cycle of motion.

Frequency ( ): Number of cycles per unit time, .

Angular Frequency ( ): Rate of phase change, .

Simple Harmonic Motion (SHM)

Governing Equation

SHM: A restoring force proportional to displacement:

.

From Newton’s second law,

where .

T

f f = 1/T

ω ω = 2πf = 2π/T

F = −k x

m +ẍ k x = 0 ⟹ +ẍ ω x =2 0,

ω = ​k/m
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General Solution

with amplitude  and phase constant .

Period & Frequency

Energy in SHM

Kinetic Energy:

Potential Energy:

Total Energy: Constant,

Examples

Example: Mass–Spring System

A block of mass  on a spring of constant :

If ,  , then

Example: Simple Pendulum (Small Angle)

x(t) = A cos(ωt + ϕ),

A ϕ

T = ​, f =
ω

2π
​.

2π
ω

K = ​m .2
1 ẋ2

U = ​k x .2
1 2

E = K + U = ​kA .2
1 2

m k

T = 2π ​, ω =​

k

m
​.​

m

k

m = 0.5 kg k = 200 N/m

ω = 20 rad/s, T = ​ ≈20
2π 0.314 s.
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Length , gravity :

For , ,

Final Summary & Takeaways

Periodic motion repeats in time with well-defined , , and .

SHM arises when a linear restoring force acts; governed by .

Energy oscillates between kinetic and potential forms, with constant total .

Mass–spring and pendulum illustrate how system parameters set the oscillation

period.

Common Mistake: Applying SHM formulas beyond their small-angle or linear-force

approximations.

L g

+θ̈ ​θ =
L

g
0 ⟹ T = 2π ​.​

g

L

L = 1 m g = 9.8 m/s2

T f ω

+ẍ ω x =2 0

E
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23.  Damped and Driven
Harmonic Motion

1. Damped Harmonic Motion

1.1 Equation of Motion

The motion of a mass–spring system with linear damping is governed by

: mass (kg)

: damping coefficient (kg/s)

: spring constant (N/m)

Divide by :

1.2 Damping Regimes

Define the damping ratio :

m +ẍ c +ẋ k x = 0 

m

c

k

m

+ẍ 2ζω ​ +0 ẋ ω ​x =0
2 0, where ω ​ =0 ​, ζ =​

m
k

​.
2 ​mk

c

ζ
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Underdamped ( )

Critically damped ( )

Overdamped ( )

1.2.1 Underdamped ( )

Solution:

Damped period: 

Envelope: 

1.2.2 Critically Damped ( )

Solution:

1.2.3 Overdamped ( )

Solution:

1.3 Energy Dissipation

Total energy decays exponentially:

Time constant: .

After , energy has dropped to  of initial.

2.1 Equation of Motion

Add a sinusoidal driving force :

ζ < 1

ζ = 1

ζ > 1

ζ < 1

x(t) = Ae cos(ω ​t +−ζω ​t0
d ϕ), ω ​ =d ω ​ ​.0 1 − ζ2

T ​ =d 2π/ω ​d

x ​(t) =max Ae−ζω ​t0

ζ = 1

x(t) = (A + B t) e−ω ​t0

ζ > 1

x(t) = C e +−ω ​(ζ+ ​) t0 ζ −12
De .−ω ​(ζ− ​) t0 ζ −12

E(t) = ​k A e . 2
1 2 −2ζω ​t0

τ = 1/(ζω ​)0

t = τ e ≈−2 14%

F (t) = F ​ cos(ωt)0
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2.2 Steady-State Solution

Assume particular solution:

Amplitude:

Phase lag:

2.3 Resonance & Quality Factor

Resonant frequency (underdamped):

Max amplitude at resonance:

Quality factor:

where  is the half-power bandwidth.

3. Phase Relationships & Power

Low  ( ):  nearly in phase with .

m +ẍ c +ẋ k x = F ​ cos(ωt). 0

x ​(t) =p A(ω) cos(ωt − ϕ(ω)). 

A(ω) = . 
(ω ​ − ω ) + (2ζω ω)0

2 2 2
0

2

F ​/m0

tanϕ(ω) = ​. 
ω ​ − ω0

2 2

2ζω ​ω0

ω ​ =r ω ​ ​ (ζ <0 1 − 2ζ2 1/ ​). 2

A ​ ≈max ​. 
2mω ​ζ0

2

F ​0

Q = ​ =
2ζ
1

​,  
Δω

ω ​0

Δω

ω ω ≪ ω ​0 x F
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At resonance: phase lag .

High  ( ):  lags by .

Average power absorbed:

4. Key Takeaways

Damping reduces amplitude and energy ( ).

Critical damping yields fastest return without oscillation.

Resonance maximizes steady-state amplitude; high  systems are sharply tuned.

Phase lag transitions from  to  as driving frequency increases.

ϕ = 90∘

ω ω ≫ ω ​0 x ϕ → 180∘

⟨P ⟩ = ​ c ω A (ω). 2
1 2 2

E ∝ e−2ζω ​t0

Q

0∘ 180∘

10/1/25, 3:09 PM 23. Damped and Driven Harmonic Motion

file:///C:/Users/Aykhan/Downloads/PHYS101/PHYS101%2019d34575a838807cabc3c5e797dccedd/23%20Damped%20and%20Driven%20Harmonic… 4/4

Guest
Rectangle



24. Gravitation 

1. Introduction to Gravitation

Gravitation is a fundamental interaction that causes every particle of matter in the universe to attract every other particle. It governs

the motion of planets, stars, galaxies, and governs phenomena on Earth such as falling objects, tides, and the behavior of satellites.

Historically, Isaac Newton formulated a quantitative law of universal gravitation in the 17th century.

Later, Johannes Kepler, based on Tycho Brahe’s observational data, formulated his three empirical laws of planetary motion.

In the early 20th century, Einstein’s General Theory of Relativity provided a deeper understanding of gravitation as curvature of

spacetime; however, for PHYS101, we focus on Newtonian gravity and Kepler’s laws.

2. Newton’s Law of Universal Gravitation

Statement: Every point mass attracts every other point mass in the universe with a force that is:

1. Directly proportional to the product of their masses.

2. Inversely proportional to the square of the distance between their centers.

Mathematically,

where:

 is the magnitude of the gravitational force between two masses (in newtons, N).

 are the masses of the two objects (in kilograms, kg).

 is the distance between the centers of the two masses (in meters, m).

 is the universal gravitational constant.

2.1 Gravitational Constant (G)

The gravitational constant  has an experimentally determined value:

All gravitational interactions in classical mechanics use this same constant.

F = G ​ 
r2

m ​m ​1 2

F

m ​,m ​1 2

r

G

G

G = 6.67430 × 10 m kg s−11 3 −1 −2
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2.2 Weight vs. Mass

Mass ( )

Scalar quantity.

Measure of the amount of matter in an object (in kg).

Invariant (does not change with position).

Weight ( )

Vector quantity.

The gravitational force exerted on an object by a massive body (e.g., Earth).

At Earth’s surface,  where .

Weight varies with local gravitational acceleration; mass remains constant.

3. Gravitational Field and Potential

3.1 Gravitational Field Strength ( )

Definition: The gravitational field strength at a point in space is the gravitational force per unit mass experienced by a small test

mass placed at that point.

For a point mass  located at the origin, the gravitational field at a distance  is radial and given by:

directed toward the mass .

Near the Earth’s surface ( ), .

3.2 Gravitational Potential ( )

Gravitational potential  at a point is defined as the gravitational potential energy per unit mass at that point (with reference

at infinity taken to be zero).

The negative sign indicates that work must be done (by an external agent) to bring a test mass from infinity to a distance .

Relationship between field and potential:

In spherical symmetry,

3.3 Gravitational Potential Energy ( )

For two point masses  and  separated by distance , the gravitational potential energy is:

m

W

W = mg g ≈ 9.81 m/s2

g

g(r) = ​ [units: N/kg or m/s ]
m ​test

Fg 2

M r

g(r) = ​ =
m ​test

F
G ​ 
r2

M

M

r ≈ R ​⊕ g ≈ 9.81 m/s2

V

V (r)

V (r) = −G
​
 

r

M

r

g(r) = −∇V (r) 

g(r) = − ​ =
dr

dV
G ​ 
r2

M

U

m M r

U(r) = −G ​ 
r

M m

10/1/25, 3:09 PM 24. Gravitation

file:///C:/Users/Aykhan/Downloads/PHYS101/PHYS101%2019d34575a838807cabc3c5e797dccedd/24%20Gravitation%2020034575a838803bb0cdf70… 2/8

Guest
Rectangle



If two masses are infinitely far apart ( ), . As they come together,  becomes more negative.

In the context of a single mass  in the gravitational field of a much larger mass :

4. Motion Under Gravity Near Earth’s Surface

4.1 Uniform Gravitational Field Approximation

For motions close to Earth’s surface where  , gravitational acceleration  can be treated as uniform:

4.2 Equations of Motion

For an object thrown or dropped in a uniform gravitational field (vertical motion):

Displacement:

Velocity (vertical component):

Kinematic equation (no explicit time):

(Here, upward is taken as positive; if downward is chosen positive, sign of  changes accordingly.)

4.3 Escape Velocity

Definition: The minimum initial speed needed for a mass  to “escape” from the gravitational pull of a mass  (i.e., reach infinity

with zero kinetic energy).

Starting at radius  with speed , energy conservation gives:

For Earth ( , ):

4.4 Circular Orbit Velocity

For a small mass  in a circular orbit of radius  around a larger mass :

1. Centripetal force requirement:

2. Solve for orbital speed :

r → ∞ U(∞) = 0 U(r)

m M

U(r) = mV (r) = −G ​

r

M m

r ≈ R ​⊕ g

g ≈ 9.81 m/s (constant) 2

y(t) = y ​ +0 v ​ t −0y ​g t  
2
1 2

v ​(t) =y v ​ −0y g t 

v ​ =y
2 v ​ −0y

2 2 g (y − y ​)0

g

m M

r = R v ​esc

​ mv ​ −2
1

esc
2 G ​ =

R

M m
0 ⟹ v ​ =esc ​​

R

2GM

M = M ​⊕ R = R ​⊕

v ​ =esc, Earth ​ ≈2 g R ​⊕ 11.2 × 10 m/s3

m r M

=
r

mv2

G ​ 
r2

Mm

v

v ​ =orbit ​​

r

GM
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The corresponding orbital period  is:

5. Kepler’s Laws of Planetary Motion

Johannes Kepler (1609–1619) empirically determined three laws describing planetary motion about the Sun. These can be derived from

Newton’s law of gravitation and laws of motion.

5.1 First Law (Law of Ellipses)

Statement: The orbit of every planet is an ellipse, with the Sun at one of the two foci.

Elliptical Geometry:

Semi-major axis: 

Semi-minor axis: 

Distance between center and each focus: , where .

For an ellipse, any point  on the ellipse satisfies:

Eccentricity:

5.2 Second Law (Law of Equal Areas)

Statement: A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

Mathematical Formulation:

Areal velocity  is constant:

where  is the angular momentum of the planet (constant).

Equivalently, for a small time , the area swept  is constant for all equal .

5.3 Third Law (Harmonic Law)

Statement: The square of the orbital period   of a planet is proportional to the cube of the semi-major axis  of its orbit:

More precisely, for a small body orbiting the Sun (mass ):

where:

: orbital period (in seconds).

: semi-major axis of orbit (in meters).

: mass of the Sun.

T

T = ​ =
v ​orbit

2π r
2π ​​

GM

r3

a

b

c c =2 a −2 b2

P

​ +PF ​1 ​ =PF ​2 2a 

e = ​, 0 ≤
a

c
e < 1

​

dt
dA

​ =
dt

dA
​ 

2m
L

L

Δt ΔA Δt

T a

T ∝2 a  3

M ​⊙

​ T = ​ a2

GM ​⊙

4π2
3

T

a

M ​⊙
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5.4 Derivation of the Third Law from Newtonian Gravitation

Assumptions:

A small mass  ( ) orbits a much larger mass  (e.g., a planet around the Sun) in a nearly elliptical—or for simplicity,

circular—orbit of radius .

1. Centripetal force provided by gravity:

2. Orbital period  for a circular orbit:

3. Square both sides:

For elliptical orbits, replace  with the semi-major axis :

6. Orbital Mechanics: Circular and Elliptical Orbits

6.1 Circular Orbits

Orbital Speed (repeated from Section 4.4):

Orbital Period (also repeated):

Total Mechanical Energy of a circular orbiting mass :

Substitute :

Negative total energy indicates a bound orbit.

6.2 Elliptical Orbits

For an ellipse with semi-major axis  and semi-minor axis :

Distance from focus (Sun) to a point at true anomaly :

m m ≪ M M

r ≈ a

​ =
r

mv2

G ​ ⟹
r2

Mm
v = ​.​

r

GM

T

T = ​ =
v

2πr
2πr ​ =​

GM

r
2π ​. ​

GM

r3

T =2 2π ​ =( ​

GM
r3 )

2

​ r . 
GM

4π2
3

r a

T =2
​ a . 

GM

4π2
3

v ​ =circ ​
 

​

r

GM

T = 2π ​ ​
GM

r3

m

E ​ =total K + U = ​mv ​ −
2
1

circ
2

​.
r

GM m

v ​ =circ
2

​r
GM

E ​ =total ​m ​ −
2
1

r

GM
​ =

r

GM m
− ​ ​.

2
1

r

GM m

a b

θ

r(θ) = ​.
1 + e cos θ
a (1 − e )2
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where  is the eccentricity.

Orbital Speed at any point  in an elliptical orbit (vis-viva equation):

At perihelion ( ), speed is maximum.

At aphelion ( ), speed is minimum.

Specific Orbital Energy (energy per unit mass) for an elliptical orbit:

Thus, for any  on the ellipse,  remains constant.

7. Applications and Examples

7.1 Satellite Period Calculation

Problem: Calculate the orbital period of a satellite in a circular orbit at 300 km above Earth’s surface.

1. Given Data:

Earth’s radius .

Satellite altitude above surface: .

Earth’s mass .

Gravitational constant .

2. Orbit Radius:

3. Orbital Period :

Compute :

Then:

Convert to minutes:

7.2 Escape Velocity from Earth

Problem: Determine the escape velocity from Earth’s surface.

1. Given Data:

e

r

v(r) = ​.GM ​ − ​(
r

2
a

1
)

r = a(1 − e)

r = a(1 + e)

ε = ​ −
2
v2

​ =
r

GM
− ​. 

2 a
GM

r ε

R ​ =⊕ 6.371 × 10 m6

h = 300 × 10 m3

M ​ =⊕ 5.972 × 10 kg24

G = 6.67430 × 10 m kg s−11 3 −1 −2

r = R ​ +⊕ h = 6.371 × 10 +6 3.00 × 10 =5 6.671 × 10 m. 6

T

T = 2π ​. ​

GM ​⊕

r3

r3

r =3 (6.671 × 10 ) ≈6 3 2.970 × 10 m . 20 3

T = 2π ​ =​

6.67430 × 10 × 5.972 × 10−11 24

2.970 × 1020
2π ​ =​

3.985 × 1014

2.970 × 1020
2π ​ ≈7.455 × 105 2π × 864.0 ≈ 5,428 s

T ≈ ​ ≈
60

5,428
90.5 minutes. 
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Earth mass: .

Earth radius: .

.

2. Formula:

3. Calculation:

Numerator:

Divide by :

Take square root:

8. Summary of Key Equations

1. Newton’s Law of Universal Gravitation:

2. Gravitational Field Strength:

3. Gravitational Potential:

4. Gravitational Potential Energy:

5. Escape Velocity:

6. Circular Orbit Velocity:

7. Orbital Period (Circular Orbit):

M ​ =⊕ 5.972 × 10 kg24

R ​ =⊕ 6.371 × 10 m6

G = 6.67430 × 10 m kg s−11 3 −1 −2

v ​ =esc ​. ​

R ​⊕

2GM ​⊕

2GM ​ =⊕ 2 × 6.67430 × 10 ×−11 5.972 × 10 ≈24 7.973 × 10 .14

R ​⊕

​ ≈
6.371 × 106

7.973 × 1014

1.252 × 10 . 8

v ​ ≈esc ​ ≈1.252 × 108 1.119 × 10 m/s =4 11.19 km/s. 

F = G  
r2

m ​m1 2

g(r) = G ​ 
r2

M

V (r) = −G ​ 
r

M

U(r) = −G ​

r

M m

v ​ =esc ​​

R

2GM

v ​ =circ ​​

r

GM
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8. Kepler’s Third Law (Harmonic Law):

9. Vis-Viva Equation (General Orbital Speed):

T = 2π ​​

GM

r3

T =2
​ a

GM

4π2
3

v(r) = ​.GM ​ − ​(
r

2
a

1 )
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